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ABSTRACT  

In this paper, we define generalized Geraghty - G�́�rnicki map, generalized Boyd and Wong - G�́�rnicki 

map, and generalized weakly G�́�rnicki map and prove the existence and uniqueness of fixed points of 

these maps in complete metric spaces. These maps are not necessarily be continuous. Examples are 

provided in support of our results. Our results generalize some of the existing results. 
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I. Introduction 

Fixed point theory has been an attractive field of research to many researchers since 1922 with the 

famous Banach contraction principle [3], a technique that provides to solve variety of principle 

problems in mathematical sciences and engineering. Subsequently, this result was extended and 

generalized by several authors using various contraction/contractive conditions. 

A mapping 𝑇 on a metric space (𝑋, 𝑑) is called Kannan map if there exists 𝛼 ∈ [0,
1

2
) such that 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼(𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦))                             

for all 𝑥, 𝑦 ∈ 𝑋. In the year 1968, Kannan [15] proved that if (𝑋, 𝑑) is complete and 𝑇 is a Kannan 

mapping on 𝑋, then 𝑇 has a unique fixed point in 𝑋. Kannan [16] provided examples which show that 

Kannan’s fixed point theorem is independent of the Banach contraction principle and Kannan mapping 

need not be continuous. Based Kannan’s fixed point some generalizations are made by G�́�rnicki’s 

[14]. Several authors generalized Kannan’s fixed point theorem, see [1], [6], [7], [9]-[13], [15], and 

[17]-[24]. 

     In 2019, G�́�rnicki [13] considered the following type of mappings in metric spaces, which we call 

G�́�rnicki maps.  

  Theorem 1.1.   Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋 is a continuous asymptotically regular 

mapping and if there exists 0 ≤ 𝑀 < 1 and 0 ≤ 𝐾 < +∞ such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑀 𝑑(𝑥, 𝑦) + 𝐾 {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)}            (1.1) 

 for all 𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed point  𝑝 ∈ 𝑋 and 𝑇𝑛𝑥 → 𝑝 for each 𝑥 ∈ 𝑋. 

     A map 𝑇 that satisfies condition (1.1) is called a G�́�rnicki map. Here we note that such 𝑇  need not 

be continuous. For more details, we refer [14]. 

Definition 1.2. [7] A self map 𝑇 of a metric space (𝑋, 𝑑) is said to be asymptotically regular if  

lim
𝑛→∞

𝑑(𝑇𝑛+1𝑥, 𝑇𝑛𝑥) = 0 for all  𝑥 ∈ 𝑋. 

Definition 1.3. (Ćirić [8]) Let 𝑇 be a self map of a metric space (𝑋, 𝑑). Let 𝑥 ∈ 𝑋  then the set 

 𝑂(𝑇, 𝑥) = {𝑇𝑛𝑥: 𝑛 = 0,1,2, … } is called the orbit of 𝑇 at 𝑥. 𝑇 is called orbitally continuous at a point 

𝑧 ∈ 𝑋 if for any sequence {𝑥𝑛} ⊂ 𝑂(𝑇, 𝑥) for some 𝑥 ∈ 𝑋, 𝑥𝑛 → 𝑧 implies 𝑇𝑥𝑛 → 𝑇𝑧 as 𝑛 → ∞. 
     Here we note that every continuous self map of 𝑋 is orbitally continuous but its converse is not true 

[8]. 

     The weaker form of continuity is defined by Pant and Pant [20] as follows: a self mapping 𝑇 of a 

metric space (𝑋, 𝑑)  is called 𝑘-continuous, 𝑘 =  1, 2, . . ., if 𝑇𝑘𝑥𝑛 → 𝑇𝑧 whenever {𝑥𝑛} is a sequence 

in 𝑋 such that 𝑇𝑘−1𝑥𝑛 → 𝑧 as 𝑛 → ∞. For more details, we refer Pant and Pant [20] and G�́�rnicki  [14]. 
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 In 2019, Bisht [4] and G�́�rnicki  [14] proved the following theorem. 

Theorem 1.4. If (𝑋, 𝑑) is a complete metric space and 𝑇 ∶  𝑋 → 𝑋  is an asymptotically regular 

mapping and if there exists 0 ≤ 𝑀 < 1 and 0 ≤ 𝐾 < +∞ such that satisfying condition (1.1), then 𝑇 

has a unique fixed point 𝑝 ∈ 𝑋 provided 𝑇 is either 𝑘-continuous for some 𝑘 ≥ 1 or orbitally 

continuous. Additionally,  𝑇𝑛𝑥 → 𝑝 for each 𝑥 ∈ 𝑋. 

Notation 1.5. Let 𝓢 = {𝜶: [0, ∞) → [0, 1)/𝛼(𝜏𝑛) → 1 ⇒ 𝜏𝑛 → 0}. (We do not assume that 𝛼 is 

continuous in any sense).  

Theorem 1.6. [14] Let (𝑋, 𝑑) be a metric space. We considered a new type of mappings 𝑇 ∶  𝑋 → 𝑋  
to satisfy the following condition: there exists 𝛼 ∈ 𝓢,  0 ≤ 𝐾 < ∞ such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼(𝑑(𝑥, 𝑦)). 𝑑(𝑥, 𝑦) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)}                   (1.6.1) 

for all 𝑥, 𝑦 ∈ 𝑋. If  𝑇 is 𝑘-continuous for some 𝑘 ≥ 1 or 𝑇 is orbitally continuous, then 𝑇 has a unique 

fixed point 𝑧 ∈ 𝑋 and for each  𝑥 ∈  𝑋, 𝑇𝑛𝑥 →  𝑧 𝑎𝑠 𝑛 →  ∞. 
We call a map that satisfies (1.6.1) is called a Geraghty - G�́�rnicki map. 

     The next result is inspired by theorem of Boyd and Wong [5].  

A mapping 𝑇 satisfying  𝑑(𝑇 𝑥, 𝑇 𝑦) ≤ 𝜑(𝑑(𝑥, 𝑦)), 𝜑(𝜏) <  𝜏 for each 𝜏 >  0 may not posses a fixed 

point unless some additional condition is assumed on 𝜑. Boyd and Wong [5] assumed 𝜑 to be upper 

semi-continuous from the right. 

