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ABSTRACT 

Retinal vessel edge detection is a fundamental analysis for ophthalmic image analysis, enabling 

early screening in diagnosing diabetic retinopathy, glaucoma, and hypertensive retinopathy. 

Conventional edge detection techniques, including Sobel and Canny, often fail to preserve thin vessels 

and are sensitive to illumination variations and imaging noise. Deep learning approaches achieve 

higher accuracy but at the expense of computational complexity and limited interpretability. In this 

study proposes a Modified Deep Guided Optimized Fuzzy Edge Detection (M-DGOFED) framework 

that integrates adaptive fuzzy membership functions with vesselness-guided enhancement for robust 

retinal vessel edge detection. Unlike the original DGOFED, which relies on CNN-trained fuzzy 

parameters, the proposed method computes fuzzy membership parameters directly from image 

statistics mean (m) and standard deviation (k) making it lightweight and training-free. Furthermore, 

the model fuses fuzzy edge confidence with Frangi vesselness responses, enhancing curvilinear vessel 

continuity and preserving thin capillaries. Final edge maps are obtained using Otsu thresholding with 

morphological refinements to ensure structural accuracy. Experimental evaluation on the DRIVE 

dataset demonstrates that M-DGOFED achieves competitive accuracy and sensitivity compared to 

state-of-the-art methods, while maintaining low computational cost and interpretability. This makes it 

a propitious solution in clinical decision support systems for resource-constrained healthcare 

environments. 

 

Keywords: Retinal imaging, fuzzy edge detection, deep learning, M-DGOFED, STARE dataset, GMC 

Dataset, vessel segmentation. 

 

I. Introduction 

Retinal image analysis has become a cornerstone in the early detection of ophthalmic and systemic 

diseases. A critical component in this domain is the accurate extraction of blood vessel boundaries 

from fundus images. These vessel structures serve as biomarkers for a wide range of pathologies. 

However, vessel extraction remains challenging due to the low contrast, variable illumination, and the 

presence of artifacts such as lesions and optic disc boundaries. Conventional edge detection techniques 

like Sobel, Canny, and Laplacian often result in broken or noisy edges, which are insufficient for 

clinical use. Fuzzy logic-based systems, particularly GOFED, introduced adaptability to edge detection 

by estimating fuzzy membership parameters through optimization algorithms. Although GOFED 

improved upon earlier filters, it depended heavily on the Grasshopper Optimization Algorithm (GOA), 

which is computationally intensive and not adaptive in real time. To address this limitation, Modified 

Deep Guided Optimized Fuzzy Edge Detection (M-DGOFED) framework that integrates adaptive 

fuzzy membership functions with vesselness-guided enhancement for robust retinal vessel edge 

detection is proposed. 

 

II.      Literature 

K. Balasamy and S. Suganyadevi proposed a multidimensional fuzzy-CNN hybrid system for 

detecting diabetic retinopathy in retinal fundus images. The model combines deep feature extraction 
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with fuzzy reasoning to handle ambiguity and variability in pathological regions. By integrating 

uncertainty modeling and data-driven learning, the method improves diagnostic decision-making 

under varied illumination and disease conditions. The approach enhances detection accuracy and 

supports clinical screening automation.  

D. Hu et al. introduced Deep Angiogram, is a retinal vessel segmentation based on a lightweight CNN 

model that requires minimal preprocessing. Designed for efficiency, in order to maintain accuracy 

while reducing calculating load, that makes it suitable for mobile and real-time applications. Its 

adaptability across datasets highlights its practicality for low-resource environments. The model 

demonstrates competitive performance with reduced architectural complexity. N. Jin et al. developed 

a segmentation model using encoder-decoder architecture with attention mechanisms to enhance vessel 

boundary detection in low-contrast fundus images. The approach incorporates context-aware modules 

to improve precision for both large and small vessels. Tested on high-resolution datasets, the system 

is suitable for integration into diagnostic equipment. It shows potential for clinical-scale screening of 

retinal diseases like diabetic retinopathy.  

N. Wang et al. modified the U-Net architecture for retinal vessel segmentation by upgrading feature 

fusion and upsampling pathways. The refined model uses additional skip connections and loss 

functions tailored for vessel preservation. It improves segmentation accuracy for thin vessels and 

reduces over-segmentation artifacts. Evaluated on public datasets, the model exhibits robustness across 

noise levels and pathological variations. F. F. Wahid et al. proposed a fuzzy thresholding algorithm 

that combines adaptive histogram equalization with fuzzy membership evaluation. Their method 

enables unsupervised vessel segmentation with improved edge continuity and reduced sensitivity to 

noise. It performs reliably across varying image qualities without requiring deep learning. This makes 

it a viable alternative for screening applications in resource-limited settings. T. M. Khan et al. 

