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ABSTRACT

Retinal vessel edge detection is a fundamental analysis for ophthalmic image analysis, enabling
early screening in diagnosing diabetic retinopathy, glaucoma, and hypertensive retinopathy.
Conventional edge detection techniques, including Sobel and Canny, often fail to preserve thin vessels
and are sensitive to illumination variations and imaging noise. Deep learning approaches achieve
higher accuracy but at the expense of computational complexity and limited interpretability. In this
study proposes a Modified Deep Guided Optimized Fuzzy Edge Detection (M-DGOFED) framework
that integrates adaptive fuzzy membership functions with vesselness-guided enhancement for robust
retinal vessel edge detection. Unlike the original DGOFED, which relies on CNN-trained fuzzy
parameters, the proposed method computes fuzzy membership parameters directly from image
statistics mean (m) and standard deviation (k) making it lightweight and training-free. Furthermore,
the model fuses fuzzy edge confidence with Frangi vesselness responses, enhancing curvilinear vessel
continuity and preserving thin capillaries. Final edge maps are obtained using Otsu thresholding with
morphological refinements to ensure structural accuracy. Experimental evaluation on the DRIVE
dataset demonstrates that M-DGOFED achieves competitive accuracy and sensitivity compared to
state-of-the-art methods, while maintaining low computational cost and interpretability. This makes it
a propitious solution in clinical decision support systems for resource-constrained healthcare
environments.

Keywords: Retinal imaging, fuzzy edge detection, deep learning, M-DGOFED, STARE dataset, GMC
Dataset, vessel segmentation.

I Introduction

Retinal image analysis has become a cornerstone in the early detection of ophthalmic and systemic
diseases. A critical component in this domain is the accurate extraction of blood vessel boundaries
from fundus images. These vessel structures serve as biomarkers for a wide range of pathologies.
However, vessel extraction remains challenging due to the low contrast, variable illumination, and the
presence of artifacts such as lesions and optic disc boundaries. Conventional edge detection techniques
like Sobel, Canny, and Laplacian often result in broken or noisy edges, which are insufficient for
clinical use. Fuzzy logic-based systems, particularly GOFED, introduced adaptability to edge detection
by estimating fuzzy membership parameters through optimization algorithms. Although GOFED
improved upon earlier filters, it depended heavily on the Grasshopper Optimization Algorithm (GOA),
which is computationally intensive and not adaptive in real time. To address this limitation, Modified
Deep Guided Optimized Fuzzy Edge Detection (M-DGOFED) framework that integrates adaptive
fuzzy membership functions with vesselness-guided enhancement for robust retinal vessel edge
detection is proposed.

Il.  Literature
K. Balasamy and S. Suganyadevi proposed a multidimensional fuzzy-CNN hybrid system for
detecting diabetic retinopathy in retinal fundus images. The model combines deep feature extraction
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with fuzzy reasoning to handle ambiguity and variability in pathological regions. By integrating
uncertainty modeling and data-driven learning, the method improves diagnostic decision-making
under varied illumination and disease conditions. The approach enhances detection accuracy and
supports clinical screening automation.

D. Hu et al. introduced Deep Angiogram, is a retinal vessel segmentation based on a lightweight CNN
model that requires minimal preprocessing. Designed for efficiency, in order to maintain accuracy
while reducing calculating load, that makes it suitable for mobile and real-time applications. Its
adaptability across datasets highlights its practicality for low-resource environments. The model
demonstrates competitive performance with reduced architectural complexity. N. Jin et al. developed
a segmentation model using encoder-decoder architecture with attention mechanisms to enhance vessel
boundary detection in low-contrast fundus images. The approach incorporates context-aware modules
to improve precision for both large and small vessels. Tested on high-resolution datasets, the system
IS suitable for integration into diagnostic equipment. It shows potential for clinical-scale screening of
retinal diseases like diabetic retinopathy.

