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ABSTRACT: 

 A crucial physiological factor that is assessed in a variety of therapeutic contexts is breathing rate 

(BR). But manual measurement is still extensively used. Using an electrocardiogram (ECG), 

photoplethysmogram (PPG), or blood pressure (BP) signal, a novel the method for measuring the BR 

is proposed. The framework uses Discrete Wavelet Transform (DWT) and Empirical Mode 

Decomposition (EMD) techniques to extract respiratory signals, utilizing data in both the time and 

frequency domains. These techniques were able to deliver satisfactory performance even when the 

signals to an Extended Kalman Filter (EKF) that contained a Signal Quality Index (SQI) were severely 

distorted. Prior to estimating the BR, the output signals are merged via state vector fusion. Two clinical 

datasets that are open to the public were used to evaluate the study.KEYWORDS :Breathing rate (BR), 

Electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), Respiratory Rate, 

Respiratory Signals, Empirical Mode Decomposition (EMD), Discrete Wavelet Transform (DWT) 

 

I. INTODUCTION 

Breathing Rate (BR) is a crucial physiological metric that may be assessed from patients in a variety 

of situations, such as ERs, ICUs, and hospital wards. The sensitive indicator of patient deterioration 

known as BR has been demonstrated. Elevated BRs, for instance, may be present before cardiac arrest 

or respiratory failure. Additionally, BR can be utilised as a predictor of in-hospital mortality. 

Additionally, BR is used to diagnose a number of illnesses, including sepsis and pneumonia. Direct 

breathing monitoring sensors based on methods like spirometry, pneumography, or plethysmography 

are readily available. The use of these sensors is restricted to particular clinical situations, such as 

stressful situations and insomnia diagnosis, because they might affect breathing patterns and be 

intrusiveLess intrusive respiratory monitoring techniques might be more well-tolerated by patients and 

hence employed in a wider range of clinical situations. Numerous physiological signals that are 

frequently measured, such as the electrocardiogram (ECG), photoplethymogram (PPG), and blood 

pressure (BP) signal, can be impacted by breathing. Physiological breathing mechanisms can affect 

ECG, PPG, and BP data in three different ways: baseline wander (BW), amplitude modulation (AM), 

and frequency modulation (FM).In order to extract respiratory signals from ECG, PPG, and BP signals 

and then estimate BR, many techniques have been developed.The estimation of BR using ECG, PPG, 

and BP data has a new framework. Now we'll talk about the engineering methods used in this 

framework. Framework for New BR Estimations PPG, ECG and blood pressure signals Wavelet 

Transform (DWT) and Empirical Mode Decomposition (EMD) can be used to deconstruct a signal 

into a series of signals, allowing one to extract a respiratory signal here in referred to as ECG-Derived 

Respiration (EDR), PPG-Derived Respiration (PDR), or BP-Derived Respiration (BDR) signals.They 

have been widely used with ECG signals. 

 

II. METHODOLOGY 

The algorithm, which is depicted in Fig. 1, can be summed up as follows. During pre-processing, high- 

frequency noise and DC components are eliminated from an ECG, PPG, or BP signal. Second, utilising 

DWT and EMD methods, the signals are disassembled into their component elements. The PSDs of 

the components that correlate to respiratory signals (EDR, PDR, or BDR signals) can be used to 

identify them.Finally, to reduce noise from each respiratory signal, the SPI is calculated over time and 

paired with an EKF. The importance of the signal quality parameter becomes clearer in the noisy, low-
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quality regions of the EKF. Fourth, state vector fusion is used to generate a single respiratory signal. 

Finally, the BR has arrived. To begin, an ECG, PPG, or BP signal is pre-processed to remove DC 

components and high- frequency noise.Second, the signals are divided into components using DWT 

and EMD techniques. The components that correspond to respiratory signals (EDR, PDR, or BDR 

signals) can be recognised using their PSDs.Thirdly, to eliminate noise from each respiratory signal, 

the SPI is calculated over time for each respiratory signal and combined with an EKF. The signal 

quality parameter in the EKF is crucial, and this is especially obvious in the noisy, low-quality portions. 

Fourth, a single respiratory signal is generated through state vector fusion. Finally, a peak detection 

method is used to estimate the BR from the collected respiratory signal. 

