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ABSTRACT— 

The direct analysis of 3D Optical CoherenceTomography (OCT) volumes enables deep learning 

models(DL) to learn spatial structural information and discovernew bio-markers that are relevant to 

glaucoma. Downsampling3D input volumes is the state-of-art solution toaccommodate for the limited 

number of training volumesas well as the available computing resources. However,this limits the 

network’s ability to learn from small retinalstructures in OCT volumes. In this paper, our goal isto 

improve the performance by providing guidance to DLmodel during training in order to learn from 

finer ocularstructures in 3D OCT volumes. Therefore, we propose anend-to-end attention guided 3D 

DL model for glaucomadetection and estimating visual function from retinal structures.The model 

consists of three pathways with the samenetwork architecture but different inputs. One input is 

theoriginal 3D-OCT cube and the other two are computedduring training guided by the 3D gradient 

class activationheatmaps. Each pathway outputs the class-label and thewhole model is trained 

concurrently to minimize the sumof losses from three pathways. The final output is obtainedby fusing 

the predictions of the three pathways. Also, toexplore the robustness and generalizability of the 

proposedmodel, we apply the model on a classification task forglaucoma detection as well as a 

regression task to estimatevisual field index (VFI) (a value between 0 and 100). A 5-fold cross-

validation with a total of 3782 and 10,370 OCTscans is used to train and evaluate the classification 

andregression models, respectively. The glaucoma detectionmodel achieved an area under the curve 

(AUC) of 93.8%compared with 86.8% for a baseline model without theattention-guided component. 

The model also outperformedsix different featurebased machine learning approachesthat use scanner 

computed measurements for training. Further,we also assessed the contribution of different 

retinallayers that are relevant to glaucoma. The VFI estimationmodel achieved a Pearson correlation 

and median absoluteerror of 0.75 and 3.6%, respectively, for a test set of size3100 cubes. 

 

INDEX TERMS— 

3D convolutional neural networks, opticalcoherence tomography, gradient-weighted class 

activationmaps, glaucoma detection, visual field estimation, attentionguided deep learning 

 

I. INTRODUCTION 

GLaucoma isthe leading cause of irreversible blindnessworldwide. The number of worldwide 

glaucomapatients, aged 40-80 years, is estimated to beapproximately 80 million in 2020 with about 20 

millionincrease since 2010 [1]. Glaucoma is associated with opticnerve damage, functional vision loss 

and death of retinalganglion cells [2]. Structural and functional methods areutilized jointly to 

determine the severity of glaucomaand monitor its progression [3]. One of the functionaltests utilized 

is called visual field test (VFT), and it isused to evaluate vision loss due to glaucoma and otheroptic 

nerve diseases [4]. VFT, however, is costly, timeconsumingand shows poor repeatability as it is greatly 

affected by cataracts, visual acuity, glaucoma medications,severity of glaucoma, learning effect, 

distractionand other factors [5], [6].On the other hand, structural measurements are objectiveand based 

on the imaging of the optic nerve head(ONH), macula and surrounding regions. It enables 

thequantification of retinal structures relevant to glaucomasuch as the retinal nerve fiber layer (RNFL) 

and ganglioncell-inner plexiform layer (GCIPL) complex [3]. Manyresearchers have investigated the 

relationships betweenvisual field test results and structural measures thatare produced by optical 
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coherence tomography (OCT)scanners [7]–[9]. For instance in [7], [8], RNFL thicknesswas found to 

be linearly related to visual field loss atadvanced disease stage. However, finding such relationshipis 

very challenging as sometimes the optic nervechanges before the visual field loss [10]–[13], and 

othertimes visual field loss occurs prior to structural damageat the optic nerve [14].Deep learning (DL) 

approaches have been previouslyused with fundus 2D-colour images for ocular diseasedetection and 

diagnosis [15], [16]. This includes segmentationof retinal vessels [17]–[20], optic disc and optic 

cupsegmentation [18], [21], [22], classification of glaucoma 

[23]–[28], and image registration [29]. A more recent 3Dimaging modality is the spectral-domain OCT 

technologythat provides clinicians with high-resolution imagesand quantified measurements of the 

retinal structures. Inclinics, OCT scans are the standard for eye care and areemployed for diagnosing 

and monitoring various retinaldiseases, evaluating progression, and assessing responseto therapy [30]. 

