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Abstract 

In recent years, there has been a surge in research aimed at harnessing the energy of ocean 

waves for effective utilization. Among the various types of wave energy converters (WECs), point 

absorber WECs have emerged as a preferred choice due to their enhanced efficiency when equipped 

with an appropriate control mechanism. To achieve this, an efficient control strategy known as the 

latching control has been employed. The latching control mechanism is designed to halt the device's 

motion at its maximum amplitude, specifically when the velocity reaches zero. Concurrently, this 

control strategy permits the device to resume its motion when the wave conditions are optimal for 

maximum energy extraction. The duration of the holding time for the WEC is of paramount importance 

in maximizing energy extraction. In this study, a recurrent neural network (RNN), specifically the Long 

Short-Term Memory (LSTM) algorithm, was trained using data collected from an experimental 

campaign and to predict the latching time for various wave conditions, thereby enhancing the 

efficiency of energy extraction from point absorber WECs. 
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Introduction 

The potential of fossil fuels to meet future energy demands is constrained by the severe impacts 

of global warming and climate change. The International Energy Agency has issued a warning, 

indicating that energy-related greenhouse gas (GHG) emissions are poised to result in significant 

climate degradation, potentially leading to an average global warming of 6 degrees Celsius [1]. 

Reducing harmful impacts on nature and the financial system is necessary when tackling these 

problems to ensure a brighter and improved energy future for people [2]. Renewable energy sources 

are poised to become the primary energy source for the future. Lately, numerous experts and scientists 

have suggested various methods to harness renewable energy from natural elements like water, wind, 

sun, geothermal, and organic matter [3]. However, the development of large-scale, comprehensive 

renewable energy systems is still in its infancy, particularly in terms of smart control management [4]. 

To address this challenge, Artificial Intelligence (AI) has been integrated into renewable energy 

systems to provide smart control and decision-making capabilities. In essence, AI emulates human 

intelligence with a broad spectrum of skills including reasoning, identifying patterns, learning from 

experiences, and extracting insights from data [5]. AI has emerged as a pivotal force in the renewable 

energy field, being applied to improve various aspects of power generation [6]. For instance, AI is 

utilized in optimizing energy output through predictive maintenance, where AI algorithms analyze 

sensor data from wind turbines, solar panels, and other devices to forecast maintenance requirements, 

thereby preventing unforeseen breakdowns and prolonging the equipment's lifespan. In the realm of 

energy forecasting, machine learning algorithms predict energy generation based on weather patterns, 

historical data, and other factors, aiding grid operators in managing supply and adjusting operations as 

needed. Furthermore, AI is employed in the continuous monitoring of renewable energy systems, 

identifying inefficiencies and proposing enhancements to boost energy efficiency. 

AI plays a crucial part in refining grid management, where it aids in controlling energy 

consumption by forecasting peak demand periods and modifies energy production from green sources 

as needed. This guarantees a consistent flow of energy and decreases the reliance on oil and gas for 

back-up power. Additionally, AI programs help in maintaining equilibrium between supply and 

demand on an instantaneous basis, facilitating the incorporation of variable, renewable energy sources 
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like solar and wind into the grid without jeopardizing its stability. To enhance energy efficiency, AI 

optimizes energy storage methods, such as batteries, by predicting the ideal times for energy collection 

and discharge. This boosts the effectiveness of renewable energy systems and ensures a continuous 

supply of energy. Moreover, AI scrutinizes the energy usage habits of both residential and commercial 

areas, recommending strategies to lower energy consumption and incorporate more green sources. In 

the realm of renewable energy research and development, AI hastens the search for new materials for 

more effective solar panels and windmills by sifting through extensive datasets to spot promising 

candidates. AI tools help in the simulation and optimization of renewable energy systems, leading to 

advancements in the design of turbine blades, configurations of solar panels, and other components. 

