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Abstract— 

Complex Slicing (CS) is becoming an necessary constituent of tune administration and 

orchestration in communication complex, starting from mobile cellular complex and extend to a 

universal proposal. CS can reshape the operation and operation of traditional tunes, support the 

prologue of new ones, vastly advance how resource allocation performs in complex, and notably 

change the user experience. Most of these promises still need to reach the real world, but they have 

previously established their potential in many untried infrastructures. However, difficulty, scale, and 

vitality are pressuring for a Engine learning (EL)-enabled CS move toward in which autonomy and 

competence are critical features. This trend is comparatively new but growing fast and attracting 

much attention. This article scrutiny Artificial Intelligence-enabled CS and its potential use in current 

and future infrastructures. We have covered state-of-the-art EL-enabled CS for all complex segments 

and planned the symbols according to the phases of the CS being series. We also discuss challenges 

and opportunity in research on this topic. 

 

Index Terms—Complex Slicing, EL-enabled slicing, Engine Erudition, Slicing-as-a-Tune, EL-

enabled supply Orchestration, and Allocation. 

 

INTRODUCTION 

Over the last decade, wireless complex technology has been chiefly driven by advanced complex 

applications such as Industry 4.0, immersive media applications (e.g., virtual/augmented/mixed 

reality), and mission-critical tunes (e.g., self-driving vehicles and automated traffic control sys- [1]. 

Following this trend, the aft-generation (5G) cellular complex have been designed to provide higher 

latency, bit rate, and reliability performance, fostering the digital trans- formation of vertical 

industries [2]. A requirement to achieve this aim is to support different communication tunes, e.g., 

Engine Type Communication (match), Enhanced Mobile Broadband (ebb), ultra-Reliable and Low-

Latency Communications (URLLC), with highly different needs, over a shared complex 

infrastructure [3]. To address this challenge, 5G and beyond 5G complex embrace the concept of 

Complex Slicing (NS) [4]–[6], which logically divides the operator’s complex into isolated, tune-

tailored, end-to-end complex referred to as complex slices. The NS concept brings several 

advantages to complex operators [7]. First, NS allows numerous tenants to share the same 

physical complex infrastructure and reduce complex deployment and operation costs. Second, with 

NS, each complex slice is instantiated to satisfy a fraction collar set of applications, enable tune 

differentiation and guaranteeing Tune Level Agreement (SLA) for each application type. Finally, NS 

increases edibility in complex running, as complex slices can be created, muddied, and 

decommissioned as needed. However, to fully exploit the advantages of NS, operators have to 

provide dynamic resource allocation, tune assurance, isolation and protection, and optimized fraction 

toning of resources across all complex do chiefs, i.e., Broadcasting contact Complex (RAN), 

Transport Complex (TN), and Core Complex (CC), and throughout the full slice being series, from 

the slice preparation to the slice decommissioning. Therefore, the banes of NS come at the price of 

higher complexity in operating and managing wireless complex. 

Currently, the realization of the NS concept relies a lot on paradigms such as Complex 
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Function Virtualization (CFV), Software-Dined Complex (SDN), and blurs computing. Together, 

these technologies provide the means of control for dynamically allocate the necessary resource 

capacities across the complex and resizing and moving workloads at runtime to meet the needs of 

tunes, regardless of complex conditions [14]. However, although these means of control are already 

available, the decision-making process that triggers their execution depends on static policies and 

human intervention [1], [22]. Therefore, the full realization of the NS paradigm depends on further 

automation and the closure of running control loops. 

Due to advances in algorithms and the increase in computational power, in recent years, Artificial 

Intelligence (AI), and Engine Erudition (ML) in fraction ocular, has become an essential enabling 

technology to achieve good performance in complex decision-making difficulty [23]. Indeed, ML 

techniques are enablers of numerous difficulty involving multiple objectives subject to many 

heterogeneous and dynamic requirements [7], [24]. NS, in turn, is a current trend that, as a 

difficulty, inherently has multiple objectives, potentially deals with many do chiefs and technologies, 

and supports numerous users and heterogeneous requirements. Therefore several works have applied 

ML to deal with distinct challenges during the slice being series. Yang et al. [25] proposed an intent-

driven optical NS that maps high-level intents into slice requirements for the transport complex using 

Latent Dirichlet Allocation. Sciancale- pore et al. [26] designed an online complex slice broker that 

decides which slices to accept while opportunistically pursuing 

TABLE I 

COMPARISON OF RELATED SCRUTINY. 