N. Wang et al. modified the U-Net architecture for retinal vessel segmentation by upgrading feature
fusion and upsampling pathways. The refined model uses additional skip connections and loss
functions tailored for vessel preservation. It improves segmentation accuracy for thin vessels and
reduces over-segmentation artifacts. Evaluated on public datasets, the model exhibits robustness across
noise levels and pathological variations. F. F. Wahid et al. proposed a fuzzy thresholding algorithm
that combines adaptive histogram equalization with fuzzy membership evaluation. Their method
enables unsupervised vessel segmentation with improved edge continuity and reduced sensitivity to
noise. It performs reliably across varying image qualities without requiring deep learning. This makes
it a viable alternative for screening applications in resource-limited settings. T. M. Khan et al.
developed a contextual network with multi-resolution to enhance the hostile learning for accurate
retinal vessel segmentation. The frame integrates global and local contextual encoding with a
discriminator to refine boundary sharpness. It addresses class imbalance and structural preservation,
excelling in segmenting fine vessels. Evaluations on DRIVE and STARE datasets confirm its efficacy
in capturing detailed vascular structures 1. Dulau et al. proposed a deep learning segmentation method
focused on structural connectivity in retinal vasculature. Their model penalizes disconnections using
custom loss functions, improving accuracy near bifurcations and intersections. Post-processing steps
ensure topological integrity of vessel maps. The approach demonstrates strong performance in
preserving clinically relevant vascular pathways

H. Du et al. presented MS-LSDNet, a model that combines scalable learning with skeleton-based
vessel reconnection. The system enhances fragmented and thin vessels using geometric post-
processing and local attention modules. It shows improved sensitivity and topology preservation,
especially useful for detecting early-stage vascular abnormalities. The method is well-suited for
microvascular analysis in diabetic retinopathy. A. Khan et al. developed an adaptive deep clustering
framework for joint retinal vessels segmentation and the foveal avascular zone (FAZ). The model
blends unsupervised clustering with supervised CNN refinement to improve vessel and FAZ boundary
detection. It utilizes vesselness filters and deep features to enhance accuracy across patient populations.
The hybrid approach is ideal for integrated diagnostic applications. X. Wei et al. proposed an
orientation-aware vessel segmentation network using directional attention and contextual feature
encoding. Their architecture captures continuity and curvature in complex vessel regions, improving
detection in intersecting and tortuous vessels. The method outperforms standard baselines in accuracy
and structural similarity. It emphasizes the role of directional learning in enhancing retinal vessel
segmentation.
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I11.  Proposed Methodology

The accurate and early detection of retinal vessel edges plays a pivotal role to diagnose wide range of
ocular manifestation and underlying systemic diseases, like diabetic retinopathy, glaucoma, and
hypertension. Traditional edge detection methods, although efficient in computational terms, often fail
to preserve the intricacies of microvasculature and suffer from poor adaptability to variations in image
quality. To address these limitations, the Modified Deep Guided Optimized Fuzzy Edge Detection (M-
DGOFED) framework is proposed as a robust hybrid system that that integrates adaptive fuzzy
membership functions with vesselness-guided enhancement.

The architecture of the M-DGOFED framework is designed as a modular pipeline that integrates
preprocessing, gradient-based edge feature extraction, fuzzy logic-based uncertainty handling,
vesselness-guided enhancement, and final edge map generation. Each stage of the architecture plays a
complementary role in ensuring robustness, adaptability, and structural fidelity of the detected vessels.
The M-DGOFED process begins with a comprehensive preprocessing stage. Initially, the green
channel is extracted from the input RGB fundus image to maximize the vessel-to-background contrast.
This is followed by illumination normalization using Contrast Limited Adaptive Histogram
Equalization (CLAHE) and high-frequency noise suppression via Gaussian filtering. A region-of-
interest (ROI) mask is then applied to eliminate non-fundus background pixels, ensuring subsequent
operations are focused solely on relevant tissue regions. Subsequently, the gradient computation phase
involves calculating the horizontal and vertical gradients using both Sobel and Scharr operators. The
magnitude responses from these operators are fused to enhance directional sensitivity, and the resulting
gradient maps are normalized to a standard range [0, 1] for consistency. In the adaptive fuzzy
membership estimation stage, the parameters for the mean (m) and standard deviation (k) are estimated
directly from the normalized gradient distribution. A Gaussian fuzzy membership function is then
applied to assign confidence levels to each pixel, effectively identifying potential vessel edges with
associated probabilities. The vesselness-guided enhancement phase leverages a multi-scale Hessian
analysis, implemented through the Frangi filter, to highlight curvilinear, vessel-like structures based
on their second-order characteristics. The responses from this filter are intelligently fused with the
previously obtained fuzzy confidence maps using a weighted combination scheme to produce a
significantly enhanced vessel probability map. Finally, edge binarization and post-processing are
performed. Otsu’s adaptive global thresholding is applied to convert the enhanced probability map into
a binary edge map. This binary output undergoes morphological cleaning to remove isolated spurious
pixels and is subsequently skeletonized to refine the detected vessel edges into thin, one-pixel-wide,
and continuous structures suitable for quantitative analysis.