 

Theorem 1.7. [14] Let (𝑋, 𝑑) be a metric space. Assume that 𝑇 ∶  𝑋 → 𝑋  satisfies the following 

condition: there exists 𝛼 ∈ 𝓢, 0 ≤ 𝑘 < ∞ such that  

 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝑑(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)}                   (1.7.1) 

for all 𝑥, 𝑦 ∈ 𝑋. If 𝑇 is 𝑘-continuous for some 𝑘 ≥ 1 or 𝑇 is orbitally continuous, then 𝑇 has a unique 

fixed point 𝑧 ∈ 𝑋 and for each  𝑥 ∈  𝑋, 𝑇𝑛𝑥 →  𝑧 𝑎𝑠 𝑛 →  ∞. 
We call a map that satisfies (1.7.1) is called a Boyd and Wong - G�́�rnicki map. 

To prove our main results, we use the following lemma. 

Lemma 1.8. [2] Suppose (𝑋, 𝑑) be a metric space. Let {𝑥𝑛} be a sequence in 𝑋 such that 𝑑(𝑥𝑛, 𝑥𝑛+1) →
0 as 𝑛 → ∞. If {𝑥𝑛}  is not a Cauchy sequence then there exist an 𝜖 > 0 and sequences of positive 

integers {𝑚𝑖} and {𝑛𝑖} with 𝑚𝑖 > 𝑛𝑖 > 𝑖 such that 𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖

) ≥ 𝜖, 𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖
) < 𝜖 and 

(𝑖) lim
𝑖→∞

𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖+1) = 𝜖; 

(𝑖𝑖) lim
𝑖→∞

𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖

) = 𝜖; 

(𝑖𝑖𝑖)𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖
) = 𝜖; 

 

II. Fixed points of weakly G�́�rnicki map 

In the following, we define generalized weakly G�́�rnicki map. 

Definition 2.1.  Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋. If there exists 𝜑 ∈ Φ, and Κ ≥ 0 such 

that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) − 𝜑(𝑑(𝑥, 𝑦)) + Κ. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)},      (2.1.1. ) 

for each 𝑥, 𝑦 ∈ 𝑋, where ℝ+ = [0, ∞) and we denote 

 Φ = {𝜑: ℝ+ → ℝ+/𝜑 is continuous and 𝜑(𝜏) = 0 if and only if 𝜏 = 0}. Then we say that 𝑇 is a 

weakly G�́�rnicki map. 

Theorem 2.2. Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 an asymptotically regular mapping. 

Assume that 𝑇 is a weakly G�́�rnicki map. If 𝑇 is 𝑘-continuous for some 𝑘 ≥ 1 or 𝑇 is orbitally 

continuous, then 𝑇 has a unique fixed point.  

Proof: Let 𝑥0 ∈ 𝑋. We define the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛, for  𝑛 = 0,1,2, … 

If 𝑇𝑝𝑥 = 𝑇𝑝+1𝑥 for some 𝑝 ∈ ℕ, then 𝑇(𝑇𝑝𝑥) = 𝑇𝑝𝑥 is the fixed point of 𝑇.  

We now assume, without loss of generality, that 𝑥𝑛+1 ≠ 𝑥𝑛 for every 𝑛 ∈ ℕ. 
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By using Lemma 1.8, there exists 𝜖 > 0 and sequences of positive integers {𝑚𝑖} and {𝑛𝑖} of positive 

integers with 𝑚𝑖 > 𝑛𝑖 > 𝑖 such that 𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖

) ≥ 𝜖, 𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖
) < 𝜖 and (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) of        

Lemma 1.8., hold. We now consider  

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) ≤ 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) + 𝑑(𝑥𝑛𝑖+1, 𝑥𝑚𝑖+1) + 𝑑(𝑥𝑚𝑖+1, 𝑥𝑚𝑖

) 

                   ≤  𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) + 𝑑(𝑥𝑛𝑖

, 𝑥𝑚𝑖
) − 𝜑 (𝑑(𝑥𝑛𝑖

, 𝑥𝑚𝑖
)) 

+𝐾. {𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) + 𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1)} + 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1) 

                  =  𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) − 𝜑 (𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

)) + (𝐾 + 1). [𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) +  𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1)] 

On letting 𝑖 → ∞ and by using asymptotic regularity and continuity of 𝜑, we obtain 

 𝜑(𝜖) = 0 which imples that 𝜖 = 0, a contradiction. 

Therefore {𝑥𝑛} is a Cauchy sequence. 

Since 𝑋 is complete lim
𝑖→∞

𝑥𝑛 = 𝑧 ∈ 𝑋. 

Suppose 𝑇 is 𝑘 −continuous. Let {𝑥𝑛} be a sequence in 𝑋 such that 𝑇𝑘−1𝑥𝑛 → 𝑧 as 𝑛 → ∞.  

Then 𝑇𝑘𝑥𝑛 → 𝑇𝑧 as 𝑛 → ∞. 

Also, 𝑇𝑘𝑥𝑛 = 𝑥𝑛+𝑘 → 𝑧 as 𝑛 → ∞, and hence it follows that 𝑇𝑧 = 𝑧. 

Suppose 𝑇 is orbitally continuous. 

Let {𝑥𝑛} be a sequence in 𝑂(𝑇, 𝑥) such that 𝑥𝑛 → 𝑧, 𝑧 ∈ 𝑋. Then 𝑥𝑛+1 = 𝑇𝑥𝑛 → 𝑇𝑧 as 𝑛 → ∞. 
Therefore 𝑇𝑧 = 𝑧. 
Therefore 𝑧 is a fixed point of 𝑇. 

We now show the uniqueness of 𝑧. 

Suppose 𝑦 is another fixed point of  𝑇; 𝑇𝑦 = 𝑦, 𝑇𝑧 = 𝑧. 

Suppose 𝑦 ≠ 𝑧. We consider 

𝑑(𝑧, 𝑦) = 𝑑(𝑇𝑧, 𝑇𝑦) ≤ 𝑑(𝑧, 𝑦) − 𝜑(𝑑(𝑧, 𝑦)) + 𝐾{𝑑(𝑧, 𝑇𝑧) + 𝑑(𝑦, 𝑇𝑦)} 

                                                        = 𝑑(𝑧, 𝑦) − 𝜑(𝑑(𝑧, 𝑦)) + 𝐾{𝑑(𝑧, 𝑧) + 𝑑(𝑦, 𝑦)} < 𝑑(𝑧, 𝑦), 

a contradiction. 

Therefore 𝑧 is the unique fixed point of  𝑇. 

Hence, the theorem follows. 