This technology enables the use of 3D DLtechniques to learn new structural parameters useful forthe 

diagnosis and management of glaucoma, quantify itsrelevant ocular structures (such as the individual 

retinallayers, optic nerve head, choroid, and lamina cribrosa)[31], and investigate whether functional 

measurementssuch as visual field index (VFI) or mean deviation (MD)can be inferred from structure 

(i.e. OCT volumes).Further, the literature shows that most of DL initiativesin OCT glaucoma detection 

have primarily dependedon scanner measurements of different retinal structuressuch as the thickness 

of RNFL and the ganglion cellcomplex (GCC), limiting the generalizability of DL modelsto 

measurements from different commercial scannerssince they are calculated differently. This also 

limitsthe ability of DL models to discover new structuralbiomarkers which are not quantified by the 

scanners. Forexample, in [32], glaucoma was diagnosed by trainingDL model using thicknesses maps 

for both RNFL andGCIPL with an AUC of 93.7%. Also in [33], AlexNetpretrained model [34] was 

used for feature extractionusing probability and thickness maps of RNFL andGCIPL layers, followed 

by random forest classifier [35]to discriminate between healthy and glaucomatous eyes.The best 

performance was achieved using RNFL probabilitymap with an accuracy of 93.1%. In another studyby 

An et al. [36], VGG19-based transfer learning modelwas performed to detect glaucoma using both 

thicknessand deviation maps for each of RNFL and GCC layers.Then, a random forest classifier 

combining features fromdifferent inputs achieved an AUC of 96%. Further, Wanget al. [37] proposed 

S-D net that has two parts, Snetfor segmentation of 6 retinal layers and D-net forthe diagnosis of 

glaucoma according to RNFL thicknessvector of length 1024 calculated from the segmentationresults. 

The method achieved a dice coefficient of 0.959for S-net and an accuracy of 85.4% for D-net.The only 

end-to-end DL model that relied on the 3Dscans as an input was presented by Maetschke et al.[38]. A 

3D-CNN model composed of 5 convolutionallayers with ReLU activation, batch-normalization 

usinginput volumes that were downsampled by a factor ofnearly 80 (64_64_128 (b-scans_a-

scans_depth) vs originalsize of 200_200_1024). The highest achieved AUCwas 94% which 

outperformed classical machine learning(ML) techniques. In [39], we extended the 3D-CNNmodel 

proposed by Maetschke et al. [38] to investigatewhether utilizing larger input volumes would 

improvethe network performance or not. We used an inputvolumes of size 128_128_256 to train a 

network with8 convolutional layers. We obtained an AUC of 97% using the same dataset used in [38]. 

Further, in [40], 

Maetschke et al. extended his work to assess structuralfunctionalcorrelation using 3D-CNN model. 

Specifically,VFI and MD functional measures were estimated directlyfrom 3D raw OCT scans. The 

highest achieved PearsonCorrelation (r) was 0.88 compared with 0.74 for the bestperforming classical 

ML algorithms.Another important aspect is the clinical interpretabilityand transparency [41] of the 

developed DL models.In this regard, class activation maps (CAMs) [42] andgradient-weighted class 

activation maps (grad-CAMs)[43] have been recently proposed to reveal insights intothe decisions of 

deep learning models. Both of thesetechniques identify areas of the images that the networkrelied on 

heavily to generate the classification. However,CAM requires a specific network architecture, 

namelythe use of a global average pooling layer prior to theoutput layer. Grad-CAM is a generalized 

form of CAMand can be used with any CNN-based architecture withoutany additional 
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requirements.Further, the visualization of DL models for glaucomadetection has been studied in three 

papers [36], [38],[39]. An et al. [36] identified pathologic regions in 2Dthickness maps using grad-

CAM, which have shown tobe in agreement with the important decision makingregions used by 

physicians. Also, Maetschke et al. [38]implemented 3D-CAM to identify the important regionsfor 

detecting glaucoma in 3D OCT volumes. The mapswere however, in a coarse resolution that matched 

thedownsampled input image. This method also employedspecific architecture changes to 

accommodate the requirementsof CAM generation. It is also noteworthythat neither of these 

approaches analyzed the CAMs inany systematic fashion, and merely used the heat mapsto validate 

findings in a small number of images thatwere qualitatively assessed. Lastly, in our previous work[39], 

we used 3D grad-CAM to visualize the importantdecision regions in a higher resolution than was 

availablebefore. One of the conducted experiments was to quantitativelyvalidate grad-CAM results for 

3D OCT volumesby occluding important decision regions identified in theheat maps and assessing the 

impact of this on the performanceof the model. Occluding the most importantdecision regions in grad-

CAM heatmaps dropped theperformance by nearly 40% while occluding the leastimportant areas only 

resutled in a 4% drop in the performance. 

