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Abstract :  

The present analysis deals with the study of stagnation point flow of a Williamson fluid over a 

nonlinearly stretching sheet with thermal radiation . The partial differential equations governing this 

phenomenon were transformed into coupled nonlinear ordinary differential equations with suitable 

similarity transformations. These equations were then solved by numerical technique known as 

Keller Box method. The various parameters such as Prandtl number (Pr), velocity ratio parameter(𝜀), 

Williamson parameter (λ) and Radiation parameter(R) and non linear stretching parameter (n) 

determining the velocity and temperature distributions, the local Skin friction coefficient and the 

local Nusselt number governing such a flow were also analyzed. On analysis it was found that the 

Williamson fluid parameter (λ)  decreased both the fluid velocity whereas an increase in (λ)  

increased wall skin-friction coefficient . The wall temperature gradient increased with an increase in 

Pr but decreased with radiation parameter R. 

Keywords : Velocity ratio parameter, Williamson parameter, Radiation parameter, Stagnation point, 

Non linear stretching parameter 

 

Introduction :    

The study of two-dimensional boundary layer flow and heat mass transfer over a nonlinear stretching 

surface has  enormous applications in different areas. Its industrial applications include aerodynamic 

extrusion of plastic sheets, condensation process of metallic plate in a cooling bath, extrusion of a 

polymer sheet from a dye or electronic chips and many others.. During the manufacture of these 

sheets, the final product of desired characteristics depends on the rate of cooling and the process of 

stretching. Crane [1] demonstrated an exact analytical solution for the steady two-dimensional flow 

due to a stretching surface in a quiescent fluid. His work was later extended by many authors 

wherein they considered various flow aspects and obtained similarity solutions[ 2 -7 ]. 

All the above mentioned studies confined their discussions by assuming stretching sheet to be linear. 

However, study by Gupta and Gupta[8] revealed that the stretching of the sheet may not necessarily 

be linear. Vajravelu [9] studied the flow and heat transfer characteristics in a viscous fluid over a 

nonlinearly stretching sheet without heat dissipation effect. Cortell [10] has worked on viscous flow 

and heat transfer over a nonlinearly stretching sheet. Raptis and Perdikis [11] studied viscous flow 

over a nonlinear stretching sheet in the presence of a chemical reaction and under different physical 

situations can be obtained in the literature[12-17]. 

On the other hand, Hiemenz [18] first studied the steady flow in the neighbourhood of a stagnation-

point. Chiam [19] investigated the problem by combining the works of Hiemenz and Crane[1] and he 

assumed that the plate is stretched in its own plane with a velocity proportional to the distance from 

the stagnation point such that this velocity is identical to the stagnation flow velocity in the inviscid 

free stream. He then concluded that the flow near the plate is identical to the inviscid flow far from 

the plate and hence found no boundary layer structure near the plate. Mahapatra and Gupta [20] 

reinvestigated the stagnation-point flow problem towards a stretching sheet with different stretching 

and straining rates and found two kinds of boundary layer near the sheet depending on the ratio of 

the stretching and straining rates. 
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In non-Newtonian fluids, the most commonly encountered fluids are pseudoplastic fluids whose 

behaviour has been explained by proposing different models like  power law model, Carreaus model, 

Cross model, Ellis model and Williamson fluid model . The Williamson model of non-Newtonian 

fluid is very much similar to the blood as it almost completely describes the behaviour of blood flow 

