

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

MODELLING OF REVERSE LOGISTIC APPROACHES: A PROPOSED FRAMEWORK

Dr. Sachin Akoji Meshram, Department of Mechanical Engineering, G.H. Raisoni University Amravati, 444701, Maharashtra, India.

Dr. Mukesh Shyamkant Desai, Associate Professor, Department of Mechanical Engineering, OP Jindal University Raigarh, 496109, Chhattisgarh, India.

Mr. Dinesh Parve, Department of Mechanical Engineering, Govindrao Wanjari College of Engineering & Technology Nagpur , 441204, Maharashtra, India.

Dr. Amol Zade, Department of Computer Science & Engineering, G H Raisoni University Amravati, 444701, Maharashtra, India.

Abstract

Reverse logistics is receiving more attention because of the growing environmental and economical concern. The complex issues depending on social, technical and legislative factors are: how to prevent the environmental deterioration caused by the generation of wastes, how to minimize the generation of wastes, and finally how to re-cover the valuable material contained by the wastes. In this paper, we have done an exhaustive literature review, highlighting the application of various modelling approaches from reverse logistics perspectives. The considered modelling approaches are Linear programming, Mixed integer linear programming, Goal programming and Genetic algorithm. The reverse logistics issues are basically categorized into five categories namely distribution, Production planning and control, Information technology, business economics and integration/co-ordination. The paper proposes a framework focusing these issues and suggests an appropriate approach to model reverse logistics.

Keywords: Reverse logistics networks, Linear programming, Mixed integer linear programming, Goal programming, Genetic Algorithm

Introduction

Reverse Logistics (RL) refers to the sequence of activities required to collect the used product from the customers for the purpose of either reuse or repair or re-manufacture or recycle or dispose of it [1]. Reverse Logistics concentrates on those streams where there is some value to be recovered and the outcome enters a (new) supply chain [2] [3]. To recover value from used products, companies need to design an optimal logistics structure and so the question arises, how to design this logistic structure. where to locate the various processes of the reverse supply chain, how to collect recoverable products from the former user; where to segregate the collected products to identify the recoverable resources from the scrap in order to separate recoverable resources from scrap; where to refurbish the collected products to make them fit for reuse; and how to distribute recovered products to future customers [4], [5]. So it requires a deep understanding of the whole context so that the solutions we get should be optimal.

1.1. Motivation

The environmental profile of most of the industries is not very positive. Energy consumption is relatively higher than the international standard, due to interruptions in production, poor quality of fuel and equipment, and relatively low rate of used products in production [6]. Pollution emissions in to air and waste water and solid waste are also higher than the international average. Rapid urbanization and economic growth increase waste and at the same time reduce the available landfill space [7]. Large volume of different types of wastes is produced daily by the industries as well as the localities. If the things discarded by the user are not managed appropriately then it leads to a number of societal problems such as increased risks of epidemics, air pollution caused by illegal burning and pollution of ground water. The need arises to design our reverse logistics networks for the appropriate management of these products [8].

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

In this paper we have proposed a conceptual framework of various techniques like [(Linear programming (LP), Mixed integer linear programming (MILP), goal programming (GP), Genetic algorithm (GA), Simulated Annealing (SA)] that can be applied to the reverse logistics problems [9] [6] [10]. We have prepared a critical review in this regards to provide user friendly information in the context of applications of the above said approaches. Finally we end up with the conclusion and future scope. Rest of the paper is arranged as follows. Section 2 deals with the literature review in LP, MILP, GP GA and SA. Section 3 proposed a framework. Finally section 4 concludes the paper with future research.

Literature

In this paper we start by taking a look at related literature on the application part of the different modeling approaches in reverse logistics. In the literature many of the models have been developed by extensions and modifications of traditionally existing models. We briefly comment on the general things learned. Tables 1 to 4 summarize some of the recent examples and uses.