Paper Chief focus Focus on 

ML 

Existing works are 

scrutinized 

Study’s Orientation 

[6] NS concepts C ✓ Background-oriented 

[8] NS concepts C ✓ Background-oriented 

[9] NS concepts C ✓ Background-oriented 

[10] NS concepts C C Background-oriented 

[11] NS concepts C ✓ Background-oriented 

[12] NS implementation 

aspects 

C ✓ SDN and NFV-

oriented 

[13] NS implementation 

aspects 

C ✓ SDO-oriented 

[14] NS implementation 

aspects 

C ✓ Complex segment-

oriented 

[15] NS implementation 

aspects 

C ✓ IoT-oriented 

[16] NS algorithmic 

aspects 

C C VNF placement-

oriented 

[17] NS algorithmic 

aspects 

C ✓ Resource allocation 

perspective 

[18] NS algorithmic 

aspects 

C ✓ Resource allocation 

perspective 

[19] NS algorithmic 

aspects 
✓ ✓ Resource allocation 

perspective 

[7] NS algorithmic 

aspects 
✓ ✓ RAN-oriented 

[20] NS algorithmic 

aspects 
✓ C LCM-oriented 

[21] NS algorithmic 

aspects 
✓ C LCM-oriented 

file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark24
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark12
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark33
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark34
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark17
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark35
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark36
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark37
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark16
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark18
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark19
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark20
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark21
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark22
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark23
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark24
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark25
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark26
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark27
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark28
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark29
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark17
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark31
file:///C:/Users/mirni/Desktop/original/16.docx%23_bookmark32


 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 10, No. 3, October : 2023 
 

UGC CARE Group-1,                                                                                                                 135 

This 

scrutiny 

NS algorithmic 

aspects 
✓ ✓ LCM-oriented 

 

the NS multiplexing gain maximization using a variant of the Multi-Armed Bandit (MAB) model. 

Kabila et al. [27] formulate the multi-do chief slicing as a multisubstrate Virtual Complex Embedding 

(VNE) difficulty and proposed a Deep Reinforcement Erudition (DRL) algorithm to solve it. 

Began et al. [28] proposed a Deep Erudition (DL) algorithm that anticipates future slice needs and 

timely reallocates/deal locates resources where and when they are required. Although these works 

have shown the potential of ML for supporting the budding need for autonomous complex slice 

operation and running, the literature has only unsystematically ad- dressed individual difficulty. as a 

result, there is a need to investigate and reorganize the current proposals for a comprehensive view 

of the primary complex slice Being Series Running (LCM) difficulty and the existing ML proposals 

to deal with them. 

 

interrelated scrutiny 

Several existing scrutiny have discussed the implications of the NS concept for next-generation 

mobile complex. Fouke’s et al. [6], Afolabi et al. [8], Kaloxylos [9], Zhang [10], and Khan et al. [11] 

provided the research community with a general understanding of the topic, addressing NS in terms 

of basic concepts, enabling technologies, use cases, and challenges. 

Some scrutiny have discussed the implementation aspects of NS. Barakabitze et al. [12] provided 

a comprehensive review of solutions for NS using SDN and NFV. Various 5G architectural 

approaches were compared in terms of practical implementations in their work. Chamber et al. 

[13] and Ordonez-Lucama et al. [14] focused on the ongoing work on NS modeling in RAN, TN, 

and CN do chiefs performed by different Standards Developing Organization (SDO). Wijethi- lama 

and Liyanage [15] studied the contribution of NS to the Internet of Things (Iota) realization. 

The algorithmic aspects of NS have also been discussed in the literature [16]–[18]. Specifically, 

Vassilaras et al. [16] formulated NS as an optimization difficulty of placing Ver.- utilized Complex 

Functions (VNFs) over a set of applicant 

locations and deciding their interconnections. Su et al. [17] scrutiny al the resource allocation 

schemes for NS using three mathematical models: game theory, forecast techniques, and 

sturdiness/malfunction recovery models. Dubai et al. [18] reviewed the state-of-the-art NS 

concerning two algorithmic challenges: slice resource allocation and slice orchestration. 