.Williamson [21] explained  the flow of pseudoplastic materials and proposed a model equation to 

describe the flow of pseudoplastic fluids and the results were experimentally verified. The effects of 

heat and mass transfer peristaltic flow of Williamson fluid in a vertical annulus has been discussed 

by Nadeem et al. [22]. Vajravelu et al. [23] analyzed  peristaltic transport of a Williamson fluid with 

permeable walls in asymmetric channel, Dapra and Scarpi [24] developed the perturbation solution 

for a Williamson fluid injected into a rock fracture. Cramer et al. [25] showed that the Williamson 

fluid model fits the experimental data of polymer solutions and particle suspensions better than other 

models. The power law model for pseudoplastic fluids predicts that with increasing shear rate, the 

apparent/effective viscosity should decrease indefinitely, which means infinite viscosity at rest and 

zero viscosity as the shear rate approaches infinity. A real fluid has both minimum and maximum 

effective viscosities depending upon the molecular structure of the fluid. Both the minimum (𝜇∞) 

and maximum viscosities (𝜇0) are considered in the Williamson fluid model. So, for pseudoplastic 

fluids (for which the apparent viscosity does not go to zero at infinity), it will give better results. 

Several studies were carried out for Williamson fluid model under different flow patterns[26-30]. 

A new dimension introduced to the study of flow and heat transfer over a nonlinear stretching sheet 

is by considering the effect of thermal radiation. When the difference between the sheet and the 

ambient temperature is large the thermal radiation effects are quite significant, and also at high 

operating temperature the presence of thermal radiation alters the thermal boundary layer structure. 

Thermal radiation plays an important role in controlling heat transfer process in polymer processing 

industry and also in the field of space technology. In such industrial processes knowledge of 

radiative heat transfer becomes relevant. Krishnamurthy  et al.[31] studied effect of chemical 

reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous 

medium. Gorla et al [32] obtained dual solutions for stagnation-point flow and convective heat 

transfer of a Williamson nanofluid past a stretching/shrinking sheet. Thermally radiative three-

dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field has been 

discussed by Shehzad et al.[33]. Suction, viscous dissipation and thermal radiation effects on the 

flow and heat transfer of a power-law fluid past an infinite porous plate was analyzed by Rafael 

Cortell [34]. Further information on radiative heat transfer flows can be found in [35-38]. 

However there are no studies on the stagnation point flow of a Williamson fluid over a nonlinearly 

stretching sheet with thermal radiation. Very few studies that include such fluid model. To the best of 

our knowledge this is the first study to consider this fluid model over a nonlinear stretching sheet . 

Hence, the main objective of the present work is to study the stagnation point flow of a Williamson 

fluid over a non linear stretching sheet with thermal radiation. The momentum and energy equations 

are transformed into a set of ordinary differential systems and then solved implementing the Keller 

Box method. 

 

Mathematical Formulation: 

Consider a steady two dimensional laminar flow of an incompressible Williamson fluid over a 

horizontally stretching sheet coinciding with the plane y = 0 as depicted in the Fig1. Two equal and 

opposite forces are applied along the x -axis to produce stretching, i.e., the x-axis is taken along the 

stretching surface in the direction of the motion with the slot as the origin, and the y-axis is 

perpendicular to the sheet in the outward direction towards the fluid.  

The flow is assumed to be confined in a region y >0. It is also assumed that the velocity of the 

ambient fluid is 𝑈∞(𝑥) = 𝑎𝑥𝑛 where a is a positive constant and the stretching sheet velocity is 

𝑈𝑤(𝑥) = 𝑐𝑥𝑛 where c >0 is constant of proportionality, 𝑇𝑤,  𝑇∞ are the uniform temperature at the 
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sheet, free stream temperature respectively  and n is the power index related to the surface stretching 

speed.   

 
Fig 1: Physical sketch of the given problem 

Details of the Williamson fluid model can be  found  in  Nadeem [39]. For  the present fluid model, 

the Cauchy stress tensor S is defined as; 

𝑆 =  −𝑝𝐼 + 𝜏 

𝜏 = (𝜇∞ +
𝜇0 − 𝜇∞

1 − 𝛤𝛾
) 𝐴1 

where 𝑝  is the pressure , 𝐼 is the identity vector, τ is the extra stress tensor, 𝜇0 ,  𝜇∞  are the limiting 

viscosities at  zero and  infinite shear rates, Γ > 0 is a time constant, 𝐴1 is the first Rivlin-Erickson 

tensor, and ˙ γ  is defined as 

𝛾 = √
𝜋

2
 , 𝜋 = 𝑡𝑟𝑎𝑐𝑒(𝐴1

2 )                                  

where  π  is the second invariant strain tensor. Here we have only considered the case for which   

𝜇∞ = 0 and < 1 . 