Remark 2.3. Theorem 1.1. follows as a Corollary to Theorem 2.2. by choosing 𝜑: ℝ+ → ℝ+ by  

𝜑(𝑡) = (1 − 𝑀)𝑡, 𝑡 ≥ 0 in the inequality 2.1.1. 

Example 2.4. Let 𝑋 = [0,2] with usual metric. Define  𝑇: 𝑋 → 𝑋 by  𝑇𝑥 = {
1,          𝑖𝑓      0 ≤ 𝑥 ≤ 1
0,            𝑖𝑓          𝑥 > 1

. 

 Let 𝜑: ℝ+ → ℝ+ by 𝜑(𝑡) = {

𝑡

𝑡+1
,   𝑖𝑓 0 ≤ 𝑡 ≤ 1

1

𝑡+1
,          𝑖𝑓   𝑡 ≥ 1

.        Then 𝜑 ∈ Φ. 

Clearly, 𝑇 is asymptotically regular. 

We now verify the inequality (2.1.1. ). Suppose 𝑥 ∈ [0,1] and 𝑦 > 1. 

If 𝑦 − 𝑥 ∈ [0, 1] implies  𝜑(𝑑(𝑥, 𝑦)) =
𝑦−𝑥

𝑦−𝑥+1
 , then 

𝑑(𝑇𝑥, 𝑇𝑦) = 1 ≤ 1 − 𝑥 + 𝑦 

             ≤ 
𝑦−𝑥

𝑦−𝑥+1
+ 2(1 − 𝑥 + 𝑦) 

                        ≤ 𝑦 − 𝑥 −
𝑦−𝑥

𝑦−𝑥+1
+ 2(1 − 𝑥 + 𝑦) 

            = 𝑑(𝑥, 𝑦) − 𝜑(𝑑(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with 𝐾 = 2. 

If 𝑦 − 𝑥 ≥ 1 implies  𝜑(𝑑(𝑥, 𝑦)) =
1

𝑦−𝑥+1
 , then 

𝑑(𝑇𝑥, 𝑇𝑦) = 1 ≤ 1 − 𝑥 + 𝑦 

             ≤ 
1

𝑦−𝑥+1
+ 2(1 − 𝑥 + 𝑦) 
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                ≤ 𝑦 − 𝑥 −
1

𝑦−𝑥+1
+ 2(1 − 𝑥 + 𝑦) 

  = 𝑑(𝑥, 𝑦) − 𝜑(𝑑(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

So the inequality (2.1.1. ) holds with 𝐾 = 2 in this case. 

Similarly, the inequality (2.1.1. ) holds for the case 𝑦 ∈ [0,1] and  𝑥 > 1. 

In the other cases, the inequality (2.1.1. ) holds trivially. 

Then 𝑇 satisfies the inequality (2.1.1. ) and all the hypotheses of Theorem 2.2. and clearly  ′1′ is the 

unique fixed point of  𝑇. 

 

III. Fixed Points of generalized Geraghty- G�́�rnicki map 

 Here we define generalized Geraghty- G�́�rnicki map. 

Definition 3.1. Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋. If there exists 𝛼 ∈ 𝒮, and 𝐾 ≥ 0 such that 

                  𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)},                    (3.1.1. ) 

for each 𝑥, 𝑦 ∈ 𝑋 where 𝑀(𝑥, 𝑦) = {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
}. Then we say that 𝑇 

is generalized Geraghty- G�́�rnicki map. 

Theorem 3.2. Let (𝑋, 𝑑) be a complete metric space and  𝑇: 𝑋 → 𝑋 be an asymptotically regular 

mapping. Assume that 𝑇 is a generalized Geraghty- G�́�rnicki map. If  𝑇 is  𝑘-continuous for some 𝑘 ≥
1 or 𝑇 is orbitally continuous, then 𝑇 has a unique fixed point.  

Proof: Let 𝑥0 ∈ 𝑋. We define the sequence 𝑥𝑛+1 = 𝑇𝑥𝑛, for 𝑛 = 0,1,2, … 

If 𝑥𝑛+1 = 𝑥𝑛 for some 𝑛, then we have 𝑇𝑥𝑛 = 𝑥𝑛.  

By choosing 𝑧 = 𝑥𝑛, we have 𝑇𝑧 = 𝑧 and the conclusion of the theorem follows. 

We now assume, without loss of generality, that 𝑥𝑛+1 ≠ 𝑥𝑛 for every 𝑛 ∈ ℕ. 

By using Lemma 1.8, there exists 𝜖 > 0 and sequences of positive integers {𝑚𝑖} and {𝑛𝑖} of positive 

integers with 𝑚𝑖 > 𝑛𝑖 > 𝑖 such that 𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖

) ≥ 𝜖, 𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖
) < 𝜖 and (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) of        

Lemma 1.8., hold. Now we consider  

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) ≤ 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) + 𝑑(𝑥𝑛𝑖+1
, 𝑥𝑚𝑖+1

) + 𝑑(𝑥𝑚𝑖+1
, 𝑥𝑚𝑖

) 

                   ≤  𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) + 𝛼 (𝑀(𝑥𝑛𝑖
, 𝑥𝑚𝑖

)) . 𝑀(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) 

+𝐾. {𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) + 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

)} + 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

) 

                  =  𝛼 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

), 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

),
𝑑(𝑥𝑛𝑖

,𝑥𝑚𝑖+1
)+𝑑(𝑥𝑚𝑖

,𝑥𝑛𝑖+1
)

2
}) 

                              𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

), 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

),
𝑑(𝑥𝑛𝑖

, 𝑥𝑚𝑖+1
) + 𝑑(𝑥𝑚𝑖

, 𝑥𝑛𝑖+1
)

2
}   

         +(𝐾 + 1). [𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) +  𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

)] 

on letting 𝑖 → ∞ and by using asymptotic regularity we obtain 

   𝜖 = lim
𝑖→∞

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) 

      ≤ lim
𝑖→∞

𝛼 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

), 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

),
𝑑(𝑥𝑛𝑖

,𝑥𝑚𝑖+1
)+𝑑(𝑥𝑚𝑖

,𝑥𝑛𝑖+1
)

2
}) . 𝜖 ≤ 𝜖 

it follows that 

lim
𝑖→∞

𝛼 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

), 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1

),
𝑑(𝑥𝑛𝑖

,𝑥𝑚𝑖+1
)+𝑑(𝑥𝑚𝑖

,𝑥𝑛𝑖+1
)

2
}) = 1. 