Regarding market analysis, AI aids in the examination of trends and behaviors in the market, guiding 

investment and policy choices in the renewable energy field. AI models support the development of 

intelligent grids capable of smoothly integrating substantial amounts of renewable energy, enhancing 

reliability and lowering expenses. In the field of Data Analytics, AI deals with huge quantities of data 

from renewable energy sources to uncover insights on performance, usage patterns, and areas for 

enhancement. Furthermore, in the area of risk evaluation, AI assesses the potential dangers of 

renewable energy projects, encompassing financial, environmental, and operational hazards, to 

facilitate well-informed decisions. 

In this research, an effective control technique, known as the latching control, has been 

employed to augment the efficiency of non-buoyant type WEC. The latching control mechanism is 

engineered to cease the device's motion at its crest and trough during the cyclic wave, particularly 

when the velocity reaches zero. Concurrently, this control strategy enables the device to initiate motion 

again when the wave conditions are conducive to optimal energy extraction. The duration of the 

holding time for the WEC is crucial for maximizing energy extraction. In this study, a recurrent neural 

network (RNN), specifically the Long Short-Term Memory (LSTM) algorithm, was trained utilizing 

data gathered from an experimental campaign. The objective was to predict the latching time for 

various wave conditions, thereby improving the efficiency of energy extraction from point absorber 

WECs. 

 

Latching Control 

 Latching control is a technique that halts the motion of a device at its extreme positions, 

i.e., when its velocity reaches zero, and releases the device when the wave is in a favourable phase, 

allowing for maximum energy extraction [7]. 

 
Figure 1 Latching control [7] 

 In Figure 1, curve (a) represents the incident wave elevation, while curve (b) shows the 

buoy's movement, which remains in phase with the wave. Curve (c) illustrates the effect of latching, 

where the device is stalled at its extreme positions to maintain phase alignment with the incident wave. 

The key parameter in achieving effective latching is controlling the timing for holding and releasing 

the device. In regular wave conditions, the optimal latching delay can be determined as half the 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 9, No.3, September : 2024 
 

UGC CARE Group-1                                                                                                                       99 

difference between the wave period and the device's natural period. Eight different control methods 

are proposed by [8], with latching control being one of the most effective. Three latching control 

techniques studied by [9] include peak absorbed-energy matching, peak amplitude matching, and peak-

velocity excitation matching, all of which show significant improvement in wave energy harvesting. 

A further strategy proposed by [10] employs a hydraulic power take-off (PTO) system, where de-

latching occurs only when the PTO force exceeds a specific threshold, removing the need for future 

wave prediction. The optimal latching time, as formulated by [11], is given by: 

𝑇𝑙𝑎𝑡𝑐ℎ =
(𝑇𝑤 − 𝑇𝑜)

2
 (1) 

 where Tw is the wave period and To is the resonance period of the device's heave motion. 

The corresponding unlatching time is: 

𝑇𝑢𝑛𝑙𝑎𝑡𝑐ℎ = 𝑇𝑤 − 2𝑇𝑙𝑎𝑡𝑐ℎ =  𝑇0        (2) 

 The implementation of latching control significantly augments the efficiency of wave 

energy conversion by optimizing phase control, accelerating the motion, and elevating the amplitude 

of excitation. An approach that has been proposed for simplification by [11] involves determining the 

latching time based on the period of the wave, rather than depending on forecasts of future wave 

conditions. This strategy mitigates the technical complexities associated with the implementation of 

latching control. However, in scenarios where the future conditions of waves can be reliably forecasted, 

such as in environments characterized by regular or semi-predictable wave climates, a control strategy 

based on predictions may offer greater precision in energy extraction. This is because such a strategy 

could align the device's motion more closely with the forthcoming waves, thereby optimizing the 

process of energy extraction. The use of prediction-based control could be particularly beneficial in 

situations of irregular sea conditions, where real-time conditions of the waves may not fully 

encapsulate the intricate dynamics of the incoming waves. In such instances, predictions could assist 

in anticipating the patterns of the waves, thereby enabling adjustments to the latching time for 

enhanced performance. 