		1. Review on LP applications
Author	Journal Name	Review on LP
Nengye Mu	Environmental	Developed a six-level sustainable dynamic reverse
et al. (2023)	Science and	logistics network model from the perspectives of
	Pollution Research	economy, environment, and society. Solve the multi-
		objective combinatorial optimization model to explore
		the layout of the sustainable reverse logistics network for
		retired new energy vehicle power batteries recycling. A
		case study is implemented to verify the effectiveness of
		the proposed model. [3]
A. Nagurney,	Sustainability	Developed a mathematical model and two stage heuristic
and F.		algorithms for systematically managing and integrating
Toyasaki		forward and reverse logistics network design for the
(2005)		recovery of end-of-lease computer products. Also
		developed a mathematical model for the locations of
		facilities jointly used by forward and reverse logistics
		operations.
F. Alarcón	Sustainability	Formulated a linear multi-objective optimization model
et.al. (2021)		to improve cost and the risk to optimize the operations of
		both the nuclear power generation and the corresponding
		induced waste reverse logistics.
D.H. Lee, and	Resources,	Formulated a linear multi-objective analytical model that
M. Dong	Conservation and	minimizes both the total reverse logistics operating costs
(2008)	Recycling	and corresponding risks. In this model environmental
		impacts caused by regional industrial hazardous wastes
		and a trade-off relationship between the goals of cost
		minimization and risk minimization are considered.
Listes and	European Journal of	Presented a deterministic location model for product
Dekker	Operational	recovery network design by extending it to be explicitly
(2005)	Research	accounted for the uncertainties. And this gives more
		insight into decision-making under uncertainty for
		reverse logistics networks.[25]

Table1. Review on LP applications

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

1	(of diffe : 02) 188 de 9)	
Nagurney	Transportation	Developed a multitiered e-cycling network model for
and Toyasaki	Research Part E	reverse supply chain management of electronic waste,
(2005)		which includes recycling and solved the numerical
		examples. Formulated the consisting of sources of
		electronic Waste, recyclers, processors, and consumers
		associated with the demand markets for the distinct
		products.[4]
Jayaraman et	European Journal of	Discussed reverse distribution, and proposed a
al. (2003)	Operational	mathematical programming model and introduced a
	Research	heuristic solution methodology.[31]
Hu et al.	Transportation	Formulated a discrete-time linear analytical model that
(2002)	Research Part E	minimizes total reverse logistics operating costs of
		hazardous waste reverse logistics system subject to
		constraints such as business operating strategies and
		governmental regulations.[28]
Fleishmann	Report series	An excellent overview on a no of case studies was given
et al.(2001)	research in	and used mathematical models to derive the
	management	characterization of networks.[18]
	(ERIM)	
Thierry	California	LP model was formulated to address the problems of
(1995)	management review	network good flow under given capacity constraint.
	-	Proposed a conceptual three echelon model to evaluate
		combined production/distribution and
		collection/recovery networks for photocopiers.[21]

2.2. Mixed Integer Linear programming applications in RL

0 11		
Table2. Review	on MILP applications	S

A1		
Author	Journal Name	Review on MILP
Mutha and	Computers &	Proposed a model for designing reverse logistics networks
Pokharel	Industrial	allowing only a portion of capacity in warehouses.[3]
(2009)	Engineering	
Du .and	Computers &	Developed a bi-objective MIP optimization model for the
Evans (2008)	Operations	reverse logistic network problem. A reverse logistics
	Research	problem was proposed, in which a third-party logistics
		company provides logistics service for the post-sales
		service network.[8]
Sayed et	Computers &	Developed a multi-period multi-echelon forward-reverse
al.(2008)	Industrial	logistics network design under risk model. Formulated the
	Engineering	problem in a stochastic mixed integer linear programming
		(SMILP) decision making form as a multistage stochastic
		program. By this model it was shown that the total ex-
		pected profit is directly affected by demand mean and return
		ratio for a given capacity of the network.[20]
Salema et al.	European Journal	Developed a mixed integer formulation for the design of a
(2007)	of Operational	generic reverse logistics network by considering capacity
	Research	limits, multi-product management and uncertainty on
		product demands and returns. Further solved it using
		standard B&B techniques and applied to an illustrative
		case.[19]