Thus, by the property of 𝛼 ∈ 𝒮, we have 

lim
𝑖→∞

𝛼 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1), 𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1),
𝑑(𝑥𝑛𝑖

, 𝑥𝑚𝑖+1) + 𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖+1)

2
}) = 0. 

Thus, we have   

 lim
𝑖→∞

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) = 0,  
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which is a contradiction. 

Therefore {𝑥𝑛} is a Cauchy sequence. 

Since 𝑋 is a fixed point of  𝑇 follow as in the proof of Theorem 2.2.  

We now show the uniqueness of 𝑧.  

Suppose 𝑦 is another fixed point of  𝑇; 𝑇𝑦 = 𝑦, 𝑇𝑧 = 𝑧. 

Suppose 𝑦 ≠ 𝑧. We consider 

𝑑(𝑧, 𝑦) = 𝑑(𝑇𝑧, 𝑇𝑦) ≤ 𝛼(𝑀(𝑧, 𝑦)). 𝑀(𝑧, 𝑦) + 𝐾{𝑑(𝑧, 𝑇𝑧) + 𝑑(𝑦, 𝑇𝑦)} 

                                      = 𝛼 (𝑚𝑎𝑥 {𝑑(𝑧, 𝑦), 𝑑(𝑧, 𝑇𝑧), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑧, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑧)

2
}). 

                                            𝑚𝑎𝑥 {𝑑(𝑧, 𝑦), 𝑑(𝑧, 𝑇𝑧), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑧,𝑇𝑦)+𝑑(𝑦,𝑇𝑧)

2
} + 𝐾{𝑑(𝑧, 𝑧) + 𝑑(𝑦, 𝑦)} 

                                 = 𝛼(𝑑(𝑧, 𝑦)). 𝑑(𝑧, 𝑦) < 𝑑(𝑧, 𝑦), 

a contradiction. 

Therefore 𝑧 = 𝑦 and 𝑧 is the unique fixed point of  𝑇. 

Hence the theorem follows. 

Example 3.3. Let 𝑋 = [0,1] with usual metric and 𝑇: 𝑋 → 𝑋  by 𝑇𝑥 =
𝑥2

2
,  for all 𝑥 ∈ 𝑋. Define  

𝛼: [0,∞) → [0,∞) by 𝛼(𝑡) =
1

1+𝑡
, 𝑡 ≥ 0. Then 𝛼 ∈ 𝓢. We now verify the inequality (3.1.1). 

𝑇𝑥 =
𝑥2

2
. Then 

𝑇2𝑥 = 𝑇 (
𝑥2

2
) =

(𝑥2)2

22+1
 

𝑇3𝑥 = 𝑇 (
𝑥4

23
) =

(𝑥2)4

22(3)+1
 

on continuing this process, 

𝑇𝑛𝑥 =
𝑥2𝑛

22𝑛−1;  𝑇𝑛+1𝑥 =
𝑥2𝑛+1

22𝑛+1−1
; 

lim
𝑛→∞

𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) = lim
𝑛→∞

|𝑇𝑛𝑥 − 𝑇𝑛+1𝑥| = lim
𝑛→∞

|
𝑥2𝑛

22𝑛−1
−

𝑥2𝑛+1

22𝑛+1−1
| 

                                                                       = 2. lim
𝑛→∞

|
𝑥2𝑛

22𝑛 −
𝑥2𝑛+1

22𝑛+1| 

                                                                       = 2. lim
𝑛→∞

|
𝑥2𝑛

22𝑛 (1 −
𝑥

22)| 

                                                                       = 2. ((
𝑥

2
)

2𝑛

. (1 −
𝑥

22)) → 0 as 𝑛 → ∞ 

Therefore 𝑇 is asymptotic regular. 

Let 𝑥, 𝑦 ∈ 𝑋. 

Now, 𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) = |𝑥 −
𝑥2

2
| + |𝑦 −

𝑦2

2
| 

Without loss of generality, we assume that  𝑥 < 𝑦. Then  

𝑑(𝑇𝑥, 𝑇𝑦) =
1

2
(𝑥2 − 𝑦2) ≤

1

2
(𝑥2 + 𝑦 − 𝑥 − 𝑦2) =

𝑥2

2
+

𝑦

2
−

𝑥

2
−

𝑦2

2
 

                                     ≤ |
𝑥2

2
− 𝑥| + |𝑦 −

𝑦2

2
| 

                           ≤ 𝐾 [|𝑥 −
𝑥2

2
| + |𝑦 −

𝑦2

2
|] 

              = 𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)], with  𝐾 = 1.  

Therefore the inequality (3.1.1) holds. 

Note that 𝑇 is continuous and satisfies all the hypotheses of Theorem 3.1 and it has a unique fixed 

point ′0′. 
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Example 3.4. Let 𝑋 = [0,2] with the usual metric. Define 𝑇: 𝑋 → 𝑋 by 𝑇𝑥 = {
1,   𝑖𝑓 0 ≤ 𝑥 ≤ 1
𝑥

2
, 𝑖𝑓 1 < 𝑥 ≤ 2 

 .  

Let {𝑥𝑛} be a sequence in [0,2] such that 𝑇𝑥𝑛 → 𝑡 as 𝑛 → ∞ i.e., lim
𝑛→∞

𝑥𝑛 = 2𝑡. 

 𝛼: [0,∞) → [0,∞) by  𝛼(𝑡) =
1

1+𝑡
, 𝑡 ≥ 0. Then 𝛼 ∈ 𝓢.   

Let 1 < 𝑥 ≤ 2. Then  

𝑇𝑥 =
𝑥

2
 

𝑇𝑛𝑥 =
𝑥

2𝑛, 𝑛 = 1,2, ….          

Now 𝑑(𝑇𝑛+1𝑥, 𝑇𝑛𝑥) = |
𝑥

2𝑛+1 −
𝑥

2𝑛| =
𝑥

2𝑛 −
𝑥

2𝑛+1 → 0 as 𝑛 → ∞. 

Therefore 𝑇 is asymptotically regular on (1,2]. 
Clearly 𝑇 is asymptotically regular on  [0,1], hence 𝑇 is asymptotically regular on 𝑋. 

Let us now verify the inequality (3.1.1). 

Case (I): Let 𝑥 ∈ [0,1] and 𝑦 ∈ (1,2]. 