UGC CARE Group-1 150



Industrial Engineering Journal
ISSN: 0970-2555
Volume : 54, Issue 9, No.1, September : 2025

Vesselness

Enhancement
: [ Adaptive |TPUI
-Preprocessung] —' Fuzzy >I(X T,Y) = op, | ’1 Edge Map |
#\ Fundus - l
Image m=up
k=oc(M,1)
Fuzzy _‘.lThreSholding
(Membership ‘
Output
Edge Map

Fig. 1. Block diagram of the M-DGOFED pipeline.

IV. Mathematical Formulation
Mathematical analysis forms the backbone of algorithmic validation in image processing and computer
vision systems. While empirical results demonstrate the practical performance of a model, a rigorous
mathematical formulation provides deeper insights into its theoretical behavior, stability, complexity,
and convergence properties. In the context of the Modified Deep Guided Optimized Fuzzy Edge
Detection (M-DGOFED) framework, mathematical modeling helps to formalize how each component
gradient computation, fuzzy membership, vesselness enhancement, and fusion contributes
quantitatively to the final edge detection performance.
This section presents a detailed mathematical analysis of M-DGOFED, including derivations of its
fundamental components, sensitivity analysis of parameters, computational complexity, and
theoretical performance considerations. The objective is to demonstrate that M-DGOFED is not only
an empirically effective method but also a mathematically sound and theoretically stable algorithm.
The M-DGOFED model can be conceptualized as a function F that maps a retinal image I(x,y) to a
binary edge map E(x,y):
E(x,y) =F((x,y);6
Here 0 represents the set of internal parameters (e.g., o, o, B, ¢, fuzzy membership parameters m and
K).
The function F can be decomposed into four primary sub-functions:
F=T40T30T20T1

Where:

e T1: Gradient computation

o To: Adaptive fuzzy membership estimation

e Ta: Vesselness-guided enhancement

e T4 Edge binarization and morphological refinement
We now examine each transformation mathematically.
Gradient Computation (T1)
Given a preprocessed image Ip(X,y), the magnitude of the gradient M(x,y) is computed as:

e = (2 +(2)
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Using convolution kernels Ky and Ky:
dlp _ dlp _
E_IP*KX E—Ip*Ky

The fused gradient magnitude from Sobel and Scharr operators is:
M (x,y)= aMs(x, y)+(1- a) Mc(x,y)

where:
e Mjs: Sobel gradient magnitude
e M,: Scharr gradient magnitude
e o: Fusionweight 0 <a<1)
Finally, the normalized gradient map:
_ Mg (x,y) — Mpmin
Mmax — Minin
This normalization ensures that the gradient distribution is scale-invariant and robust to illumination
changes.
Fuzzy Membership Computation (T2)
The fuzzy membership function p(x,y) models the uncertainty of a pixel being an edge:

_ (My (x,y) = m)*
k) = exp (-5

where:

e m: Mean of gradient magnitudes

o k: Standard deviation of gradient magnitudes
These are calculated as:

m :%ZMN(x'y)

1
k= JNZ(MN(x.y) —m)?
Membership Gradient Analysis:

The derivative of the membership function with respect to My is:

ou _ _ My—m)

aMN - = k2 “’(X’ Y)
This derivative reveals how sensitive the membership value is to changes in the gradient. Larger k
values yield smoother transitions, while smaller k values make the membership function more
selective.
Vesselness Enhancement (T3)
The Hessian matrix H is defined as:

Ixx Ix
y
Hen =" )
. ] . yx yy ]
where second derivatives are computed using Gaussian convolution:
_ 0%, 921 921 ,

Ixx_ﬁ Ga’ yy:a_yz*G‘f’ xy:axay g

Let A1 and A2 be the eigenvalues of H such that || < [A2l.