Nevertheless, these scrutiny considered only a few algorithmic aspects of NS, and none focused on 

ML solutions. Indeed, the need to use ML for complex slice operation and management was rest 

discussed by Kale et al. [20]. The authors describe the organization functions of complex slices that 

could be automated using ML and listed relevant techniques for automating such functions. 

However, the authors did not scrutiny existing works and proposed solutions. More recently, Sheen 

et al. [7] scrutiny ML solutions applied to intelligent NS running. Nevertheless, the authors 

considered only three septic RAN difficulty: edible broadcasting contact NS, automatic Broadcasting  

Contact Technology (RAT) selection, and mobile edge caching and content delivery. Wu et al. [21] 

discussed a broad picture of the role of AI in sixth-generation (6G) complex, highlighting potential 

NS difficulty where AI could be applied to facilitate bright complex running. However, similar to 

[20], the authors did not scrutiny existing works and proposed solutions. Ssengonzi et al. [19] 

presented a scrutiny of 5G NS and virtualization from a Reinforcement Erudition (RL) and DRL 

perspective. Nevertheless, the authors focused only on existing RL and DRL approaches and a 

few NS difficulty, such as resource allocation, admission control, and traffic forecasting. 

 

Table I summarizes the chief characteristics of existing scrutiny and our work, comparing them in 

terms of their chief focus (i.e., NS concepts, NS implementation aspects, or NS algorithmic 

aspects), whether ML is measured, whether existing solution are discussed, and the key criteria 
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driving the study. As illustrated in the table, a comprehensive scrutiny of ML applied to solve 

complex slice LCM difficulty is still mislaid 

investigate extent and method 

The chief aim of this work is to supply the booklover with a comprehensive scrutiny of the use of 

ML for intelligent complex slice LCM, from the slice grounding to their de- commissioning, after the 

3rd Generation Fraction reship Project (3GPP) being series [29] and jacket all complex do chiefs 

(RAN, TN, and CN). We studied and assessed high-quality research published since 2016, available 

in the vehicles In- statute of Electrical and Electronics Engineers (IEEE)Explore, Association for 

figure Enginery (ACM) Digital Library, Science Direct, and Wiley Online Library. We introduce the 

existing works in terms of the intricacy they address (e.g., slice access control, keep portion, VNF 

assignment) after the 3GPP slice being series. Fig. 1 illustrate the union of the editorial while 

Table V summarize the generally-used abbreviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The structure of the scrutiny. 

 

At the beginning of the slice being series, i.e., in the preparation phase, ML is chiefly employed to 

translate tune prowls into slice requirements and to provide a slice ad- mission control. In the 

commission phase, ML is applied for slice resource allocation, slice VNF placement, and slice path 

configuration. Next, when the slice becomes operational, ML is employed for numerous runtime 

tasks, including user admission control, task on loading, slice elasticity, anomaly detection, RAT 

selection, traffics classification and prediction, congestion control, and mobility running. We point 

out that our scrutiny did not and works applying ML to difficulty related to slicing termination, i.e., 

to the decommissioning phase. Therefore, decommissioning is not illustrated in Fig. 

1. In addition, our scrutiny classiest each article according to the chief difficulty it addresses, even 

when the article focuses on multiple difficulty and being series phases. For example, some research 

efforts describe using AI in two or more being series phases, such as [30]. We classify such works 

according to their chief addressed difficulty. Finally, although some works have proposed solutions 

to complex slice LCM difficulty using heuristic and genetic algorithms, our scrutiny focuses on 

supervise, unsupervised, reinforcement, and emerging erudition paradigms. In summing up, our 

chief contribution as a scrutiny is to bring a big picture of the state-of-the-art ML-enabled NS and 

Overview 

(Section II) 
● NS concepts 

● Engine learning paradigms 

Preparation 

phase 

(Section III) 

● Service profile for NS requirements 

● Slice admission control 

Commissioning ●     Radio resource sharing 

phase ●     VNF placement 

(Section IV) ●    Path configuration 

ML-enabled 

network slicing 

Operation 

phase 

(Section V) 