The paper also included a quantitative comparisonbetween CAM and grad-CAM heatmaps with 

thelater significantly outperforming CAM heatmaps. Thishas motivated us to use grad-CAM heatmaps 

to provideguidance to DL model during training and improve theperformance by learning the finer 

ocular structures in 3DOCT volumes associated with disease as well as visualfunction.In this paper, 

we propose an end-to-end attentionguided DL framework for glaucoma detection and estimatingVFI. 

The model is trained directly on 3D volumesusing three inputs, one is the original 3D-OCT 

cube and the other two are computed during trainingguided by 3D grad-CAM heatmaps [43]. The 

modelconsists of three pathways that have the same networkarchitecture. First pathway uses the 

original volumes asan input after downsampling to size 256_64_64. Thengrad-CAM heatmaps are 

generated to identify retinalstructures in the original volumes, which the networkrelies on for detecting 

glaucoma. Occlusion of the lessimportant retinal structures in original cubes is used asan input for the 

second pathway. The input for the thirdpathway is obtained by cropping the region with themost 

important structures. The contribution of this workcan be summarized as follows:_ The proposed 

approach continues to avoid thedependency on segmented structural thicknessesthrough direct analysis 

of raw OCT scans, and alsoimproves on previously approached techniques byfocusing on the important 

decision areas, identifiedby grad-CAM heatmaps, to learn more about fineocular structures._ The 

performance of the model is evaluated for twodifferent tasks: i) A classification task for 

glaucomadetection and ii) A regression task for VFI functionalparameter estimation._ The proposed 

DL framework provides analysis of3D attention maps in a higher resolution than wasavailable before. 

This facilitates the understandingand interpretation of the network’s decision forglaucoma detection 

and diagnosis. 

_ For the first time, we provide a quantitative clinicalassessment for the contribution of different 

ocularstructures that the network relied on when detectingglaucoma._ Intensive experiments are 

conducted to demonstratethe effectiveness of the proposed approach and itwas compared with another 

3D-CNN and classicalML approaches trained on scanner computed measurements. 

The rest of the paper is organized as follows. SectionII explains the proposed network architecture 

andDL framework. In Sections III and IV, we describethe dataset and experimental setup used for 

trainingand testing each of the glaucoma detection and VFIestimation models, respectively. Section V 

discusses theexperimental results and the performed clinical assessmenttechniques. Finally, we 

conclude and outline futureresearch directions in Section VI.II. ATTENTION-GUIDED NETWORK 

ARCHITECTURE 

The framework of the proposed attention-guided DLmodel (AG-OCT) is presented in Figure 1. The 

modelconsists of three pathways called global, focused andlocal OCT structure pathways. They have 

same networkarchitecture but different inputs with resolutionof 256_64_64 (depth_b-scans_a-scans). 

Also, the firsttwo pathways share same trainable weights, while thethird one has its own learned 
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weights. This is becausethe first two pathways have the same field of view, wherethe inputs are 

centered on the ONH and cover an areaof 6_6_2 mm3. While the third pathway has a smallerfield of 

view, i.e. different coverage area, as it focuseson a small region of the original area. The 

networkarchitecture contains eight 3D-convolutional layers, eachis followed by ReLU activation [44], 

batch-normalization[45] and max-pooling in order. The 3D convolutional, layers have incremental 

number of filters of 16-16-32-32-32-32-64-128 with kernel size of 3, and stride of 1 for alllayers. Also, 

3D max-pooling layers have size of 2 andstride of 2. This is followed by global average poolinglayer 

and a fully-connected output layer in order). Detailsabout each pathway and the model loss are 

provided inthe following sub-sections. 