developed a contextual network with multi-resolution to enhance the hostile learning for accurate 

retinal vessel segmentation. The frame integrates global and local contextual encoding with a 

discriminator to refine boundary sharpness. It addresses class imbalance and structural preservation, 

excelling in segmenting fine vessels. Evaluations on DRIVE and STARE datasets confirm its efficacy 

in capturing detailed vascular structures I. Dulau et al. proposed a deep learning segmentation method 

focused on structural connectivity in retinal vasculature. Their model penalizes disconnections using 

custom loss functions, improving accuracy near bifurcations and intersections. Post-processing steps 

ensure topological integrity of vessel maps. The approach demonstrates strong performance in 

preserving clinically relevant vascular pathways 

H. Du et al. presented MS-LSDNet, a model that combines scalable learning with skeleton-based 

vessel reconnection. The system enhances fragmented and thin vessels using geometric post-

processing and local attention modules. It shows improved sensitivity and topology preservation, 

especially useful for detecting early-stage vascular abnormalities. The method is well-suited for 

microvascular analysis in diabetic retinopathy. A. Khan et al. developed an adaptive deep clustering 

framework for joint retinal vessels segmentation and the foveal avascular zone (FAZ). The model 

blends unsupervised clustering with supervised CNN refinement to improve vessel and FAZ boundary 

detection. It utilizes vesselness filters and deep features to enhance accuracy across patient populations. 

The hybrid approach is ideal for integrated diagnostic applications. X. Wei et al. proposed an 

orientation-aware vessel segmentation network using directional attention and contextual feature 

encoding. Their architecture captures continuity and curvature in complex vessel regions, improving 

detection in intersecting and tortuous vessels. The method outperforms standard baselines in accuracy 

and structural similarity. It emphasizes the role of directional learning in enhancing retinal vessel 

segmentation. 
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III.    Proposed Methodology 

The accurate and early detection of retinal vessel edges plays a pivotal role to diagnose wide range of 

ocular manifestation and underlying systemic diseases, like diabetic retinopathy, glaucoma, and 

hypertension. Traditional edge detection methods, although efficient in computational terms, often fail 

to preserve the intricacies of microvasculature and suffer from poor adaptability to variations in image 

quality. To address these limitations, the Modified Deep Guided Optimized Fuzzy Edge Detection (M-

DGOFED) framework is proposed as a robust hybrid system that that integrates adaptive fuzzy 

membership functions with vesselness-guided enhancement.  

The architecture of the M-DGOFED framework is designed as a modular pipeline that integrates 

preprocessing, gradient-based edge feature extraction, fuzzy logic-based uncertainty handling, 

vesselness-guided enhancement, and final edge map generation. Each stage of the architecture plays a 

complementary role in ensuring robustness, adaptability, and structural fidelity of the detected vessels. 

The M-DGOFED process begins with a comprehensive preprocessing stage. Initially, the green 

channel is extracted from the input RGB fundus image to maximize the vessel-to-background contrast. 

This is followed by illumination normalization using Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and high-frequency noise suppression via Gaussian filtering. A region-of-

interest (ROI) mask is then applied to eliminate non-fundus background pixels, ensuring subsequent 

operations are focused solely on relevant tissue regions. Subsequently, the gradient computation phase 

involves calculating the horizontal and vertical gradients using both Sobel and Scharr operators. The 

magnitude responses from these operators are fused to enhance directional sensitivity, and the resulting 

gradient maps are normalized to a standard range [0, 1] for consistency. In the adaptive fuzzy 

membership estimation stage, the parameters for the mean (m) and standard deviation (k) are estimated 

directly from the normalized gradient distribution. A Gaussian fuzzy membership function is then 

applied to assign confidence levels to each pixel, effectively identifying potential vessel edges with 

associated probabilities. The vesselness-guided enhancement phase leverages a multi-scale Hessian 

analysis, implemented through the Frangi filter, to highlight curvilinear, vessel-like structures based 

on their second-order characteristics. The responses from this filter are intelligently fused with the 

previously obtained fuzzy confidence maps using a weighted combination scheme to produce a 

significantly enhanced vessel probability map. Finally, edge binarization and post-processing are 

performed. Otsu’s adaptive global thresholding is applied to convert the enhanced probability map into 

a binary edge map. This binary output undergoes morphological cleaning to remove isolated spurious 

pixels and is subsequently skeletonized to refine the detected vessel edges into thin, one-pixel-wide, 

and continuous structures suitable for quantitative analysis. 
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Fig. 1. Block diagram of the M-DGOFED pipeline. 