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

T' 1 1		
Lieckens and Vandaele (2007)	Computers & Operations Research	Formulated basic models such as MILP and determined which facilities to open that minimize the investment, processing, transportation, disposal and penalty costs while supply, demand and capacity constraints are satisfied.[16]
Hong et al (2006)	IEEE transactions on electronics packaging manufacturing	Used a scenario-based robust optimization MILP model for supporting strategic e-scrap reverse production infrastructure design decisions under uncertainty. Model is used to maximize the system net profit for specified deterministic parameter values in each scenario, and then a min-max robust optimization methodology to find a robust solution for all of the scenarios.[11]
Min et al.(2006)	Omega-The international journal of management science	Proposed a nonlinear MIP model and a Genetic algorithm that can solve the reverse logistics problem involving product returns from online sales.[10]
Klose and Drexl (2005)	European Journal of Operational Research	Reviewed and summarized the applications of some contributions in Mixed-integer programming models, Continuous location models and network location models.[2]
Grossman and Biegler (2004)	Computers and Chemical Engineering	Discussed recent developments in deterministic global optimization algorithms applied to both nonlinear programs and mixed-integer programs. Also discussed logic-based optimization and its influence in both modeling and solving mixed-integer optimization problems. Discussed issues and approaches related to large-scale optimization algorithms and applications.[12]
Jayaraman et al. (1999)	Journal of the Operational Research Society	Used MILP to analyze the logistics network of an electronic equipment remanufacturing company in the USA. Here the limited core supply acts as a capacity restriction to the overall level of operation.[30]
Barros et al. (1998)	European Journal of Operational Research	Developed a single-period, cost minimization MILP model for the configuration of an optimal sand recycling network, in which the sand originates from the demolition and reconstruction of old buildings.[1]
Spengler et al. (1997)	European Journal of Operational Research	Proposed a modified MILP warehouse location model to minimize overall costs to analyze which recycling processes or process chains to install at which locations at which capacity level by examining recycling networks for industrial by-products in the German steel industry.[29]

2.3. Goal Programming Applications in RL

Table3. Review on GP applications

Author	Journal Name	Review on GP
	International	Formulated a mixed integer goal programming (MIGP)
F.	Journal of	model to assist in proper management of the paper
Dehghanian,	Environmental	recycling logistics system. The model studied the inter-
and S.	Research and	relationship between multiple objectives (with changing
Mansour	Public Healt	priorities) of a recycled paper distribution network. The
(2009)		

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

		-
		use of the model was illustrated through a problem of paper recycling in India.[24]
G. Kannan et	Sustainability	Formulated a fuzzy MIGP vendor selection problem that includes three primary goals: Minimizing the net cost,
al (2009)		minimizing the net rejections and minimizing the net deliveries.[17]
Pati et al.	Omega- The	Presented a disassembly-to-order system Where the
(2008)	international	products are taken back from the last user and/or
(2000)	journal of	collectors, disassembled for the retrieval of reusable
	management	components and resold in order to meet a certain level of
	science	demand. Model it as a multi-criteria decision making
		problem under uncertainty using the fuzzy GP technique.
		To illustrate the methodology a case example was
		presented.[6]
Kumar et	Computers &	Applied the compromise programming and GP
al.(2004)	Industrial	techniques to ease the potential conflict among land
	Engineering	filling, Incineration and recycling in a growing
		metropolitan region.[23]
Chang and	European Journal	Applied a fuzzy GP approach for the optimal planning of
Wang (1997)	of Operational	solid waste management systems in a metropolitan
	Research	region.[22]
Hoshino et	International	Used a GP model to analyze the profitability and
al.(1995)	journal of	recycling rates for manufacturing systems.[27]
	Production	
	Research	