A. Pathway#1: Global OCT StructureThis pathway learns the global OCT retinal structuresthat are 

relevant to the target task, i.e. glaucoma or VFIestimation. It receives its input by downsampling 

theoriginal 3D-OCT cubes to size 256 _64_64. We implement3D grad-CAM to generate heatmaps that 

highlightthe important decision areas in input volumes, followingthe explanation provided in [43]. In 

this context, grad-CAM heatmap is compute for conv#2 feature map that is128_32_32 )(Lay. 2 in 

Figure 1). The generated heatmapis then used to derive the input of the other two pathwaysduring 

training. We do not use CAM as it restrictsthe network architecture design. Further, CAM 

wouldgenerate heatmap visualization only for conv#8 featuremap, which in our case has a size of 

4_2_2. Hence,when resizing and overlaying on the original cube ofsize 1024_200_200 (depth_b-

scans_a-scans) will notprovide any meaningful results.B. Pathway#2: Focused OCT StructureThe aim 

of the second pathway is to learn the correctoutput (e.g. glaucoma or healthy) using occluded 

cubes.The least important regions in the original cube arehidden, guiding the network to learn the 

location of theimportant decision areas. The rational is that if grad-CAM yields the correct decision 

areas, then hiding theleast important decision areas should not have a greatimpact on the network 

performance results, since theseareas are not important and most likely refer to noiseand/or redundant 

information that are contained in theOCT volumes.To do this, the input volumes are occluded by 

zeroingthe rows and columns with the lowest heatmap weights.Specifically, we extract a set of indices 

with the lowestweights per each dimension using average pooling forspatial dimension reduction. For 

example, a heat mapwith size 1024_200_200 is reduced to a vector of size1024_1_1 by averaging the 

values of each 200_200 mapto get a rank of weights for the first dimension, i.e.depth. The indices of 

the lowest x values (i.e. weights) inthe resultant vector represent the least important region 

 
Fig. 1. Framework of the proposed attention-guided DL model using 3D OCT volumes (AG-OCT) 

for this dimension. We apply this process on the bscansand depth dimensions with x values of 64 

and256 respectively (both values are chosen to match thedesired input shape of the network), while 

we considerthe 200 a-scan columns are all important. This means thata fixed region of size 

256_64_200 is occluded for eachvolume in its original resolution. The occluded-cube isdownsampled 
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to size 256_64_64 and is used as inputfor the second pathway of the network.C. Pathway#3: Local 

OCT StructureThe third pathway enables the network to learn moreabout the local structures in the 

OCT volumes by retainingdetail and image resolution in the important areas(i.e. a close up zoom into 

the important ocular structures).In this context, we use the generated grad-CAMheatmap to find the 

most important 3D sub-region in theinput volume, which we call the attention-cropped 

cube.Specifically, we performed spatial dimension reductionmethod used in the second pathway to 

select the mostimportant 64 b-scans from a total of 200 b-scans (i.e.rows with the highest weights 

along this dimension). 

This means that more than two-third of the voxels ofinput volumes are discarded. For example, given 

a cubeof size 1024_200_200, the extracted attention-croppedcube size is 1024_64_200, while the size 

of the regionwhich is taken away is 1024_136_200. The attentioncroppedcube is also downsampled to 

size 256_64_64and is used as an input for the third pathway.D. Training LossThe three pathways of 

the proposed model are trainedconcurrently, so that the attention maps are learnedjointly. Each 

pathway has its prediction vector and lossas shown in Figure 1. The objective of the training isto 

minimize the total loss described in Equation 1, thatis the sum of the three pathway losses, in addition 

toa regularization loss term to avoid overfitting duringtraining. 

L = L(Y0p1 ,Y) + L(Y0p2 ,Y) + L(Y0p3 ,Y) +kWk22(1) 

Where Y0p 1 , Y0p2 , Y0p3 are the predictions of pathway #1,2, and 3 in order. Y is the ground truth 

vector and Lis the loss and kWk22is the regularization loss term forconvolutional layers. 

 

III. GLAUCOMA DETECTION 

In this section, we explain how the proposed AGOCTmodel is used for glaucoma detection. The model 

is trained to classify an OCT volume as healthy orglaucoma. The output has a value of [1,0] for 

healthyclass and [0,1] for glaucoma class. 

DATASET.The dataset contains 3782 OCT scans fromboth eyes of 555 individuals, acquired on a 

Cirrus SDOCTScanner (Zeiss; Dublin, CA, USA) over multiplevisits. The dataset has 427 healthy 

scans from 109 individualsand 3355 glaucoma scans from 446 individualswith primary open angle 

glaucoma (POAG). The clinicaldefinition of healthy/glaucoma is made based on the visualfield test 

results. The scans are centered on the ONHand has 200_200_1024 (a-scans_b-scans_depth) voxelsper 

cube covering an area of 6_6_2 mm3. This study isan observational study that is conducted in 

accordancewith the tenets of the Declaration of Helsinki and theHealthy Insurance Portability and 

Accountability Act.The Institutional Review Board of New York Universityand the University of 

Pittsburgh approved the study, andall subjects give written consent before participation. 