Then, we obtain      𝜏 = (
𝜇0

1−𝛤𝛾
) 𝐴1           or     𝜏 = 𝜇0(1 + 𝛤𝛾)𝐴1 

The governing boundary layer equations for flow and heat transfer in the absence of body force are 

given by 
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0                                                                                                                        ( 1 ) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2 + 𝑈∞
𝜕𝑈∞

𝜕𝑥
+ √2𝜈 𝛤

𝜕𝑢

𝜕𝑦
 
𝜕2𝑢

𝜕𝑦2                                                                  ( 2 ) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2  −
1

𝜌𝐶𝑝

∂qr

∂y
                                                                                         ( 3 ) 

The corresponding boundary conditions are 

𝑢 = 𝑈𝑤 = 𝑐𝑥𝑛,      𝑣 = 0,        𝑇 = 𝑇𝑤,   at  𝑦 = 0 

                           𝑢 → 𝑈∞,          𝑇 → 𝑇∞        at   𝑦 → ∞                                                 (4)  

where x and y denotes the Cartesian coordinates along and normal to the sheet, respectively, u, v are 

the velocity components in x, y direction respectively. Here, 𝑐 (𝑐 > 0) is the surface stretching sheet 

related parameter, 𝜈 is the kinematic viscosity, 𝜌 is the viscosity, 𝜅 is the thermal diffusivity of the 

fluid  , 𝐶𝑝 is the specific heat.  

Following Rosseland approximation, the radiative heat flux qr is modeled as   

  𝑞𝑟 =  −(
4𝜎∗ 

3𝑘∗ )
𝜕𝑇4

𝜕𝑦
                                                                                                             ( 5 ) 

where 𝜎∗ is the Stefan-Boltzmann constant and 𝑘∗ is the absorption coefficient. Assuming that the 

differences in temperature within the flow are such that 𝑇4 can be expressed as a linear combination 

of the temperature, we expand 𝑇4 in a Taylor’s series about T∞ as follows 

𝑇4 = 𝑇∞
4 + 4𝑇∞

3 (T − T∞) + 6𝑇∞
2 (T − T∞)2 + ⋯,                                                            ( 6 ) 

and neglecting the higher order terms beyond first degree in  (T − T∞) we get 
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𝑇4 ≅ −3𝑇∞
4 + 4𝑇∞

3 T                                                                                                        ( 7 ) 

substituting eq.( 7 ) in eq.( 5 ) we get 
∂qr

∂y
= −

16𝑇∞
4 𝜎∗

3𝑘∗

𝜕2𝑇

𝜕𝑦2                                                                                                           ( 8 ) 

using eq.(8) in eq.(3) we obtain 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
1

𝜌𝐶𝑝

16𝑇∞
4 𝜎∗

3𝑘∗

𝜕2𝑇

𝜕𝑦2                                                                            ( 9 ) 

By using the following suitable similarity transformations  

𝑢 = 𝑐𝑥𝑛𝑓′(𝜂) ,    𝑣 = √𝑐 𝜈  
(𝑛 + 1)

2
𝑥

𝑛−1
2 [ 𝑓( 𝜂) +

𝑛 − 1

𝑛 + 1
 𝜂 𝑓 ′( 𝜂) ] 

𝜃(𝜂) =
𝑇  − 𝑇∞

𝑇𝑊−𝑇∞
 , 𝜂 = 𝑦√

𝑐(𝑛+1)

2𝜈 
𝑥

𝑛−1

2                                                                                 (10)                                              