 
Fig 1:Block diagram of the breathing rate (BR) from an electrocardiogram , photoplethysmogram 

(PPG), or a blood pressure (BP) signal. 

1 PRE-PROCESSING: Using a third-order Butterworth high-pass filter, the DC component of the 

 ECG, PPG, or BP signal is eliminated. The cut-off frequency of this filter was chosen at 0.08Hz since 

the lowest achievable BR is 5 breaths per minute (bpm) (0.083Hz). High-frequency noise is removed 

using a moving average filter with a window length of 11. 

EXTRACTING RESPIRATORY SIGNALS: Two well-known techniques with strong decomposition 

abilities were employed to extract respiratory signals: the EMD and its extended algorithm, and a DWT 

technique. Each method was used to generate a set of respiratory signals from the input signal (ECG, 

PPG, or BP). As shown in Fig.1, four respiration signals were recovered using the DWT method and 

three using the EMD methodology. The EMD and DWT methods are now discussed in detail. 

2. EMD Methods : A flexible, totally data-driven method for evaluating non-stationary, non- 

linear signals is called EMD. Time series are broken down into individual components by describing 

the original signal as a linear combination of zero-mean amplitude and frequency modulated functions 

known as Intrinsic Mode Functions (IMFs), and a residual, which takes advantage of both local 

temporal and structural properties.Each IMF complies with the following requirements: (1) The mean 

of the upper and lower envelopes must be zero. (2) The number of zero-crossings and positive/negative 

peaks should either be equal or deviate by no more than one. When an intermittent process is present 

in the signal, the mode mixing problem occurs. 

A single IMF having signals with vastly different scales or a signal with a similar scale present in many 

components is referred to as mode mixing. Individual IMFs' physiological significance is uncertain as 

a result of this phenomena. A Noise-Assisted Data Analysis (NADA) approach is suggested as a 

solution to this issue. The Ensemble Empirical Mode Decomposition (EEMD) presupposes that the 

white noise scale in time-frequency space is equally distribute d . The EEMD method introduces white 

noise into the signal to cause the components of a signal of different scales to automatically project 

onto correct scales of reference created by the background white noise. The Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) has been demonstrated to be a 
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significant improvement over EEMD.CEEMDAN has an advantage over EEMD in that it achieves a 

low reconstruction error and solves the problem of varied number of modes for different signal plus 

noise realizations .   EEMD and CEEMDAN techniques. The two flowcharts in Figs. 2 and 3 depict 

the steps for the EEMD and CEEMDAN approaches, respectively. 

The PSD of each IMF is calculated, and the dominant frequency band of each IMF is identified as the 

6dB bandwidth around the maximum amplitude of the PSD. The EDR, PDR, or BDR signal is then 

chosen as the IMF with the closest frequency band to the respiratory frequency range (6 to 33 bpm 

[0.10Hz, 0.55Hz]). EDR and PDR signals were derived from a 60-second frame of ECG and PPG 

signals (from BIDMC01, respectively). The EMD, EEMD, and CEEMDAN techniques were used to 

extract them. The dashed red and green lines represent the reference respiratory signal's and EDR/PDR 

signals' dominating frequency ranges, respectively. The major frequency bands of CEEMDAN-

extracted EDR and PDR signals are theclosest to the dominant frequency band of the reference 

respiratory signal. 

 
Fig2: Flowchart of EEMD based on EMD algorithm 

3. Discrete Wavelet Transform: 

The Wavelet Transform (WT) is a time-frequency signal analysis method that allows for simultaneous 

interpretation of the signal in both the time and frequency domains, allowing for the identification of 

local transient or intermittent components. By using the multi-resolution approach, the WT and inverse 

transform may be computed discretely, fast, and without signal information loss. In this investigation, 

respiratory components of ECG, PPG, or BP signals were extracted using the DWT with four different 

mother wavelet functions: 4th and 8th order Daubechies and 4th and 8th order Symlets. The PSDs of 

each detail signal were determined after using the DWT with these wavelet functions. The dominating 

frequency bands of the generated PSDs were compared to the frequency bands of the detail signal to 

determine the detail signal containing respiratory material. 

 
Fig3: Flowchart of CEEMDAN based on EEMD algorithm. 