TRAINING AND TESTING. We use a fully-connected softmaxlayer with 2 units for FC prediction 

layer (see Figure1). The 3782 OCT volumes are split into a training,validation and testing subsets, 

containing 3031 (healthy:325, POAG: 2706), 379 (healthy: 47, POAG: 332) and 372(healthy: 55, 

POAG: 317) scans, respectively. OCT scansbelonging to the same patient are included in only oneof 

the three splits. The proposed model is trained usingAdam optimizer with a learning rate of 1e􀀀4. We 

alsouse weighted cross entropy loss [46] to avoid biasedtraining due to the class size imbalance in the 

data.Training is performed with a batch of size 12 through100 epochs. To avoid overfitting during 

training, we useL2 regularization loss with l = 0.0001 and drop out layerwith probability of 0.3. After 

each epoch, the area underthe curve (AUC) was computed for the validation set,and the network is 

saved if an improvement in the AUCis observed. 

EVALUATION. For the evaluation of the proposed model,five statistical performance measures are 

used, namely,AUC, accuracy, Matthews correlation coefficient (MCC),recall, precision and F1-score. 

Performance measures arecomputed using predictions from each pathway separatelyas well as the 

fusion of 3-pathway predictionsusing min, max and average operations. For reliable andstable results, 

we repeat the training 5 times and reportthe average performance measures for the five folds. 

 

IV. STRUCTURAL-FUNCTIONAL CORRELATION 
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The purpose of this section is to explore the generalizabilityand robustness of our attention-guided 

model(AG-OCT). To do this, we train the AG-OCT model to estimatethe VFI parameter from 

structural data (i.e. OCTvolumes), which is very important since clinicians useboth structural and 

functional data to monitor glaucomaprogression. The output is a value between 0 and 100.Dataset. We 

use a large dataset consisting of 10,370ONH OCT volumes and their corresponding visual fieldtest 

results. Structural OCT scans are captured from1678 individuals across multiple visits using Cirrus 

SDOCTscanners. Scans with signal strength less than 6 arediscarded. The visual field test is performed 

using theSwedish interactive thresholding algorithm 24-2 perimetry(SITA standard; Humphrey Field 

Analyzer; Zeiss).The VFI can range from 0% (perimetrically blind field)to 100% (normal visual field). 

Similar to the previouscohort, all subjects give written consent before participation 

TRAINING AND TESTING. We trained and evaluated theregression model using the same 

architecture and experimentalsetup as the glaucoma detection experiment withthree main changes. 

Firstly, we replace the last softmaxlayer with one unit fully connected layer with linearactivation. 

Secondly, the mean squared error loss is usedduring training instead of weighted cross entropy. 

Lastly,we employ polynomial regression [47] for combining the3-pathway predictions that is trained 

using same trainingdata as the AG-OCT model (i.e. 70% of data) and the restis used for testing (i.e. 

30%, 3100 scans). Also, hyperparameterselection for polynomial degree is performedusing Grid-

search with 10-fold cross validation. 

Evaluation. For the evaluation, five evaluation metricsare computed namely, root mean squared 

error(RMSE), mean absolute error (MAE), median absoluteerror (MDAE), Pearson’s correlation 

coefficient (r) andSpearman’s rank correlation coefficient (r). 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed attention-guided DL model is implementedusing Python and TensorFlow [48] on a 

singleV100 GPU. We divide our results and experiments intofive sections. In section V-A, we report 

the performancemeasures for glaucoma detection. In section V-B, we conductdifferent experiments to 

analyze the performance ofour AG-OCT model. This followed by detailed clinicalanalysis of grad-

CAM attention maps in section V-C. Insection V-D, we provide comparative results with stateof-art 

approaches including classical ML techniques. Finally,in section V-E, we present the regression 

modelresults for VFI estimation. 

A. GLAUCOMA DETECTION 

Table I has the performance measures for glaucomadetection using the proposed attention-guided 

model.The table shows that the average of the 3-pathwaypredictions has the best performance with an 

AUC of93.8%. Interestingly, the second best performance comesfrom pathway #2, i.e. the occluded 

cube with an AUCof 93.0%. This means that hiding some of the least importantregions in 3D cubes 

improves the performance,because those regions might refer to noisy or redundantareas in 3D volume. 