 

LSTM Algorithm 

 LSTM networks are a specialized form of RNN designed to address the challenge of 

vanishing gradients during training. By employing a series of gates, LSTMs enable the learning of 

long-term dependencies, making them highly effective in analyzing sequential data such as time series, 

text, and speech. The architecture's ability to manage information flow through gates and a memory 

cell distinguishes it from traditional RNNs by mitigating the gradient vanishing problem. As a result, 

LSTMs have been widely adopted in applications such as natural language processing, speech 

recognition, and time series forecasting. 

The core of the LSTM architecture is composed of three gates: the input gate, forget gate, and output 

gate. These gates regulate the flow of information using sigmoid functions, which produce outputs 

between 0 and 1. The forget gate controls how much of the previous cell state 𝐶𝑡−1 is retained by the 

current cell. It operates by applying a sigmoid function to the hidden state from the previous time step 

ℎ𝑡−1and the current input 𝑥𝑡, generating a forget factor 𝑓𝑡: 

 

                                 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                               (3) 

 

Here, 𝑊𝑓 represents the weight matrix for the forget gate, 𝑏𝑓 is the bias term, and 𝜎 is the sigmoid 

activation function, which maps the output to values between 0 and 1, indicating the degree to which 

the past information should be retained. 

The input gate determines which information from the current input 𝑥𝑡 should be added to the cell 

state. This involves two key components: the input gate layer, which decides which values to update, 

and the candidate values Ć𝑡, which represent new information to be incorporated into the cell state. 

The input gate is defined as follows: 
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                                 𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                   (4) 

Candidate cell state 

                                                Ć𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                           (5) 

 

In these equations, 𝑊𝑖 and 𝑊𝑐 are the respective weight matrices, 𝑏𝑖 and 𝑏𝑐 are bias terms, and tanh is 

the hyperbolic tangent function, which outputs values between -1 and 1 to determine the new candidate 

values for the cell state. 

The updated cell state 𝐶𝑡 is calculated by combining the effects of the forget gate and the input gate. 

The forget gate determines the fraction of the previous cell state 𝐶𝑡−1 that is preserved, while the input 

gate incorporates the newly computed candidate values Ć𝑡: 

                                                        𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡. Ć𝑡                                     (6) 

This equation maintains a balance between retaining past information through the forget gate and 

introducing new information via the input gate. 

The output gate determines the value of the hidden state ℎ𝑡, which serves as the output of the LSTM 

cell and is passed to the next time step. The output gate is based on the updated cell state 𝐶𝑡, filtered 

by the output gate: 

                                                        𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                          (7) 

The hidden state is then computed as: 

                                                               ℎ𝑡 = 𝑜𝑡. tanh (𝑐𝑡)                                   (8) 

 

Where: 𝑊𝑜  is the weight matrix for the output gate, 𝑏𝑜 is the bias term, 𝑜𝑡 determines which parts of 

the updated cell state 𝐶𝑡 will be used to compute the new hidden state ℎ𝑡. 

 

In time series forecasting, LSTM models are trained to learn dependencies in sequential data through 

backpropagation through time (BPTT). During training, the weights 𝑊𝑓, 𝑊𝑖,𝑊𝐶,and 𝑊𝑜, are adjusted 

based on the error between the predicted output and the actual values. When processing a sequence of 

past data points 𝑥1   , 𝑥1,………  𝑥𝑡  , the LSTM updates its cell and hidden states iteratively, allowing it to 

capture both short-term patterns (through immediate updates to the cell state) and long-term trends (by 

retaining relevant past information). 

During the prediction phase, the hidden state ℎ𝑡 is used to forecast the next value in the sequence, 

leveraging the temporal dependencies learned during training. 

LSTMs excel in retaining long-term dependencies due to their gate mechanisms. The input gate 

selectively stores relevant information in the memory cell, while the forget gate discards irrelevant 

information, ensuring that significant information is retained over time. The output gate determines 

which parts of the cell state are used for generating the LSTM's output. These gates adapt dynamically 

based on the current input and preceding hidden state, enabling LSTMs to capture long-term 

dependencies effectively. The LSTM architecture, with its sequence of interconnected cells, provides 

a powerful tool for processing and analyzing sequential data across time. 
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Figure 2 Structure of LSTM [13] 