By using the DWT with four different wavelet functions, EDR and PDR signals were recovered from 

60 second windows of ECG and PPG signals (from BIDMC01). The EDRs derived by Symlet and 

Daubechies 8th have the closest dominant frequency band to the reference respiratory signal's 
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dominant frequency range. This suggests that they performed better than Symlet and Daubechies in 

fourth place. The performance characteristics of the wavelet functions with 4th and 8th orders. The 

main frequency bands of the resulting PDRs for all four mother wavelets are similar, and their 

performance is lower than that of EDRs. 

 

 

4. SIGNAL QUALITY ASSESSMENT 

By computing moments of the EEG signal power spectrum, Hjorth parameters were first suggested to 

extract characteristics from the spectrum of the Electroencephalographic (EEG) signal. the 

signal's nth order spectral moment      . 

 
Where P (ejω) is the power spectrum of the signal as a function of angular frequency 

ω = 2πf, with f in cycles/second. The spectral moments of a signal may be calculated using a shifting 

overlapping window by averaging in the time domain as shown below:: 

 

 
Where x(i/2) (k) is the i/2 derivative of x(k) and L is the window duration (L = 4s here). The SPI 

calculates an index for rating the quality of signals using the Hjorth descriptors. Here, we have utilised 

SPI as a SQI to evaluate the signal quality in the manner described below: 

 
ℾSPI is a value that ranges between 0 (total noise) and 1 (pure sinusoid), signifying low and good 

signal quality, respectively. 

 

5. EXTENDED KALMAN FILTER: There are seven respiratory signals in the proposed 

algorithm at this point, each with a corresponding SQI parameter. Applying a KF or EKF to the 

respiratory signals at this stage improves their quality. Both a KF and an EKF have the ability to 

remove noise from a signal and then reconstruct it using a dynamic model. However, a KF can only 

accept a linear model, whereas an EKF can accept a nonlinear dynamic model.Since a model's accuracy 

can be decreased during the linearization process for use with a Kalman Filter and Extended KF may 

perform better than a KF. In this study, the EKF is optimised using the SQI parameter. Now   that 

information regarding the usage of the KF and EKF. The KF is a well-known optimal state estimation 

method that has been proven to be the optimal filter in the Minimum Mean Square Error (MMSE) 

sense. 

Since most systems in practise are nonlinear, the estimation accuracy must first be reduced when using 

the KF to approximate nonlinear dynamical models in linear form. The EKF is an extension of the 

standard KF that takes into account nonlinear dynamic estimate of a stochastic signal's states. To 

estimate the state vector in each iteration, the EKF uses a dynamical model and data generated by 

Kalman Gain (KG). The value of the measurement noise covariance (R) has an inverse relationship 

with KG. As a result, low quality measurements with greater R values have lower KG values. By 

reducing the value of KG for each stage, the effect of measurements on estimation is reduced, and vice 

versa. A multiplicative factor R is modified as follows: R →R (𝑺𝑸𝑰−𝟐 −𝟏) 

                                                                                                   n n 𝒏 

Where SQI n is the SQI of the nth sample of data which is replaced by SPI in this paper, as follows: 

SQIn=ɽSPI[n] 

 

6. STATE VECTOR FUSION: 7 respiratory signals are present at this stage of the suggested 

method. State vector fusion is then utilised to combine the seven signals to create a single respiratory 
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signal. The state error covariance matrices derived from EKF are used to integrate local estimate 

signals in an MMSE 

sense follows 

: ̄xn = (∑𝐽 (𝑃 j n )-1 )-1 ∑𝐽 [(𝑃 j n )-1 ˆxj n ] 

                            𝑗=1                       𝑗=1 

where ̄xn is the estimate of the overall condition at time n. J stands for the required number of signals 

to be fused, which in our instance is 7 (J = 7). For each of the seven respiratory signals, the (Pj ) -1 

and ̄x j, respectively, are the inverses of the state error covariance 

matrices and the local state vector estimates. This implies that the state vector may be obtained more 

effectively with respiratory signals that work better. A global estimate of state is derived as a single 

fused signal for each sample of the 7 respiratory signals in order to estimate breathing rates. 