This is followed by predictionsfrom max-fusion, min-fusion, pathway #3, and pathway#1 with AUCs 

of 92.8, 92.2, 91.2, and 86.7% in order.Further, to examine the computational complexity ofthe 

proposed framework, we compute the average andstandard deviation for execution time of the 

validationand test sets with 23.4_ 2.2 and 22.7_3.8 (in seconds),respectively, for a batch of size 12. 

This means that thenetwork takes less than 2 seconds for one cube to beprocessed. 

B. QUANTITATIVE ANALYSIS RESULTS 

To demonstrate the influence of attention maps onthe performance of the AG-OCT model, we trained 

one 



 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 9, No.3, September : 2024 
[ 
 

UGC CARE Group-1                                                                                                                         41 

 
Fig. 2. Training losses for glaucoma detection using AG-OCT model 

 

TABLE  I 5-FOLD AVERAGE PERFORMANCE MEASURES FOR THE ATTENTION 

GUIDED AND BASELINE MODELS 

 Accuracy MCC Recall precision F1-scorew AUC 

Pathway#1 85.184 0.373 89.425 93.576 91.371 86.741 

Pathway#2 91.300 0.553 94.838 95.418 95.102 93.007 

Pathway#3 90.300 0.513 94.826 94.115 94.426 91.189 

Fusion-average 91.073 0.557 95.119 94.730 94.882 93.769 

Fusion-min 90.452 0.430 98.630 91.182 94.736 92.243 

Fusion-max 85.319 0.528 85.216 97.873 91.056 92.785 

Baseline DL model 86.315 0.399 90.928 93.409 92.088 86.803 

 

 
branch of our proposed framework, where the input isthe downsampled original volumes and the 

output is theprediction label (i.e. glaucoma or healthy). This meansthat we trained pathway #1 only 

without the attentionguidedbranches, which we used as our baseline model.Table I reported an AUC 
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of 86.8% for the baseline modelthat is very close to the performance of pathway #1 whenit is learned 

jointly with Pathway #2 and 3. This confirmsthat training the network without the guidance of grad-

CAM heatmaps has approximately 7% and 3% drop inthe AUC and F1-score measures 

espectively.Further, Figure 2 displays the training loss curves foreach pathway separately as well as 

the total training loss.Loss of pathway#1 reached its minimum at epoch 20while other losses decreased 

further until epoch 40. Also,the total loss was highly influenced by pathway#2 loss.This also clarifies 

why pathway#2 predictions has thebest performance for glaucoma detection. This also suggeststhat 

weighting losses of 3-pathways might guidethe network to pay more attention to the branch withslow 

convergence.We also examined the impact of sharing weightsacross ranches/pathways by running 3 

experimentsthat use same data split and different settings for sharingweights, colorbluenamely: i) full 

sharing: the 3-pathwaysshare the same weights, ii) no sharing: each pathwaylearned its own weights, 

and iii) partial sharing: onlypathway#1 and pathway#2 share the same weights, whilepathway #3 had 

its own weights. Table II reports theperformance measures for the 3 experiments, whereseparate 

weights for each pathway has the lowest performance,while partial sharing recorded the highestAUCs. 

The results confirm our hypothesis for sharingweights between first two pathways since they share 

thesame field of view, where the inputs are centered onthe ONH and cover an area of 6_6_2 mm3. 

While thethird pathway has a smaller field of view, i.e. differentcoverage area, as it focuses on a small 

region of theoriginally scanned area. 

Table II also shows the average fusion results forall possible pairs of pathways namely, pathways# 

1&2,1&3 and 2&3. From the table, there is a very slightperformance difference for average fusion of 

3-pathwaysversus 2-pathways. More importantly, dropping the attentionmap pathway from the fusion 

(i.e. pathway# 3)resulted in approximately 2% decrease in the recordedperformance measures. While, 

fusion of pathway# 2&3had the highest performance measures.C. Clinical Analysis of Attention Maps 

for GlaucomaIn this section, we present detailed analysis of grad-CAM heatmaps to give insights about 

the clinicalbiomarkers that our AG-OCT model relies on for glaucomadetection. This is very essential 

not only to understandthe network decision, but also to increase reliabilityof DL approaches for direct 

analysis of 3DOCT scans by showing agreement of decision makingprocess between DL approaches 

and clinicians. Figure3 visualizes the important retinal structures for bothhealthy and glaucoma cases 

by overlaying grad-CAMheatmap on the original volumes. The figure displays theoverlaid heatmaps 

for both the enface/top view as wellas the b-scans/side view. It is clear from the figure thatthe AG-