2.4. Genetic Algorithm Applications in RL

Table 4. Review on GA Applications

Author	Journal Name	Review on GA
H. Min, H. J.		Applied Multi-objective genetic algorithm (MOGA) to
Koa, and C.	Decision Science	find the Pareto-optimal Solutions. Presented a Multi-
S. Kob	Letters	objective programming model for multi-objective
(2006)		optimization of sustainable recovery network of scrap
		tires.
Kannan et	Computers &	Applied the proposed heuristics based genetic algorithm
al.(2009)	Industrial	(GA) as a solution methodology to solve mixed integer
	Engineering	linear programming model to minimize the cost. Finally
		the computational results obtained through GA were
		compared with the solutions obtained by GAMS
		optimization software.
Lee et al.	Computers &	Formulated a mathematical model of remanufacturing
(2009)	Industrial	system as three-stage logistics network model for
	Engineering	minimizing the total of costs to reverse logistics shipping
		cost and fixed opening cost of the disassembly centers
		and processing centers and considered a multi-stage,
		multi-product and some attach condition for disassembly
		centers and processing centers, respectively solved this
		problem by genetic algorithm (GA) with priority-based encoding method.
		cheounig methou.

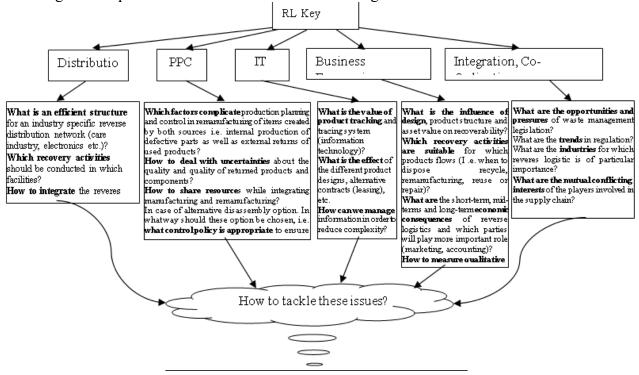
ISSN: 0970-2555

Inclusion of	Volume : 52, Issue 9, No. 1, September : 2023	
--------------	---	--

1		
Farahani	Int. J. Production	Applied GA to solve real-size problems of mixed-integer
and	Economics	linear programming model. Designed GA to find the
Elahipanah		Pareto fronts for the large-size problem. Minimized the
(2008)		total costs for a distribution network by developing a new
		model for a three-echelon supply chain which follows JIT
		distribution purposes in order to better represent the real-
		world situations.
Dehghanian	Omega- The	By GA, Solved and provided a min. cost solution for a
and Mansour	international	reverse logistics network design problem involving
(2009)	journal of	product returns in the case when return of the products is
	management	focused on a centralized location.
	science	

2.3. Simulated Annealing Applications in RL Table 3. Review on SA applications

Author	Journal Name	Review on SA
Mir Saman	Int J Adv Manuf	Network design problems belong to the class of NP-hard
Pishvaee et	Technol	problems, therefore applied a simulated annealing (SA)
al. (2009)		algorithm with special neighborhood search mechanisms
		to find the near optimal solution. Also compared the
		associated numerical results through exact solutions in a
		set of problems to present the high-quality performance
		of the applied SA algorithm. [16]
Ali Diabat et	Journal of	proposed a SA algorithm to address the complex network
al. (2015)	Manufacturing	configuration of an RL system, which decides on the
	Systems	Optimal selection of sites, the capacities of inspection
		centers and remanufacturing facilities. Furthermore,
		introduced important transportation considerations, by
		providing the option of using in-house fleet as well as
		outsourcing option and this constitutes one of the main
		contributions of our work. [17]
H. Min, H. J.	Decision Science	This paper addresses an inventory control model for a
Koa, and C.	Letters	reverse logistics system that deals with two separated
S. Kob		types of demand, for new products and remanufactured
(2006)		products, with different selling prices. The model consists
		of a single shared machine between production and
		remanufacturing operations, while the machine is subject
		to random failures and repairs. Three stock points
		respectively for returns, new products and
		remanufactured products are investigated. Meanwhile, in
		this paper, a modelling of the problem with Discrete-
	European (1	Event simulation using Arena® was conducted.
A. Mutha et.	Environmental	This study developed a six-level sustainable dynamic
A1 (2009)	Science and Pollution Research	reverse logistics network model from the perspectives of
	ronution Research	economy, environment, and society. We solve the multi-
		objective combinatorial optimization model to explore the lawout of the sustainable reverse logistics network for
		the layout of the sustainable reverse logistics network for
		retired new energy vehicle power batteries recycling by a simulated annealing (SA) algorithm with special


ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

		neighbourhood search mechanisms to find the near optimal solution.
J.B. Sheu et. Al (2020)	European Journal of Operational Research	This paper proposed a profit maximization modelling framework for reverse logistics network design problems and presents a mixed-integer linear programming formulation that is flexible to incorporate most of the reverse network structures plausible in practice. In order to consider the possibility of making future adjustments in the network configuration to allow gradual changes in the network structure and in the capacities of the facilities, we consider a multi-period setting.

Proposed framework

After screening plethora of papers in RL, A framework lightening the application of modelling approaches from RL perspective is developed in Fig.1. Initially we identify key areas like distribution, production planning and control (PPC), Information technology (IT), Business economics, Integration and Co-ordination. Then some of the key issues (as shown in Fig.1) linked with the above said key areas are discussed for a qualitative analysis. To tackle these issues we use quantitative modelling and programming approaches. Here, we have taken Linear programming, MILP, Goal programming and Genetic algorithm for the modelling of the problems. The application of each of these techniques addressing the complex issues is also stated as shown in Fig.1.

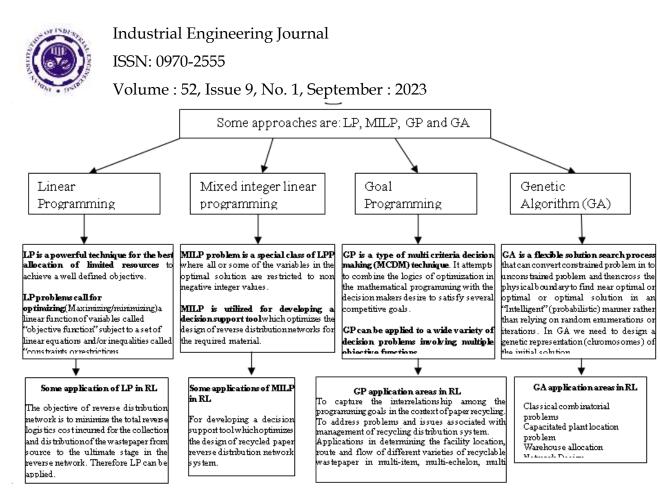
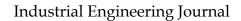


Fig.1 A framework lightening the application of modelling approaches from RL perspective

Conclusion and future work


An exhaustive literature review, highlighting the application of various modelling approaches has been done from reverse logistics perspectives. The considered modelling approaches are Linear programming, Mixed integer linear programming, Goal programming and Genetic algorithm. We categorized the RL issues in to 5 categories namely distribution, Production planning and control, Information technology, business economics and integration/co-ordination. Reverse logistics networks are having very distinctive characteristics and one of them is the high level of uncertainty. So opportunities can be exploited for the further research in the sustainability of the reverse logistics networks.