 

IV.    Mathematical Formulation 

Mathematical analysis forms the backbone of algorithmic validation in image processing and computer 

vision systems. While empirical results demonstrate the practical performance of a model, a rigorous 

mathematical formulation provides deeper insights into its theoretical behavior, stability, complexity, 

and convergence properties. In the context of the Modified Deep Guided Optimized Fuzzy Edge 

Detection (M-DGOFED) framework, mathematical modeling helps to formalize how each component 

gradient computation, fuzzy membership, vesselness enhancement, and fusion contributes 

quantitatively to the final edge detection performance. 

This section presents a detailed mathematical analysis of M-DGOFED, including derivations of its 

fundamental components, sensitivity analysis of parameters, computational complexity, and 

theoretical performance considerations. The objective is to demonstrate that M-DGOFED is not only 

an empirically effective method but also a mathematically sound and theoretically stable algorithm. 

The M-DGOFED model can be conceptualized as a function F that maps a retinal image I(x,y) to a 

binary edge map E(x,y): 

𝐸(𝑥, 𝑦)  = Ϝ(𝐼(𝑥, 𝑦); 𝜃 

Here θ represents the set of internal parameters (e.g., α, σ, β, c, fuzzy membership parameters m and 

k). 

The function F can be decomposed into four primary sub-functions: 

F=T4∘T3∘T2∘T1 

Where: 

• T1: Gradient computation 

• T2: Adaptive fuzzy membership estimation 

• T3: Vesselness-guided enhancement 

• T4: Edge binarization and morphological refinement 

We now examine each transformation mathematically. 

 Gradient Computation (T1) 

Given a preprocessed image IP(x,y), the magnitude of the gradient M(x,y) is computed as: 

𝑀(𝑥, 𝑦)  =  √(
𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑦
)

2
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Using convolution kernels Kx and Ky:  
𝜕𝐼𝑃

𝜕𝑥
 = 𝐼𝑃 ∗ 𝐾𝑥  

𝜕𝐼𝑃

𝜕𝑦
 = 𝐼𝑃 ∗ 𝐾𝑦 

The fused gradient magnitude from Sobel and Scharr operators is: 

𝑀𝐹(𝑥, 𝑦)=  𝛼𝑀𝑆(𝑥, 𝑦)+(1- 𝛼) 𝑀𝐶(𝑥, 𝑦) 

where: 

• 𝑀𝑆: Sobel gradient magnitude 

• 𝑀𝐶: Scharr gradient magnitude 

• α: Fusion weight (0 < α < 1) 

Finally, the normalized gradient map: 

𝑀𝑁(𝑥, 𝑦) =  
𝑀𝐹(𝑥, 𝑦) − 𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛
 

This normalization ensures that the gradient distribution is scale-invariant and robust to illumination 

changes. 

Fuzzy Membership Computation (T2) 

The fuzzy membership function μ(x,y) models the uncertainty of a pixel being an edge: 

𝜇(𝑥, 𝑦) =  𝑒𝑥𝑝 (−
(𝑀𝑁(𝑥, 𝑦) − 𝑚)2

2𝑘2
) 

where: 

• m: Mean of gradient magnitudes 

• k: Standard deviation of gradient magnitudes 

These are calculated as: 

𝑚 =
1

𝑁
 ∑ 𝑀𝑁(𝑥, 𝑦)  

𝑘 = √
1

𝑁
∑(𝑀𝑁(𝑥, 𝑦) − 𝑚)2 

Membership Gradient Analysis: 

The derivative of the membership function with respect to MN is: 
𝜕𝜇

𝜕𝑀𝑁
 =  −

(𝑀𝑁−𝑚)

𝑘2  μ (x, y) 

This derivative reveals how sensitive the membership value is to changes in the gradient. Larger k 

values yield smoother transitions, while smaller k values make the membership function more 

selective. 

Vesselness Enhancement (T3) 

The Hessian matrix H is defined as: 

𝐻(𝑥, 𝑦) = (
𝐼𝑥𝑥 𝐼𝑥𝑦

𝐼𝑦𝑥 𝐼𝑦𝑦
) 

where second derivatives are computed using Gaussian convolution: 

𝐼𝑥𝑥 =
𝜕2𝐼

𝜕𝑥2*𝐺𝜎, 𝐼𝑦𝑦 =
𝜕2𝐼

𝜕𝑦2 ∗ 𝐺𝜎 , 𝐼𝑥𝑦 =
𝜕2𝐼

𝜕𝑥𝜕𝑦
*𝐺𝜎 

 

Let λ1 and λ2 be the eigenvalues of H such that ∣λ1∣ ≤ ∣λ2∣. 
The vesselness measure Vσ(x,y) at scale σ is: 

𝑉𝜎 (x, y)  = {

 0,                                                                             λ2 > 0

𝑒𝑥𝑝 (−
𝑅𝐵

2

2𝛽2
) . [1 − 𝑒𝑥𝑝 (−

𝑆2

2𝑐2
)] ,             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where: 
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• 𝑅𝐵 =
∣𝜆1∣