OCT model depends on the OCT retinal layersregion for detecting glaucoma.Further, to show which 

retinal structure/layer hasthe greatest impact, we quantify the presence of eachretinal layer in the 

generated grad-CAM heatmaps. Ifthe presence of a specific retinal layer, i.e bio-marker, ishigh, then 

this means that our model depends on thisretinal structure for detecting glaucoma. Visualizationand 

abbreviation of retinal layers are presented in Figure4. In this regard, we adopt the OCT retinal 

layerssegmentation method described in [49], to classify each2D b-scan slice into 9 classes, namely: 

background and8 different retinal layers, namely RNFL, GCL+IPL, INL,OPL, ONL, IS, OS, and RPE 

as shown in Figure 5.To run this experiment, we perform the followingsteps. We select 80 3D OCT 

scans from the test set(40: healthy and 40: POAG) and apply the segmentationmethod on each b-scan 

separately to generate 9 binarymasks: one for each of the eight retinal layers in additionto the 

background mask. We also extracted theforeground mask to assess the influence of the wholeretina 

area. Then, we computed the average heatmapweights for each b-scan in each generated mask. In 

total,this resulted in 16000 average heatmap values for eachbinary mask (200 b-scans _ 80 cubes). The 

validationprocess was done for each set of healthy and POAGcases, separately.To report the 

contribution of each retinal layer, we usebox-plots to represent the average computed heatmapvalues 

for each layer separately, as shown in the firstrow of Figure 6. From the figure, RPE, OS, IS, RNFL 

andGCL+IPL have the highest correlation with grad-CAMheatmaps, in order, where the median 

heatmap valuelies between 0.3 and 0.5 for those layers. While ONL,INL, and ONL have shown less 

influence on the networkdecision where median value lies between 0.1 and 0.3.These findings are non-

intuitive for clinicians becausethese layers are not traditionally associated with glaucoma. 
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However, these findings show that DL approachesmight depend on information from unknown 

features inthe tissue such as thinning of the inner retina layers.Also, the figure demonstrates that RNFL 

has higherheatmap values in healthy cases versus POAG cases withmedian values of 0.3 and 0.4 

respectively. As expected,background area has the least influence on the networkdecision.D. 

Comparative ResultsFor comparative study, we follow Maetschke et al.[38] and compare our AG-OCT 

model against feature 

TABLE III 

5-FOLD AVERAGE PERFORMANCE MEASURES FOR GLAUCOMA DETECTION 

USING FEATURE-BASED MACHINE LEARNING METHODS 

 Accuracy MCC Recall Precision F1-score AUG 

Extra Trees 85.563 0.436 87.367 96.160 91.498 89.556 

Gradient 

Boosting 
90.318 0.395 95.660 93.69 94.586 90.380 

Logistic 

Regression 
82.908 0.475 83.223 97.464 89.660 91.499 

Naive Bayes 81.583 0.448 82.370 96.806 88.776 89.689 

Random forest 88.128 0.469 91.026 95.588 93.176 89.098 

SVM(Linear) 81.120 0.454 81.202 97.477 88.450 91.550 

SVM(poly) 88.008 0.447 91.166 95.244 93.117 91.204 

SVM(RBF) 80.749 0.442 81.126 97.140 88.254 90.602 

Proposed AG-

OCT 
91.073 0.557 95.119 94.730 94.882 93.769 

based ML approaches, where we use Cirrus OCT scannercomputed measurements for training classical 

ML algorithms.Specifically, we use 22 measurements includingperipapillary RNFL thickness at 12 

clock-hours, peripapillaryRNFL thickness in the four quadrants, averageRNFL thickness, rim area, 

disc area, average cup-todiscratio, vertical cup-to-disc ratio and cup volume.We normalize all features 

by subtracting the mean andscaling to unit variance.Six ML classifiers are trained, namely, Support 

VectorMachine (SVM), Logistic Regression ,Na¨ıve Bayes,Gradient Boosting, Extra Trees and 