● Network slice elasticity 

● User admission control 

● Traffic classification and prediction 

● Anomaly detection 

● Task offloading 

● Congestion control 

● RAT selection 

● NS with mobility 

A. Intelligent translation for NS requirements 

B. Datasets and experiment reproduction 

Open issues C.     Suitability of the ML technique for NS 

(Section VI) D.     End-to-end NS 

E. Open RAN intelligent slicing 

F. From theory to practice 

 
Final Considerations 

(Section VII) 
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organize the existing works from the complex slice being series outlook, illustrating the AI/ML 

methods used in the separate phases of the complex slice being series. then, we carefully examine 

every editorial and choose the being sequence phase it its based on the complexity addressed. 

This article is organized as follows. Section II presents an overview of the chief concepts related to 

NS, focusing on NS running. Next, we thoroughly review the state-of-the-art solutions for intelligent 

NS running. We split the related discussion into ML-enable solutions for NS difficulty during the 

preparation phase (Section III), the commissioning phase (Section IV), and the operation phase 

(Section V). We discuss some open research issues and summarize potential future directions in 

Section VI. Finally, Section VII concludes the article. 

 

OVERVIEW AND BACKGROUND 

This section focuses on background concepts and key entities related to NS implementation and 

slice LCM to get deeper insights into the NS being series difficulty. Following the nomenclature 

proposed by 3GPP, a complex slice, or slice, is a logical complex comprise one or more tune chains 

formed by virtualized or physical complex functions and the (physical/virtual) links connecting 

them. This logical complex is created with appropriate isolation, resources, and optimized topology 

to serve one or more communication tunes [29]. communiqué tune is the term used to refer to the 

tenant-ordered tune. Usually, the announcement tune is expressed by a tune parole comprising the 

tune type, and a tune graph, where nodes represent computing/storage resources and tune instances 

and edges denote constraints on link bandwidth or packet loss. A complex slice can host several 

communication tunes if they do not impose convicting requirements. 

A complex slice is an end-to-end concept, i.e., the logical complex can span across all the technical 

do chiefs (or segments) within the operator’s complex, including the RAN, TN, and CN do chiefs. In 

the 5G architecture, the RAN do chief connects User Equipment (UE) to the operator’s complex 

using various phone technologies. The TN do chief provides infrastructure connectivity between the 

RAN and the data complex using any technology (Internet Protocol (IP), optical, microwave, or 

other technology), tunnel (IP/Multiprotocol Label Switching (MPLS)), and layer functions [13]. 

Finally, the CN do chief allows UE to send/receive data to/from the data complex, providing signaling 

procedures such as association, register, mobility management, and meeting management 

The fraction of the slice spanning a technical do chief is called a Complex Slice Subnet (NSS). Each 

NSS is usually deployed as a set of complex functions. 

Since a complex slice can host multiple tunes, its being series within the operator’s complex is 

independent of its associated tune(s) being series. In fraction ocular, the being series of a complex 

slice has four chief phases: Preparation, Commissioning, Operation, and Decommissioning. In the 

preparation phase, the slice does not exist. Indeed, the preparation phase comprises all preparation 

steps that precede slice instantiation, such as slice design, slice on boarding, and slice admission 

control. In the rest step, the tenant dense the tune parole from which the slice requirements will be 

derived. In the second step, the tenant uploads the VNFs that constitute the slice to the operator’s 

classification The last step in the prep- ration phase decides whether the tenant NS request 

should be accepted or rejected based on current system utilization. In the commissioning phase, 

resources are assigned to the admitted slice request. Therefore, the slice is instantiated, congaed, 

and activated over the operator’s infrastructure according to its requirements. In the action phase, the 

slice instance goes into operation, and its behavior is monitored to ensure compliance with the 

denned requirements. In this phase, runtime tasks such as upgrade, re configuration, scaling, and 

capacity changes can be carried out to modify the slice instance and ensure that it is optimized for its 

purpose. Finally, the slice instance is terminated in the decommissioning phase, and its allocated 

resources are released. 