∣𝜆2∣
 blobness Ratio 

• 𝑆 = √𝜆1
2 + 𝜆2

2
: structureness measure 

• β, c: tuning constants 

Multi-Scale Fusion: 

𝑉(𝑥, 𝑦) = max
𝜎∊[𝜎𝑚𝑖𝑛,𝜎𝑚𝑎𝑥]

𝑉𝜎(𝑥, 𝑦) 

Fusion with Fuzzy Membership: 

𝐶(𝑥, 𝑦)=  𝛼𝜇(𝑥, 𝑦)+(1- 𝛼)𝑉 (𝑥, 𝑦) 

This fused confidence map combines pixel-level certainty (from fuzzy logic) with structural 

knowledge (from vesselness). 

Binarization and Thresholding (T4) 

The final vessel edge map E(x,y) is generated using Otsu thresholding: 

𝐸(𝑥, 𝑦) = {
1, 𝐶(𝑥, 𝑦) > 𝑇 ∗
0,         𝐶(𝑥, 𝑦) ≤ 𝑇 ∗             

 

Where T* is chosen such that the between-class variance is maximized:  

𝑇 ∗= 𝑎𝑟𝑔 max
𝑇

𝜔1(𝑇)𝜔2(𝑇) [𝜇1(𝑇) − 𝜇2(𝑇)]2  

V.   Datasets 

Two datasets were employed for training and validation. The first, the STARE database, contains 20 

retinal fundus images with expert-annotated vessel masks. Images are captured using a Top Con TRV-

50 fundus camera with 700×605 resolution. The second dataset is a local clinical database collected 

from Guntur Medical College (GMC), Andhra Pradesh. This set includes 50 retinal images captured 

using a Zeiss FF 450IR camera with Sony 3CCD output and includes both normal and pathological 

cases. Ground truth vessel masks are provided by experienced ophthalmologists for supervised 

learning and performance evaluation. 

Programming Environment 

The proposed M-DGOFED framework was implemented in Python 3.10 using a modular image 

processing pipeline. The following libraries and frameworks were used: 

• OpenCV – for gradient computation, filtering, and morphological processing. 

• NumPy – for matrix operations and statistical parameter estimation. 

• Scikit-Image – for vesselness filtering, thresholding, and performance metric calculation. 

• Matplotlib – for visualization and result plotting. 

• SciPy – for Hessian matrix computation and Gaussian convolution. 

 

VI.   Experimental Results  

Qualitative outputs show that M-DGOFED preserves both large and fine vessels, with minimal 

false edges.  

 
 

 

 

(a)Abnormal Image (b)Good Image (c)Normal Image 
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  Output of M-DGOFED       Output of M-DGOFED Output of M-DGOFED 

Fig. 2 Outputs of STARE database 

  

Output of M-DGOFED     Output of M-DGOFED     Output of M-DGOFED 

Fig. 3 Outputs of Images from GMC Database of different patient 

 

Table 1 Several vessel segmentation methods performance comparisons on STARE images and 

GMC Database images. 

SL.No Supervised method types 
SN 

(Sensitivity) 

SP 

(Specificity) 

Acc 

(Accuracy) 

1 Staal N.A N.A 0.9516 

2 Soares 0.7207 0.9747 0.9479 

3 Ricci N.A N.A 0.9584 

4 GOFED 0.7615 0.9731 0.9792 

 

5 

Proposed 

Method 

 M-DGOFED 

STARE 

DATABASE 
0.7633 0.9805 0.9863 

GMC 

DATABASE 
0.7572 0.9701 0.9770 

The Table 1 shows the comparison of vessel detection strategies on STARE images and local database 

GMC Database performed by M-DGOFED technique with the existing methods. Staal gives Acc 

(accuracy) of 0.9516, Soares gives SN (sensitivity) of 0.7207. Ricci gives Acc (accuracy) of 0.9584, 
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GOFED SN (sensitivity) of 0.7615, SP (specificity) of 0.9731, Acc (accuracy) of 0.9792 for STARE 

Database. M-DGOFED technique method proposed in the thesis gives SN (sensitivity) of 0.7633, SP 

(specificity) of 0.9805, Acc (accuracy) of 0.9863 for STARE Database and SN (sensitivity) of 0.7572, 

SP (specificity) of 0.9701, Acc (accuracy) of 0.9770 for GMC database. 

 

VII. Conclusion 

This paper presents M-DGOFED, the combination of adaptive fuzzy membership, vesselness fusion, 

and efficient binarization makes M-DGOFED a powerful yet lightweight solution for retinal vessel 

edge detection. Its interpretability and computational simplicity further support its adoption in real-

world diagnostic systems and resource-limited clinical environments. 
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