 

7. BREATHING RATES ESTIMATION: 

The detection of peaks in a fused respiratory signal. The BR was then computed by counting the 

number of peaks during a specific time period and expressed in beats per minute (bpm). 

 

8. ANALYSIS : 

Three metrics were used to evaluate the performance of BR algorithms. 

• The Probability of Coverage CP: is the percentage of Errors that fall inside predefined 

boundaries,. In this case, an acceptable absolute inaccuracy in work was defined as <2bpm. The non-

parametric variant of CP, denoted by The empirical cumulative distribution of the absolute was used 

to construct a percentage with a value of set at 2 bpm . 

• MAE (Mean Absolute Error) 

  
where µˆ BR(i) and µref (i) are the estimated and reference BRs, respectively, and N is the total number 

of windows in the database. 

• The Mean Absolute Percentage Error (MAPE): 

  
The quality of each subject's ECG, PPG, or BP signals was evaluated using a metric known as Q, 

which is defined as the percentage ratio of the number of low quality windows Nl to the total number 

of windows NT of each signal: 

Q = 𝑵𝟏 * 100% 

       𝑵𝑻 
Windows were considered low quality if the average in that timeframe, ┌SPI was less than 0.5. 

Throughout the 60-second-long analysis windows here we utilised a 50% overlap. 

 

III .RESULTS 
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 CONSULSION 

A framework to estimate BR from ECG, PPG, or BP signals. The performance of the framework was 

assessed on two publicly available datasets. The work indicate that our framework shows good 

robustness even in presence of noise. Both EMD and DWT methods used to extract respiratory signals, 

obtain the advantages of each. Finally, taking into account our framework's state vector fusion 

approach, offer it this power to boost the impact of superior output estimate, which yields a single 

output with high precision. 

 

REFERENCES 

1. R. M. H. Schein, N. Hazday, M. Pena, B. H. Ruben, and C. L. Sprung, ‘‘Clinical antecedents 

to in- hospital cardiopulmonary arrest,’’ Chest, vol. 98, no. 6, pp. 1388–1392, Dec. 1990, doi: 10.1378/ 

chest.98.6.1388. 

2. K. Mochizuki, R. Shintani, K. Mori, T. Sato, O. Sakaguchi, K. Takeshige, K. Nitta, and H. 

Imamura, ‘‘Importance of respiratory rate for the prediction of clinical deterioration after emergency 

department discharge: A single-center, case–control study,’’ Acute Med. Surgery, vol. 4, no. 2, pp. 

172–178, Apr. 2017, doi: 10.1002/ams2.252. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 9, No. 1, September : 2023 
[ 

UGC CARE Group-1,                                                                                                                 31 

3. W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, ‘‘Multi parameter respiratory rate 

estimation from the photoplethysmogram,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 7, pp. 1946–1953, 

Feb. 2013, doi: 10.1109/TBME.2013.2246160. 

4. L. Mason, Signal Processing Methods for non-Invasive Respiration Monitoring. Oxford, U.K.: 

Univ. Oxford, 2002. [Online]. Available: http://www.ibme.ox.ac.uk/research 

5. M. A. Pimentel, P. H. Charlton, and D. A. Clifton, ‘‘Probabilistic estimation of respiratory rate 

from wearable sensors,’’ Wearable Electronics Sensors. vol. 15. Cham, Switzerland: Springer, 2015, 

pp. 241– 262, doi: 10.1007/978-3-319-18191-2_10. 

6. P. H. Charlton, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and P. J. Watkinson, ‘‘An 

assessment of algorithms to estimate respiratory rate from the electrocardiogram and 

photoplethysmogram,’’ Physiol. Meas., vol. 37, no. 4, p. 610, 2016, doi: 10.1088/0967-3334/37/4/610. 

7. P. H. Charlton, D. A. Birrenkott, T. Bonnici, M. A. F. Pimentel, A. E. W. Johnson, J. Alastruey, 

L. Tarassenko, P. J. Watkinson, R. Beale, and D. A. Clifton, ‘‘Breathing rate estimation from the 

electrocardiogram and photoplethysmogram: A review,’’ IEEE Rev. Biomed. Eng., vol. 11, pp. 2–20, 

2018, doi: 10.1109/RBME.2017.2763681. 