Then 𝑑(𝑥, 𝑇𝑦) = 𝑑 (𝑥,
𝑦

2
) = |𝑥 −

𝑦

2
| = {

𝑦

2
− 𝑥, 𝑥 <

𝑦

2
  

𝑥 −
𝑦

2
,

𝑦

2
< 𝑥 

 

Subcase (i): 𝑥 <
𝑦

2
, 

In this case, 

 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥, 1 − 𝑥,
𝑦

2
,

1

2
[

𝑦

2
− 𝑥 + 𝑦 − 1]} 

   = 𝑚𝑎𝑥 {𝑦 − 𝑥, 1 − 𝑥,
𝑦

2
,

3𝑦−2𝑥−2

4
} .   

Since 𝑦 > 1 and 𝑥 <
𝑦

2
, we have 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥,
3𝑦 − 2𝑥 − 2

4
}                       (3.4.1) 

𝑀(𝑥, 𝑦) = 𝑦 − 𝑥, then 

𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑦

2
≤ 1 +

𝑦

2
 

                 ≤  
𝑦−𝑥

1+𝑦−𝑥
+ 1 − 𝑥 +

𝑦

2
 

        = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

If  
3𝑦−2𝑥−2

4
 is the maximum of  (3.4.1), i.e., 𝑀(𝑥, 𝑦) =

3𝑦−2𝑥−2

4
 then 

𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑦

2
≤ 1 +

𝑦

2
 

     ≤  (
4

3𝑦−2𝑥+2
) .

3𝑦−2𝑥−2

4
+ 1 +

𝑦

2
 

                 ≤  
3𝑦−2𝑥−2

3𝑦−2𝑥+2
+ 1 +

𝑦

2
 

     ≤   
3𝑦−2𝑥−2

3𝑦−2𝑥+2
+ 1 − 𝑥 +

𝑦

2
 

        = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

Subcase (ii):  𝑥 >
𝑦

2
 

In this case, 

 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥, 1 − 𝑥,
𝑦

2
,

1

2
[𝑥 −

𝑦

2
+ 𝑦 − 1]} 

               = 𝑚𝑎𝑥 {𝑦 − 𝑥, 1 − 𝑥,
𝑦

2
,

2𝑥+𝑦−2

4
}  Since 𝑦 ≥ 1 and 𝑥 >

𝑦

2
, we have 

𝑀(𝑥, 𝑦)  = 𝑚𝑎𝑥 {
𝑦

2
,

2𝑥+𝑦−2

4
}                       (3.4.2) 
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If  𝑀(𝑥, 𝑦) =
𝑦

2
 then we verify (3.2.1) as follows  

𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑦

2
≤ 1 +

𝑦

2
 

                ≤  
𝑦

2+𝑦
+ 1 +

𝑦

2
 

     ≤  
𝑦

2+𝑦
+ 1 − 𝑥 +

𝑦

2
 

     = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

Suppose  𝑀(𝑥, 𝑦) =  
2𝑥+𝑦−2

4
.  Then  

𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑦

2
≤ 1 +

𝑦

2
 

     ≤
2𝑥+𝑦−2

2𝑥+𝑦+2
+ 1 +

𝑦

2
 

     ≤
2𝑥+𝑦−2

2𝑥+𝑦+2
+ 1 − 𝑥 +

𝑦

2
 

                 = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

Case (II): Let 𝑥, 𝑦 ∈ (1,2] 

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑 (
𝑥

2
,
𝑦

2
) = |

𝑥

2
−

𝑦

2
| 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| 

𝑑(𝑥, 𝑇𝑥) = 𝑑 (𝑥,
𝑥

2
) = |𝑥 −

𝑥

2
| =

𝑥

2
 

𝑑(𝑦, 𝑇𝑦) = 𝑑 (𝑦,
𝑦

2
) = |𝑦 −

𝑦

2
| =

𝑦

2
 

𝑑(𝑥, 𝑇𝑦) = 𝑑 (𝑥,
𝑦

2
) = |𝑥 −

𝑦

2
| 

𝑑(𝑦, 𝑇𝑥) = 𝑑 (𝑦,
𝑥

2
) = |𝑦 −

𝑥

2
| 

Therefore 𝑑(𝑇𝑥, 𝑇𝑦) =  
1

2
|𝑥 − 𝑦| ≤ 𝐾[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

So, clearly in this case the inequality (3.1.1) holds. 

Case (III): Let 𝑦 ∈ [0,1] and 𝑥 ∈ (1,2] 

𝑑(𝑇𝑥, 𝑇𝑦) = |1 −
𝑥

2
| = 1 −

𝑥

2
 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = 𝑥 − 𝑦 

𝑑(𝑥, 𝑇𝑥) = |𝑥 −
𝑥

2
| =

𝑥

2
 

𝑑(𝑦, 𝑇𝑦) = 𝑑(𝑦, 1) = |𝑦 − 1| = 1 − 𝑦 

𝑑(𝑥, 𝑇𝑦) = 𝑑(𝑥, 1) = |𝑥 − 1| = 𝑥 − 1 

𝑑(𝑦, 𝑇𝑥) = 𝑑 (𝑦,
𝑥

2
) = |𝑦 −

𝑥

2
| = {

𝑥

2
− 𝑦,   𝑦 ≤

𝑥

2
 

𝑦 −
𝑥

2
,     

𝑥

2
≤ 𝑦 

 

Subcase (i): 
𝑥

2
< 𝑦 

In this case, 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑥 − 𝑦,
𝑥

2
, 1 − 𝑦,

𝑥−1+
𝑥

2
−𝑦

2
} 

            = 𝑚𝑎𝑥 {𝑥 − 𝑦,
𝑥

2
, 1 − 𝑦,

3𝑥−2𝑦−2

4
}  Since 𝑦 < 𝑥 and 

𝑥

2
< 𝑦 

                   𝑀(𝑥, 𝑦) =  
𝑥

2
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𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑥

2
 

                 ≤
𝑥

2+𝑥
+

𝑥

2
+ 1 − 𝑦 

                   = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

Subcase (ii): 
𝑥

2
> 𝑦 

In this case, 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑥 − 𝑦,
𝑥

2
, 1 − 𝑦,

𝑥−1+𝑦−
𝑥

2

2
} 

           = 𝑚𝑎𝑥 {𝑥 − 𝑦,
𝑥

2
, 1 − 𝑦,

𝑥−2+2𝑦

4
} Since 𝑦 < 𝑥 and 

𝑥

2
> 𝑦 

                       𝑀(𝑥, 𝑦)  =  
𝑥

2
 

𝑑(𝑇𝑥, 𝑇𝑦) = 1 −
𝑥

2
 

                 ≤
𝑥

2+𝑥
+

𝑥

2
+ 1 − 𝑦 

                 = 𝛼(𝑀(𝑥, 𝑦)). 𝑀(𝑥, 𝑦) +  𝐾 [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 𝐾 = 1. 