References

- [1] A.I. Barros, R. Dekker, and V. Scholten, "Two-level network for recycling sand: A case study", *European Journal of Operational Research*, Ingenta connect, Vol.110, pp.199-214, 1998.
- [2] A. Klose, and A. Drexl, "Facility location models for distribution system design", *European Journal of Operational Research*, Ingenta connect, Vol.162, pp.4–29, 2005.
- [3] A. Mutha , and S. Pokharel, "Strategic network design for reverse logistics and remanufacturing using new and old product modules", *Computers & Industrial Engineering*, Ingenta connect ,Vol. 56,pp.334–346 ,2009.
- [4] A. Nagurney, and F. Toyasaki, "Reverse supply chain management and electronic waste recycling: a multitiered network equilibrium framework for e-cycling", *Transportation Research Part E*, Ingenta connect, Vol.41, pp.1–28, 2005.

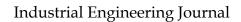
[5] Alarcón, Faustino, Pascual Cortés-Pellicer, David Pérez-Perales, and Ana Mengual-Recuerda, "A Reference Model of Reverse Logistics Process for Improving Sustainability in the Supply Chain." *Sustainability* 13 (18): 10383. <u>https://doi.org/10.3390/su131810383</u>, 2021.

[6] Alshamsi, Ahmed, and Ali Diabat, "A Reverse Logistics Network Design." *Journal of Manufacturing Systems* 37 (October): 589–98. https://doi.org/10.1016/j.jmsy.2015.02.006.

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

[7] Alumur, Sibel A., Stefan Nickel, Francisco Saldanha-da-Gama, and Vedat Verter. "Multi-Period Reverse Logistics Network Design." *European Journal of Operational Research* 220 (1): 67–78. <u>https://doi.org/10.1016/j.ejor.2011.12.045</u>, 2012.


[8] Chang, Lijun, Honghao Zhang, Guoquan Xie, Zhenzhong Yu, Menghao Zhang, Tao Li, Guangdong Tian, and Dexin Yu., "Reverse Logistics Location Based on Energy Consumption: Modeling and Multi-Objective Optimization Method." *Applied Sciences* 11 (14): 6466, 2021, https://doi.org/10.3390/app11146466.

- [9] D.H. Lee, and M. Dong., "A heuristic approach to logistics network design for end-of-lease computer products recovery", *Transportation Research Part E*, Ingenta connect ,2008, Vol.44, pp. 455–474.
- [10] E. Kongar, S. M. Gupta, and Y. A. Y. Al-Turki, "A fuzzy goal programming approach to disassembly planning", The 6th Saudi Engineering Conference, December 2002, KFUPM, Dhahran, Vol.4, pp 561-580.
- [11] F. Alarcón, P. Cortés-Pellicer, D. Pérez-Perales, and A. Mengual-Recuerda, "A Reference Model
- of Reverse Logistics Process for Improving Sustainability in the Supply Chain," *Sustainability*, vol. 13 no. 18 p. 10383 Sep. 2021. doi: 10.3390/su131810383
- 13, no. 18, p. 10383, Sep. 2021, doi: 10.3390/su131810383.
- [12] F. Dehghanian, and S. Mansour, "Designing sustainable recovery network of end-of-life products using genetic algorithm", *Resources, Conservation and Recycling*, Ingenta connect, 2009, Vol. 53, pp. 559–570.
- [13] F. Du, and G. W. Evans, "A bi-objective reverse logistics network analysis for post-sale service", *Computers & Operations Research*, Ingenta connect, 2008, Vol.35, pp.2617 2634.
- [14] G. Kannan et al, "A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling", *Applied Mathematical Modelling*, 2009, *Elsevier*, doi:10.1016/j.apm.2009.06.021.
- [15] H. Min, H. J. Koa, and C. S. Kob, "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns", *Omega, International Journal of management science, Elsevier*, 2006, Vol.34, pp.56 69.
- [16] H.I. Hong, T. Assavapokeea, J. Ammonsa, C. Boelkinsb, K. Gilliama, D. Oudita, M. Realffc, and J. M. Vanní, "Planning the e-scrap reverse production system under uncertainty in the state of Georgia: a case study", IEEE transactions on electronics packaging manufacturing, 2006, Vol 29, pp. 150-162.
- [17]I. E. Grossmann, and L. T. Biegler, "Part II. Future perspective on optimization", *Computers and Chemical Engineering*, Elsevier, 2004, Vol.28, pp.1193–1218.