The governing partial differential equations are transformed into following ordinary coupled 

nonlinear differential equations 

𝑓′′′ + 𝑓𝑓′′ −
2𝑛

𝑛+1
(𝑓′ 2

− 𝜖2) + 𝜆𝑓′′𝑓′′′ = 0                                                             ( 11 ) 

( 1 +
4𝑅

3
 ) 𝜃′′ + 𝑃𝑟𝑓𝜃′ = 0                                                                                 ( 12 ) 

and the boundary conditions are transformed into 

𝑓′(𝜂) = 1,    𝑓 (𝜂) = 0 , 𝜃(𝜂) = 1    𝑎𝑡 𝜂 = 0   
𝑓′(𝜂) → 𝜖,           𝜃(𝜂) → 0    𝑎𝑡 𝜂 = ∞                                                                     ( 13 ) 

Where 𝑃𝑟 =
𝜇𝐶𝑝

𝜅
  is the Prandtl Number, 𝜖 =

𝑎

𝑐
is the velocity ratio parameter, 

 𝜆 = 𝛤 𝑥
3𝑛−1

2 √
𝑐3(𝑛+1)

𝜈
  is the Williamson parameter, 𝑅 =

4𝜎∗ 𝑇∞
3

𝑘𝑘∗  is the radiation parameter ,                   

The skin friction coefficient 𝐶𝑓 and the local Nusselt number 𝑁𝑢𝑥 at the stretching surface defined as 

𝐶𝑓 =  
𝜏𝑤

𝜌𝑈𝑤
2      𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇∞−𝑇𝑚)
                                                                                       ( 14 ) 

Where  𝜏𝑤and 𝑞𝑤 are the shear stress along the sheet and the heat flux  from the surface which are 

given by 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝛤

√2
 (

𝜕𝑢

𝜕𝑦
)

2
)

𝑦=0
,  𝑞𝑤 =  −𝑘 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
                                                           ( 15 ) 

𝑅𝑒𝑥

1
2𝐶𝑓 =  (𝑓′′ +

𝜆

2
  𝑓′′ 2

)
𝑦=0

 , 𝑅𝑒𝑥

1
2𝑁𝑢𝑥 = − ( 1 +

4𝑅

3
 ) 𝜃′(0) 

where  𝑅𝑒𝑥

1

2 =
𝑈𝑤 𝑥

𝜈
 is local Reynolds number 

 

Results and Discussion: 

 The transformed momentum and energy Eqs.(11)–(12) subjected to the boundary conditions Eqs. 

(13) were numerically solved by using Keller Box method. Figures 2-6 are plotted for the velocity 

and temperature profiles for different values of governing parameters. In order to find the accuracy 

of our work, a comparison has been made with the previous results of Nadeem and Hussain [40], 

Gorla and Sidawi[41] and we obtained excellent agreement which are displayed in Table 1. 

Moreover, the values of skin friction coefficient and local Nusselt number for different parameters 

are given in Tables 2 and 3. 
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Table 1: Comparison for viscous case −𝜃′(0)  with Pr for λ = 𝜀 = R = 0 

Pr 

Present 

Result  

Nadeem  and  

Hussain [40]  

Golra and  

Sidawi [41]  

0.07 0.06602 0.066 0.066 

0.2 0.1691 0.169 0.169 

0.7 0.45392 0.454 0.454 

2 0.91136 0.911 0.911 

The influence of velocity ratio parameter 𝜀  and Williamson parameter  λ are displayed in Figures 2 

and 3. The behavior of 𝜀 (which denotes the ratio of free stream velocity to the velocity of the 

stretching sheet) on the velocity field can be observed from Fig. 2. The velocity of the fluid and the 

boundary layer thickness increases when free stream velocity is less than the velocity of the 

stretching sheet with an increase in 𝜀. However when free stream velocity exceeds the velocity of the 

stretching sheet, the velocity of the fluid  increases where as  the boundary layer thickness decreases 

with an increase in 𝜀.  