Experimental setup 

The model's concept [14] can be grasped from Figure 2. The setup comprises a steel framed 

oscillating arm suspended from a non-buoyant body using a metal rope at one end and a counter weight 

at the other end. The arm pivots at its center, where it is linked to a rotatable shaft. The rotatable shaft 

is connected to a unidirectional gearbox, a step-up gearbox, and a generator. When the wave crest nears 

the semi-immersed container, the container's effective mass decreases due to the rising water level, 

causing the arm to become unbalanced. Subsequently, the counter mass lifts the container and causes 

the arm to oscillate in one direction. As the wave trough approaches the container, the container's 

effective mass increases due to the lowering water level, making the container heavier and causing it 

to move upwards. This alternating balancing action keeps the arm oscillating continuously. The 

oscillation is transmitted to the unidirectional gearbox through the rotatable shaft, which is linked at 

the center of the oscillating arm. The unidirectional gearbox then converts low-speed, high-torque 

rotation into high-speed rotation through a step-up gearbox, immediately followed by the generator for 

electricity generation. For performing the latching control, a brake shoe is integrated along with the 

flywheel of the WEC which is provisioned to operate manually and mechanically.  

 
(a)                                                                           (b) 

Figure 2 (a) Solid model (b) Experimental Setup  

 

Results and Discussion 

The primary aim of this study is to predict the latching time of the non-buoyant type WEC, 

thereby establishing it as the output variable within the formulated model. The displacement of the 

WEC is attributed to the arrival of waves. Consequently, critical parameters such as wave height 

(measured in centimeters), time period (measured in seconds), heave motion (also measured in 

centimeters), power output (measured in watts), and latching time (measured in seconds) are identified 
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as the input variables. The LSTM model utilizes approximately 5000 data points collected from a 

laboratory campaign, which were employed for both the training and testing phases of the developed 

models. Out of the collected data, 70% was allocated for training and validation purposes, while the 

remaining 30% was reserved for testing [15]. The TensorFlow platform was chosen for the 

development of the model, with metrics such as Mean Squared Error (MSE) and Mean Absolute Error 

(MAE) being utilized to ensure the accuracy of the developed model. The power output from the 

latching control, obtained through both analytical and predictive methods, is presented in Table 1. It is 

observed that there is a significant improvement in the output power of the predicted latch timing. The 

predictions generated by the model are validated through experimental setups under both regular and 

irregular wave conditions, as illustrated in Figures 2 and 3. The experimental results indicate that for 

both regular and irregular wave conditions, there is a significant improvement in the output power. 

Table 1 Comparison between experimental and prediction results  

Wave height 

(centimeter) 

Time 

period 

(second) 

Heave latching 

time (second) 

Analytical  

Power 

output 

(W) 

Heave 

latching time 

(second) 

Prediction  

Power output 

(W) 

10 2.1 1.1 2 1.2 2 

10.7 2.24 1.2 2.1 1.2 2 

11.5 2.55 1.32 2.21 1.31 2.45 

11.9 2.58 1.44 2.3 2.2 2.8 

12.5 2.6 1.50 2.45 2.35 2.8 

13 2.64 1.55 2.54 2.6 3.2 

14.5 2.78 1.62 2.7 2.8 3.5 

 
Figure 3 Heave motion for uncontrolled and latching control in regular wave 
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Figure 4 Heave motion for uncontrolled and latching control in irregular wave 

 

Conclusion 

This work effectively developed a LSTM model aimed at predicting the latching time of a non-

buoyant WEC, utilizing critical parameters including wave height, period, heave motion, and power 

output. The model was trained and validated using a comprehensive dataset of 5000 data points 

collected from a controlled laboratory campaign, and subsequently tested on the TensorFlow platform. 

The findings revealed notable enhancements in power output when the predicted latching times were 

implemented, especially under both regular and irregular wave conditions. The accuracy of the model 

was verified using metrics such as MSE and MAE, which were found to be 0.09 and 0.2, respectively, 

highlighting the potential of artificial intelligence-driven optimization in improving the efficiency of 

wave energy converters. This research underscores the potential of predictive modelling in the 

advancement of renewable energy technologies. 
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