[18] Iqra University et al., "Mediation of Reverse Logistics in Sustainable Resources and

Organizational Performance," South Asian J. Oper. Logist., vol. 2, no. 1, pp. 11–27, Jun. 2023, doi: 10.57044/SAJOL.2023.2.1.2302.

- [19] J.B. Sheu, "Green supply chain management, reverse logistics and nuclear power generation", *Transportation Research Part E*, Ingenta connect, 2008, Vol. 44, pp.19–46.
- [20] J.B. Sheu, "A coordinated reverse logistics system for regional management of multi-source hazardous wastes", *Computers & Operations Research*, Elsevier, 2007, Vol.34, pp.1442–1462.
- [21] J. Lee, M. Gen, and K. Rhee, "Network model and optimization of reverse logistics by hybrid genetic algorithm", *Computers & Industrial Engineering*, Elsevier, 2009, Vol. 56, pp.951–964.
- [22] K. Lieckens, and N. Vandaele, "Reverse logistics network design with stochastic lead times", *Computers & Operations Research*, 2017, Elsevier, Vol.34, pp. 395–416.
- [23] M. Kumar, P. Vrat, and R. Shankar, "A fuzzy goal programming approach for vendor selection problem in a supply chain", *Computers and Industrial Engineering*, 2014, Elsevier, Vol. 46, pp. 69-85.
- [24] M. Fleischmann, "Reverse Logistics Network Structures and Design", ERIM Report series research in management, Report Series reference number, 2011, ERS-2001-52-LIS. http://ssrn.com/abstract=370907

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

- [25] M. I. G. Salema, A. P. B. Povoa, and A. Q. Novais, "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty, *European Journal of Operational Research*, 2017, Elsevier, vol. 179, pp.1063–1077.
- [26] M.E. Sayed, "A stochastic model for forward-reverse logistics network design under risk", *Computers & Industrial Engineering*, 2008, Elsevier Ltd doi:10.1016/j.cie.2008.09.040
- [27] M. Thierry, M. Salomon, J.A.E.E.V. Nunen and L.V. Wassenhove, "Strategic issues in product recovery management", *Caliornia Management Review*, SEPT 2020, Vol. 37, Issue (2), pp. 114-135.
- [28] N.B. Chang, and S.F. Wang, "A fuzzy goal programming approach for the optimal planning of metropolitan solid waste management systems", *European Journal of Operational Research*, Elseveir, 2010, Vol. 99, pp.303-321.
- [29] N.B. Chang, S.F. Wang, "A goal programming approach for multiobjective optimal planning of an integrated solid waste management system", *waste management research*, *Alacrastore*,2005, Vol.15,pp.1-14.

[30] R. K. Pati, P. Vrat, and P. Kumar, (2008), "A goal programming model for paper recycling system", *Omega*, *International journal of management science*, Elsevier, Vol.36, pp.405 – 417.

[31] N. Mu, Y. Wang, Z.-S. Chen, P. Xin, M. Deveci, and W. Pedrycz, "Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network," *Environ. Sci. Pollut. Res.*, vol. 30, no. 16, pp. 47580–47601, Feb. 2023, doi: 10.1007/s11356-023-25573-w.

[32] R. Li and X. Chen, "Reverse Logistics Network Design under Disruption Risk for Third-Party Logistics Providers," *Sustainability*, vol. 14, no. 22, p. 14936, Nov. 2022, doi: 10.3390/su142214936.
[33] M. Shukla, B. Vipin, and R. N. Sengupta, "Impact of dynamic flexible capacity on reverse logistics network design with environmental concerns," *Ann. Oper. Res.*, Feb. 2022, doi: 10.1007/s10479-022-04565-y.