Fig 3 shows the variation of Williamson parameter λ on velocity profile. It can be observed that 

velocity decreases with increase in Williamson fluid parameter λ; because after increasing 

Williamson fluid parameter λ the fluid offers more resistance to flow which decreases velocity. 

Fig 4 shows the effect of nonlinear stretching parameter on velocity profile. The velocity of the fluid 

increases with the increase in nonlinear stretching parameter. As a result the momentum boundary 

layer thickness increases. From the graph  no specific variations were observed when n is large. This 

is because of the term 
2𝑛

𝑛+1
  which approximately approaches to 2 when n reaches infinity .Therefore 

the observations for the large values of n is not a study of interest. 

Fig 5 shows the temperature profile for various values of Pr. It is clear that the dimensionless 

parameter θ decreases with the increase in Prandtl number. Since the Prandtl number is the ratio of 

momentum diffusivity to thermal diffusivity ; it reduces the thermal boundary layer thickness. In 

general the Prandtl number is used in heat transfer problems to reduce the relative thickening of the 

momentum and the thermal boundary layers. 

Fig 6 represent the temperature profiles for various values of the thermal radiation parameter R. It 

can be observed that an increase in the thermal radiation parameter R produces a significant increase 

in the thickness of the thermal boundary and so the temperature distribution increases. The effect of 

R is to enhance the heat.  

Table 3 shows the variations of  skin friction coefficient 𝑅𝑒𝑥

1

2𝐶𝑓   for  various values of  λ , 𝜀  and  n. 

It can be observed from the table that the values of skin friction coefficient increases when 

Williamson parameter λ, nonlinear stretching parameter n and velocity ratio parameter ε increases. 

Table 4 presents the variation in Local Nusselt number with respect to various flow parameters. It 

shows that heat transfer rate − 𝜃′( 0 )   decreases for radiation parameter R but for the Prandtl 

number − 𝜃′( 0 )  increases. 
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Fig 2 :  Velocity profile for varying epsilon      Fig 3 : Velocity profile for various values of  λ 

     
Fig 4 :  Velocity profile for varying nonlinear             Fig 5 : Temperature profile for various values 

of Pr 

             stretching parameter  

 
Fig 5 : Temperature profile for various values of  R 
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Table 2 : Computed values of skin friction coefficient  𝑅𝑒𝑥

1

2𝐶𝑓   for  various values of   λ , 𝜀  and  n 

λ ε n  𝑅𝑒𝑥

1

2𝐶𝑓    

0   0.37936 

0.1   0.4248 

0.2   0.4705 

0.3   0.51643 

  1.5  1.06418 

  1  0.1 

  0.8  

-

0.24303 

  0  

-

1.09675 

   1 0.4307 

   5 0.5063 

    10 0.52153 

Table 3: Computed values of Local Nusselt number −𝜃 ′( 0 )  for  various values of   Pr  and  R  

Pr R −𝜃 ′( 0 )    

1  0.74721 

2  1.04793 

3  1.27723 

  0.1 0.66742 

  0.5 0.55277 

  1 0.46885 

Conclusion: 

In the present study we have investigated the stagnation point flow of a Williamson fluid over a 

nonlinearly stretching sheet with thermal radiation by employing a finite difference technique known 

as Keller Box method. The important findings are concluded as follows. 

• With an increase in Williamson fluid parameter λ ,the velocity of the fluid decreased whereas 

the Skin friction coefficient increased. 

•  The velocity of the fluid and the boundary layer thickness increases for 𝜀 < 1 and velocity 

increases and the boundary layer thickness decreases for 𝜀 > 1 with an increase in 𝜀. 

• Nonlinear stretching parameter increases the flow field velocity. 

• The thermal boundary layer thickness decreases with the effect of Prandtl number but the 

opposite effect is observed with the radiation parameter. 

• The wall temperature gradient increases with an increase in Pr but decreases with radiation 

parameter R. 
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