So, clearly in this case the inequality (3.1.1) holds. 

In all cases 𝑇 satisfies the inequality (3.1.1) with 𝐾 = 1 and hypotheses of Theorem 3.2 and it has 

unique fixed point  ′1′. 
 

IV. Fixed points of Boyd and Wong - G�́�rnicki map 

 Here we define generalized Boyd and Wong- G�́�rnicki map. 

Definition 4.1. [13] Let  𝓤 denote the class of all mappings 𝜑: [0, ∞) → [0, ∞) satisfying  

              (𝑖) 𝜑(𝑡) < 𝑡 for all 𝑡 > 0 

              (𝑖𝑖) 𝜑 is upper semi-continuous, that is, 𝑡𝑛 → 𝑡 ≥ 0 ⇒ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞𝜑(𝑡𝑛) ≤ 𝜑(𝑡). 

Definition 4.2. Let (𝑋, 𝑑) be a complete metric space. Let 𝑇: 𝑋 → 𝑋. If there exists ∈ 𝓤,  
0 ≤ 𝐾 < ∞, such that 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)}   (4.2.1) 

for each 𝑥, 𝑦 ∈ 𝑋 where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
} then we call 𝑇 is 

a generalized Boyd and Wong- G�́�rnicki map. 

Theorem 4.3. Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 an asymptotically regular mapping. 

Assume that 𝑇 is a generalized Boyd and Wong- G�́�rnicki map. If 𝑇 is 𝑘-continuous for some 𝑘 ≥ 1 

or 𝑇 is orbitally continuous, then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋 and for each 𝑥 ∈  𝑋, 𝑇𝑛𝑥 →
 𝑧 𝑎𝑠 𝑛 →  ∞. 
Proof: Let 𝑥 ∈ 𝑋 and define 𝑥𝑛 = 𝑇𝑛𝑥,   𝑛 = 1,2, … 

If  𝑇𝑝𝑥 = 𝑇𝑝+1𝑥 for some 𝑝 ∈ ℕ, then 𝑇(𝑇𝑝𝑥) = 𝑇𝑝𝑥, so 𝑇𝑝𝑥 is a fixed point of  𝑇. 

Suppose 𝑇𝑛+1𝑥 ≠ 𝑇𝑛𝑥, for all   𝑛 ≥ 0. 
By using Lemma 1.8, there exists 𝜖 > 0 and sequences of positive integers {𝑚𝑖} and {𝑛𝑖} of positive 

integers with 𝑚𝑖 > 𝑛𝑖 > 𝑖 such that 𝑑(𝑥𝑚𝑖
, 𝑥𝑛𝑖

) ≥ 𝜖, 𝑑(𝑥𝑚𝑖−1, 𝑥𝑛𝑖
) < 𝜖 and (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) of        

Lemma 1.8., hold. Now we consider  

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) ≤ 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) + 𝑑(𝑥𝑛𝑖+1, 𝑥𝑚𝑖+1) + 𝑑(𝑥𝑚𝑖+1, 𝑥𝑚𝑖

) 

                   ≤  𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) + 𝜑 (𝑀(𝑥𝑛𝑖

, 𝑥𝑚𝑖
)) + 𝐾. {𝑑(𝑥𝑛𝑖

, 𝑥𝑛𝑖+1) + 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1)} 

+ 𝑑(𝑥𝑚𝑖
, 𝑥𝑚𝑖+1) 

                     = 𝜑 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1), 𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1),
𝑑(𝑥𝑛𝑖

,𝑥𝑚𝑖+1)+𝑑(𝑥𝑚𝑖
,𝑥𝑛𝑖+1)

2
}) 

+(𝐾 + 1). [𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1) +  𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1)] 

on letting 𝑖 → ∞, by using asymptotic regularity and upper semi-continuity of 𝜑, we obtain 
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   𝜖 = lim
𝑖→∞

𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

) 

      ≤ limsup
𝑖→∞

𝜑 (𝑚𝑎𝑥 {𝑑(𝑥𝑛𝑖
, 𝑥𝑚𝑖

), 𝑑(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1), 𝑑(𝑥𝑚𝑖

, 𝑥𝑚𝑖+1),
𝑑(𝑥𝑛𝑖

,𝑥𝑚𝑖+1)+𝑑(𝑥𝑚𝑖
,𝑥𝑛𝑖+1)

2
}) 

      ≤ 𝜑(𝜖) < 𝜖,  

which is a contradiction. 

Hence, {𝑥𝑛} is a Cauchy sequence. 

Since 𝑋 is complete, lim
𝑛→∞

𝑥𝑛 = 𝑧 ∈ 𝑋. 

This 𝑧 is a fixed point of  𝑇 follow as in the proof of Theorem 2.2.  

We now show the uniqueness of 𝑧. 

Suppose 𝑦 is another fixed point of  𝑇; 𝑇𝑦 = 𝑦, 𝑇𝑧 = 𝑧; 

Suppose 𝑦 ≠ 𝑧. 

𝑑(𝑇𝑧, 𝑇𝑦) ≤ 𝜑(𝑀(𝑧, 𝑦)) + 𝐾{𝑑(𝑧, 𝑇𝑧) + 𝑑(𝑦, 𝑇𝑦)} 

          = 𝜑 (𝑚𝑎𝑥 {𝑑(𝑧, 𝑦), 𝑑(𝑧, 𝑇𝑧), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑧, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑧)

2
}) + 𝐾{𝑑(𝑧, 𝑧) + 𝑑(𝑦, 𝑦)} 

                =  𝜑 (𝑚𝑎𝑥 {𝑑(𝑧, 𝑦), 𝑑(𝑧, 𝑧), 𝑑(𝑦, 𝑦),
𝑑(𝑧,𝑦)+𝑑(𝑦,𝑧)

2
}) 

𝑑(𝑧, 𝑦) = 𝑑(𝑇𝑧, 𝑇𝑦) ≤  𝜑(𝑑(𝑧, 𝑦)) < 𝑑(𝑧, 𝑦), a contradiction. 