[34] M. A. Khoei, S. S. Aria, H. Gholizadeh, M. Goh, and N. Cheikhrouhou, "Big data-driven optimization for sustainable reverse logistics network design," *J. Ambient Intell. Humaniz. Comput.*, vol. 14, no. 8, pp. 10867–10882, Aug. 2023, doi: 10.1007/s12652-022-04357-z.

[35] G. Hammes, E. D. De Souza, C. M. Taboada Rodriguez, R. H. Rojas Millan, and J. C. Mojica Herazo, "Evaluation of the reverse logistics performance in civil construction," *J. Clean. Prod.*, vol. 248, p. 119212, Mar. 2020, doi: 10.1016/j.jclepro.2019.119212.

[36] S. Lambert, D. Riopel, and W. Abdul-Kader, "A reverse logistics decisions conceptual framework," *Comput. Ind. Eng.*, vol. 61, no. 3, pp. 561–581, Oct. 2011, doi: 10.1016/j.cie.2011.04.012.

[37] A. O. Kuşakcı, B. Ayvaz, E. Cin, and N. Aydın, "Optimization of reverse logistics network of End of Life Vehicles under fuzzy supply: A case study for Istanbul Metropolitan Area," *J. Clean. Prod.*, vol. 215, pp. 1036–1051, Apr. 2019, doi: 10.1016/j.jclepro.2019.01.090.

[38] D. Kannan, A. Diabat, M. Alrefaei, K. Govindan, and G. Yong, "A carbon footprint based reverse logistics network design model," *Resour. Conserv. Recycl.*, vol. 67, pp. 75–79, Oct. 2012, doi: 10.1016/j.resconrec.2012.03.005.

[39] Z. Fan, Y. Luo, N. Liang, and S. Li, "A Novel Sustainable Reverse Logistics Network Design for Electric Vehicle Batteries Considering Multi-Kind and Multi-Technology," *Sustainability*, vol. 15, no. 13, p. 10128, Jun. 2023, doi: 10.3390/su151310128.

[40] L. Chang *et al.*, "Reverse Logistics Location Based on Energy Consumption: Modeling and Multi-Objective Optimization Method," *Appl. Sci.*, vol. 11, no. 14, p. 6466, Jul. 2021, doi: 10.3390/app11146466.

[41] J. Song, X. Ma, and R. Chen, "A Profit Distribution Model of Reverse Logistics Based on Fuzzy DEA Efficiency—Modified Shapley Value," *Sustainability*, vol. 13, no. 13, p. 7354, Jun. 2021, doi: 10.3390/su13137354.

ISSN: 0970-2555

Volume : 52, Issue 9, No. 1, September : 2023

[42] H. Rachih, F. Z. Mhada, and R. Chiheb, "Simulation optimization of an inventory control model for a reverse logistics system," *Decis. Sci. Lett.*, vol. 11, no. 1, pp. 43–54, 2022, doi: 10.5267/j.dsl.2021.9.001.

[43] K. N. Reddy, A. Kumar, J. Sarkis, and M. K. Tiwari, "Effect of carbon tax on reverse logistics network design," *Comput. Ind. Eng.*, vol. 139, p. 106184, Jan. 2020, doi: 10.1016/j.cie.2019.106184.
[44] M. S. Pishvaee, K. Kianfar, and B. Karimi, "Reverse logistics network design using simulated

annealing," *Int. J. Adv. Manuf. Technol.*, vol. 47, no. 1–4, pp. 269–281, Mar. 2010, doi: 10.1007/s00170-009-2194-5.

[45] A. Alshamsi and A. Diabat, "A reverse logistics network design," *J. Manuf. Syst.*, vol. 37, pp. 589–598, Oct. 2015, doi: 10.1016/j.jmsy.2015.02.006.

[46] S. A. Alumur, S. Nickel, F. Saldanha-da-Gama, and V. Verter, "Multi-period reverse logistics network design," *Eur. J. Oper. Res.*, vol. 220, no. 1, pp. 67–78, Jul. 2012, doi: 10.1016/j.ejor.2011.12.045.