The vesselness measure vs(X,y) at scale o is:
0, A, >0

_ R2 52
V: (xy) exp <— Z—BB;) . ll —exp <— ﬁ)l , Otherwise

Where:
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= Ml blobness Ratio
1221

e S= / A1% 4 A,%: structureness measure

e [, c: tuning constants
Multi-Scale Fusion:

° RB

Vix,y) = max Vi (x,y)

0€[0min.Omax
Fusion with Fuzzy Membership:
Cx,y)= au(x, y)+(1- a)V (x,y)
This fused confidence map combines pixel-level certainty (from fuzzy logic) with structural
knowledge (from vesselness).
Binarization and Thresholding (T4)
The final vessel edge map E(X,y) is generated using Otsu thresholding:
1, Clx,y)>T =

EQy) = {0, Clx,y) <T*

Where T* is chosen such that the between-class variance is maximized:
T x=arg max w1 (T w2 (T) [1(T) — p2(T)]?

V. Datasets

Two datasets were employed for training and validation. The first, the STARE database, contains 20
retinal fundus images with expert-annotated vessel masks. Images are captured using a Top Con TRV-
50 fundus camera with 700x605 resolution. The second dataset is a local clinical database collected
from Guntur Medical College (GMC), Andhra Pradesh. This set includes 50 retinal images captured
using a Zeiss FF 450IR camera with Sony 3CCD output and includes both normal and pathological
cases. Ground truth vessel masks are provided by experienced ophthalmologists for supervised

learning and performance evaluation.
Programming Environment

The proposed M-DGOFED framework was implemented in Python 3.10 using a modular image

processing pipeline. The following libraries and frameworks were used:
e OpenCV - for gradient computation, filtering, and morphological processing.
NumPy — for matrix operations and statistical parameter estimation.

Matplotlib — for visualization and result plotting.
SciPy — for Hessian matrix computation and Gaussian convolution.

V1. Experimental Results

Qualitative outputs show that M-DGOFED preserves both large and fine vessels, with minimal

false edges.

(a)Abnormal Imaage (bYGood Imaage (c)Normal Image
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Output of M-DGOFED Output of M-DGOFED  Output of M-DGOFED
Fig. 2 Outputs of STARE database

Fundus image of Patient-1  Fundusimage of Patient-2 Fundus image of Patient-3

Output of M-DGOFED  Output of M-DGOFED Output of M-DGOFED
Fig. 3 Outputs of Images from GMC Database of different patient

Table 1 Several vessel segmentation methods performance comparisons on STARE images and
GMC Database images.

. SN SP Acc
SL.No Supervised method types (Sensitivity) | (Specificity) | (Accuracy)

1 Staal N.A N.A 0.9516
2 Soares 0.7207 0.9747 0.9479
3 Ricci N.A N.A 0.9584
4 GOFED 0.7615 0.9731 0.9792

STARE
Proposed DATABASE 0.7633 0.9805 0.9863

Method

5 GMC

M-DGOFED DATABASE 0.7572 0.9701 0.9770

The Table 1 shows the comparison of vessel detection strategies on STARE images and local database
GMC Database performed by M-DGOFED technique with the existing methods. Staal gives Acc
(accuracy) of 0.9516, Soares gives SN (sensitivity) of 0.7207. Ricci gives Acc (accuracy) of 0.9584,
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GOFED SN (sensitivity) of 0.7615, SP (specificity) of 0.9731, Acc (accuracy) of 0.9792 for STARE
Database. M-DGOFED technique method proposed in the thesis gives SN (sensitivity) of 0.7633, SP
(specificity) of 0.9805, Acc (accuracy) of 0.9863 for STARE Database and SN (sensitivity) of 0.7572,
SP (specificity) of 0.9701, Acc (accuracy) of 0.9770 for GMC database.

VII. Conclusion

This paper presents M-DGOFED, the combination of adaptive fuzzy membership, vesselness fusion,
and efficient binarization makes M-DGOFED a powerful yet lightweight solution for retinal vessel
edge detection. Its interpretability and computational simplicity further support its adoption in real-
world diagnostic systems and resource-limited clinical environments.
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