Therefore 𝑧 = 𝑦 and 𝑧 is the unique fixed point of  𝑇. 

Hence, the theorem follows. 

Example 4.4. Let 𝑋 = [0, ∞) with usual metric. Define  𝑇: 𝑋 → 𝑋 by 𝑇𝑥 = {
0, 𝑖𝑓   0 ≤ 𝑥 < 1
𝑥

𝑥+1
, 𝑖𝑓 1 ≤ 𝑥 < ∞ 

.  

Let 𝜑 ∈ 𝓤, and  𝜑(𝑡) = { 

𝑡

3
  𝑖𝑓 0 ≤ 𝑡 < 1

1

2
,   𝑖𝑓 1 ≤ 𝑡 < ∞

.  

Let 1 ≤ 𝑥 < ∞. Then 

𝑇𝑥 =
𝑥

𝑥 + 1
 

𝑇𝑛𝑥 =
𝑥

𝑛𝑥+1
, 𝑛 = 1,2, ….  . Therefore 

lim
𝑛→∞

𝑑(𝑇𝑛+1𝑥, 𝑇𝑛𝑥) = lim
𝑛→∞

|
𝑥

(𝑛 + 1)𝑥 + 1
−

𝑥

𝑛𝑥 + 1
| 

                                 = lim
𝑛→∞

|
1

(𝑛+1)+
1

𝑥

−
1

𝑛+
1

𝑥

| = 0 

Hence 𝑇 is asymptotically regular. 

Case I: Suppose 𝑥 ∈ [0,1) and 𝑦 ∈ [1, ∞) 

𝑑(𝑇𝑥, 𝑇𝑦) = |0 −
𝑦

𝑦 + 1
| =

𝑦

𝑦 + 1
 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = 𝑦 − 𝑥 

𝑑(𝑥, 𝑇𝑥) = |𝑥 − 0| = 𝑥 

𝑑(𝑦, 𝑇𝑦) = |𝑦 −
𝑦

𝑦 + 1
| = 𝑦 −

𝑦

𝑦 + 1
 

𝑑(𝑥, 𝑇𝑦) = |𝑥 −
𝑦

𝑦+1
| = {

𝑥 −
𝑦

𝑦+1
  𝑖𝑓 𝑥 ≥

𝑦

𝑦+1
𝑦

𝑦+1
− 𝑥  𝑖𝑓 𝑥 <

𝑦

𝑦+1

  

𝑑(𝑦, 𝑇𝑥) = |𝑦 − 0| = 𝑦 

(i): Let us consider the case 𝑥 ≥
𝑦

𝑦+1
 in this case, 
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𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥, 𝑦 −
𝑦

𝑦 + 1
,
𝑥 −

𝑦

𝑦+1
+ 𝑦

2
} 

 = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥, 𝑦 −
𝑦

𝑦+1
,

1

2
(𝑥 −

𝑦

𝑦+1
+ 𝑦)}               (4.4.1) 

 𝑀(𝑥, 𝑦) =
1

2
(𝑥 −

𝑦

𝑦+1
+ 𝑦) since 𝑥 < 𝑦 and 𝑥 ≥

𝑦

𝑦+1
 

If 𝑦 −
𝑦

𝑦+1
∈ [0, 1) implies  𝑀(𝑥, 𝑦) =

1

3
(𝑦 −

𝑦

𝑦+1
), then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦 + 1
≤ 𝑦 −

𝑦

𝑦 + 1
 

                   ≤
1

3
(𝑦 −

𝑦

𝑦+1
) + 2 (𝑥 + 𝑦 −

𝑦

𝑦+1
) 

                                = 𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

If 𝑦 −
𝑦

𝑦+1
∈ [1, ∞) implies  𝑀(𝑥, 𝑦) =

1

2
, then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦 + 1
≤ 𝑦 −

𝑦

𝑦 + 1
 

                                 ≤ 2 (𝑥 + 𝑦 −
𝑦

𝑦+1
) 

                                 ≤
1

2
+ 2 (𝑥 + 𝑦 −

𝑦

𝑦+1
) 

                           = 𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

Let us consider the case 𝑥 ≤
𝑦

𝑦+1
 in this case, 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥, 𝑦 −
𝑦

𝑦 + 1
,

𝑦

𝑦+1
− 𝑥 + 𝑦

2
} 

 = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥, 𝑦 −
𝑦

𝑦+1
,

1

2
(

𝑦

𝑦+1
− 𝑥 + 𝑦)}               (4.4.2) 

 𝑀(𝑥, 𝑦) = 𝑦 − 𝑥  since 𝑥 < 𝑦 and 𝑥 ≤
𝑦

𝑦+1
 

If 𝑦 − 𝑥 ∈ [0, 1) implies  𝑀(𝑥, 𝑦) =
1

3
(𝑦 − 𝑥), then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦+1
 ≤ 𝑦 −

𝑦

𝑦+1
        

       ≤ 𝑥 + 𝑦 −
𝑦

𝑦+1
          

                             ≤
1

3
(𝑦 − 𝑥) + 2 (𝑥 + 𝑦 −

𝑦

𝑦+1
) 

                             = 𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

If 𝑦 − 𝑥 ∈ [1, ∞) implies  𝑀(𝑥, 𝑦) =
1

2
, then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦+1
 ≤ 𝑦 −

𝑦

𝑦+1
        

       ≤ 2 (𝑥 + 𝑦 −
𝑦

𝑦+1
)          

                             ≤
1

2
+ 2 (𝑥 + 𝑦 −

𝑦

𝑦+1
) 

                             = 𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

Case II: Suppose 𝑥, 𝑦 ∈ [0,1) 

𝑑(𝑇𝑥, 𝑇𝑦) = |0 − 0| = 0 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| 
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𝑑(𝑥, 𝑇𝑥) = |𝑥 − 0| = 𝑥 

𝑑(𝑦, 𝑇𝑦) = |𝑦 − 0| = 𝑦 

𝑑(𝑥, 𝑇𝑦) = |𝑥 − 0| = 𝑥 

𝑑(𝑦, 𝑇𝑥) = |𝑦 − 0| = 𝑦 

So, clearly in this case, the inequality (4.4.1) holds.  