Random Forest. Weused the same dataset used for training AG-OCT modeland same split (i.e. train, 

validation and test). We usedthe validation set to select the best hyper-parameters foreach classifier 

using grid-search. We also computed thesame performance measures. For reliability, we perform5-fold 

cross-validation and report the average performancemeasures for the test set as shown in Table V-

D.From the table, the best feature based ML model thathas the highest AUC and a good balance 

between recalland precision is gradient boosting with an AUC of 91.5%,that is 2.3% less than our AUC 

(i.e. AG-OCT). This isfollowed by SVM with polynomial kernel with AUC of91.2%, with higher 

measure for precision than recall. Allother feature based ML classifiers either showed an AUCless than 

89% or strongly biased towards one class (i.e.significant difference between recall and precision). Ina 

nutshell, not only does this experiment confirm theeffectiveness of our proposed approach but it also 

showsthat DL approaches have the potential to learn directlyfrom raw volumes with better performance 

than the oneachieved by relying on scanner extracted features.Etructural-Functional CorrelationTable 

V-E reports the performance measures for theattention-guided regression model. It is revealed fromthe 

table that polynomial regression using 3-pathwaypredictions has significantly outperformed the other 

predictionswith Pearson correlation (r) of 0.75 and MAE of8 for a test set of size 3100 cubes. The table 

also showsthat predictions from pathway#2 has slightly better performance 

es than the other two pathways with 



 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 9, No.3, September : 2024 
[ 
 

UGC CARE Group-1                                                                                                                         44 

 
Fig. 3. Grad-CAM attention maps. First row shows overlaid grad-CAM heatmap for enface view 

while second and third rows show b-scan slices#50 and 100 in order 

Retinal layers abbreviations 

 
RNFL: retinal nerve fiber layer 

GCL: ganglion cell layer 

IPL: inner plexiform layer 

INL: inner nuclear layer 

OPL: outer plexiform layer 

ONL: outer nuclear layer 

IS: photoreceptor inner segments 

OS: photoreceptor outer segments 

RPE retinal pigment epithelium 

Fig. 4. Visualization and abbreviation of different retinal layers in OCTscan. The left image is taken 

from this paper [50] 

TABLE IV PERFORMANCE MEASURES FOR VISUAL FIELD INDEX ESTIMATION 

EXPERIMENT 

predications RMSE MAE MADE r ρ 

Pathway#1 17.139 12.362 9.071 0.497 0.648 

Pathway#2 16.783 11.628 8.000 0.491 0.649 

Pathway#3 19.371 14.060 10.701 0.459 0.582 

Fusion-regression (3-Pathways) 13.403 7.954 3.615 0.582 0.750 

Regression(Pathway#1) 14.806 9.103 4.441 0.497 0.680 

Regression(Pathway#2) 14.834 9.035 3.729 0.451 0.681 
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Regression(Pathway#3) 15.874 10.078 4.602 0.451 0.620 

Pearson correlation (r) of 0.65 and MAE of 11.6. Also,refining the predictions from the individual 

pathwayshad decreased the MAE by at least a values of 2.5 (i.e.MAE = 9.1). 

 

VI. CONCLUSION AND FUTURE WORK 

We present an end-to-end 3D attention-guided modelthat can be used for multiple tasks including 

classificationand regression through direct analysis of 3Draw volumes that outperformed the scanner 

computedmeasurements. The model leverages the rich structuralinformation embedded in the high 

resolution 3D OCTcubes by the guidance of grad-CAM attention map,which resulted in better 

performance compared withbaseline models and feature based ML approaches. Importantly,we 

showed that using the attention-guidedframework we can identify the important regions inthe OCT 

volumes, whereby redundant regions of thescan can be excluded from the analysis. Also, grad-CAM 

allowed for a qualitative clinical analysis and understandingof the DL network. In particular, we 

quantitativelymeasured the importance of different retinallayers in 3D OCT cubes which the network 

relied on fordetecting glaucoma. Further, the glaucoma detection andVFI estimation experiments 

confirmed the effectiveness,robustness and generalization of the proposed modelthat is able to learn 

from high resolution 3D volumes.Both tasks showed that the fusion of predictions fromthe three 

pathways (i.e. attention-guided) had the bestperformance. In the future, we will apply this approachfor 

estimating other functional parameters and detectingother ocular diseases. We also plan to improve the 

performanceof the model by enhancing the attention map. 
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