Case III: Suppose 𝑥, 𝑦 ∈ [1,∞) and 𝑥 < 𝑦 ⇒ 𝑥 − 𝑦 < 0 

𝑑(𝑇𝑥, 𝑇𝑦) = |
𝑥

𝑥 + 1
−

𝑦

𝑦 + 1
| =

𝑦

𝑦 + 1
−

𝑥

𝑥 + 1
 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = 𝑦 − 𝑥 

𝑑(𝑥, 𝑇𝑥) = |𝑥 −
𝑥

𝑥 + 1
| = 𝑥 −

𝑥

𝑥 + 1
 

𝑑(𝑦, 𝑇𝑦) = |𝑦 −
𝑦

𝑦 + 1
| = 𝑦 −

𝑦

𝑦 + 1
 

𝑑(𝑥, 𝑇𝑦) = |𝑥 −
𝑦

𝑦 + 1
| = 𝑥 −

𝑦

𝑦 + 1
 

𝑑(𝑦, 𝑇𝑥) = |𝑦 −
𝑥

𝑥 + 1
| = 𝑦 −

𝑥

𝑥 + 1
 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥 −
𝑥

𝑥 + 1
, 𝑦 −

𝑦

𝑦 + 1
,
𝑥 −

𝑦

𝑦+1
+ 𝑦 −

𝑥

𝑥+1

2
} 

              = 𝑚𝑎𝑥 {𝑦 − 𝑥, 𝑥 −
𝑥

𝑥+1
, 𝑦 −

𝑦

𝑦+1
,

1

2
(𝑥 −

𝑦

𝑦+1
+ 𝑦 −

𝑥

𝑥+1
)}  

Since 𝑥, 𝑦 ∈ [1,∞) and 𝑥 < 𝑦 

𝑀(𝑥, 𝑦) =  𝑦 −
𝑦

𝑦+1
  

If 𝑦 −
𝑦

𝑦+1
∈ [0, 1) implies  𝑀(𝑥, 𝑦) =

1

3
(𝑦 −

𝑦

𝑦+1
), then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦 + 1
−

𝑥

𝑥 + 1
≤ 𝑥 −

𝑥

𝑥 + 1
+ 𝑦 −

𝑦

𝑦 + 1
 

                        ≤  
1

3
(𝑦 −

𝑦

𝑦+1
) + 2 (𝑥 −

𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

             =  𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

If 𝑦 −
𝑦

𝑦+1
∈ [1, ∞) implies  𝑀(𝑥, 𝑦) =

1

2
, then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑦

𝑦 + 1
−

𝑥

𝑥 + 1
≤ 𝑥 −

𝑥

𝑥 + 1
+ 𝑦 −

𝑦

𝑦 + 1
 

                       ≤  
1

2
+ 2 (𝑥 −

𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

           =  𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

 

Case IV: Suppose 𝑥, 𝑦 ∈ [1,∞) and 𝑥 > 𝑦 ⇒ 𝑥 − 𝑦 > 0 

𝑑(𝑇𝑥, 𝑇𝑦) = |
𝑥

𝑥 + 1
−

𝑦

𝑦 + 1
| =

𝑥

𝑥 + 1
−

𝑦

𝑦 + 1
 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = 𝑥 − 𝑦 

𝑑(𝑥, 𝑇𝑥) = |𝑥 −
𝑥

𝑥 + 1
| = 𝑥 −

𝑥

𝑥 + 1
 

𝑑(𝑦, 𝑇𝑦) = |𝑦 −
𝑦

𝑦 + 1
| = 𝑦 −

𝑦

𝑦 + 1
 

𝑑(𝑥, 𝑇𝑦) = |𝑥 −
𝑦

𝑦 + 1
| = 𝑥 −

𝑦

𝑦 + 1
 

𝑑(𝑦, 𝑇𝑥) = |𝑦 −
𝑥

𝑥 + 1
| = 𝑦 −

𝑥

𝑥 + 1
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𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑥 − 𝑦, 𝑥 −
𝑥

𝑥 + 1
, 𝑦 −

𝑦

𝑦 + 1
,
𝑥 −

𝑦

𝑦+1
+ 𝑦 −

𝑥

𝑥+1

2
} 

              = 𝑚𝑎𝑥 {𝑥 − 𝑦, 𝑥 −
𝑥

𝑥+1
, 𝑦 −

𝑦

𝑦+1
,

1

2
(𝑥 −

𝑦

𝑦+1
+ 𝑦 −

𝑥

𝑥+1
)}  since 𝑦 < 𝑥. 

 𝑀(𝑥, 𝑦) =  𝑥 −
𝑥

𝑥+1
 

If 𝑥 −
𝑥

𝑥+1
∈ [0, 1) implies  𝑀(𝑥, 𝑦) =

1

3
(𝑥 −

𝑥

𝑥+1
), then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑥

𝑥 + 1
−

𝑦

𝑦 + 1
≤ 𝑥 −

𝑥

𝑥 + 1
+ 𝑦 −

𝑦

𝑦 + 1
 

                        ≤ 2 (𝑥 −
𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

             ≤
1

3
(𝑥 −

𝑥

𝑥+1
) + 2 (𝑥 −

𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

                       =  𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

If 𝑥 −
𝑥

𝑥+1
∈ [1, ∞) implies  𝑀(𝑥, 𝑦) =

1

2
, then 

𝑑(𝑇𝑥, 𝑇𝑦) =
𝑥

𝑥 + 1
−

𝑦

𝑦 + 1
≤ 𝑥 −

𝑥

𝑥 + 1
+ 𝑦 −

𝑦

𝑦 + 1
 

            ≤  2 (𝑥 −
𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

           ≤  
1

2
+ 2 (𝑥 −

𝑥

𝑥+1
+ 𝑦 −

𝑦

𝑦+1
) 

           =  𝜑(𝑀(𝑥, 𝑦)) + 𝐾. {𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)} with  𝐾 = 2 

In all the cases 𝑇 satisfies the hypothesis of Theorem 4.3. And clearly ′0′ is the unique fixed point of  

𝑇. 

 

V. Conclusion 

In conclusion, we have introduced and studied generalized Geraghty - Górnicki maps, generalized 

Boyd and Wong - Górnicki maps, and generalized weakly Górnicki maps in the context of complete 

metric spaces. Our work demonstrates the existence and uniqueness of fixed points for these maps, 

even in the absence of continuity. The results presented in this paper extend several known fixed point 

theorems, offering broader applicability in fixed point theory. The examples provided further illustrate 

the effectiveness and relevance of our generalizations. 
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