Since our focus is on AI/ML solutions to NS difficulty, it is imperative to introduce the ML 

paradigms, which are trade- tonally classier into three types: Supervised Erudition (SL), 

Unsupervised Erudition (UL), and RL. SL uses labeled training datasets to build models and is 
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usually employed to solve classification and regression difficulty to predict outcomes. UL creates 

models using unlabeled training datasets, chiefly employed for clustering difficulty. In RL, an agent 

interacts with the environment via perception and action to learn a reward or utility. Therefore, an RL 

agent learns by exploring the setting instead of being taught by exemplars. The literature has applied 

the aforementioned paradigms to solve some of the NS difficulty we envelop in this scrutiny. In 

addition, emergent learning paradigms such as Federated Erudition (FL) and Transfer Erudition (TL) 

have also been employed in some works. FL focuses on decentralization erudition, where 

distributed servers train models with local data. TL aims to utilize the built facts of a certain system 

to solve a different but related difficulty. We refer readers unfamiliar with these paradigms to an 

opening in [24], [31], [32]. 

 

ML FOR NS IN THE PREPARATION PHASE 

Condition-of-the-art NS solution applied ML techniques for two difficulties in the grounding 

phase. First, we discuss the translation of tune prowls into slice necessities. Afterward, we present 

the slice admittance manage 

Translation of Tune Prowls into NS Requirements 

From the tenant’s perspective, conniving a complex slice is a complex task that involve a 

complete  account of the melody topology, details on tune conga oration and work bows, and SLA 

dentitions for tune assurance. To make this task easier, complex operators provide generic slice 

templates to be used as a orientation by the tenants when ordering a complex slice. However, some 

tunes may not have a direct mapping to a pre denned slice template since tune requirements may 

vary widely. For instance, some tunes may have ultra-low latency, high bandwidth, and high- 

reliability requirements at the same time. An alternative to this difficulty is to derive the slice 

requirements from tune prowls denned through high-level intents. even with much work on intent-

driven compound [33], [34], we found only two articles addressing the intent-based design of 

complex slices. 

The rest work, future by Gristly et al. [35], takes into consideration the set of tenant’s intents, 

expressed as Quality of Tune (Quos) requirements, and the operator’s grouping policies dining the 

supported slice types and their Quos characteristics. The aim is to determine all slice solutions 

underneath the tenant’s order compliant with the operator’s grouping policies. To this end, the 

approach rest maps the slice type(s) to each intent, mapping them separately to the operator’s 

policies. It then merges these slices based on criteria such as the operator’s policy they comply with 

and isolation and placement constraints. However, the approach accessible in [35] is model-based 

and, thus, does not use ML. The second work, proposed by Yang et al. [25], develops a 

mechanism based on ML to translate tune intents into a slicing configuration language. The 

predictable instrument employs the Latent Dirichlet Allocation algorithm to extract keywords from 

an optical complex topic model and construct an intent theme model. The intent issued by the users 

is a mixed distribution of certain topics, which is also a likelihood sharing of words. If the intent topic 

is found, the keyword in the topic is also the core meaning of this intent. To associate intent 

keywords with Quos constraints, the authors propose using an experienced database. The 

assessment uses a discrete intent tune emulator and a complex topology assembled by Open AI 

Gym. 

Slice Admission Control 

Over-provisioning is not possible in 5G and past 5G since infrastructure resources (especially 

spectrum) are imperfect. Therefore, complex operators must decide which slice requests should be 

admitted or rejected in the infrastructure to manage resources efficiently. Specifically, the slice 

admission manage difficulty is formulated as follows. Upon receiving a complex slice request from 

a tenant, the operator’s system must choose whether to accept or reject the tenant’s request, 

pursuing a preened objective while still honoring the agreed SLAs for previously accepted complex 

slice requests. Such a decision is challenging as it must believe the total available system capacity, 
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randomly arriving tenant requests, real net- work operation within the already instantiated slices, and 

the Quality of Experience (QoE) professed by the end-users. This section introduces recent works 

that applied ML to solve the slice admittance control complexity. 

Began et al. [36] address the difficulty of designing a slice ad- mission control that maximizes the 

complex worker proceeds while pleasing the desired tune guarantee. The authors consider two types 

of slices: elastic, which does not require any immediate throughput guarantees, and inelastic, which 

requires a sure axed throughput to be satisfied during the full slice organism series. Only the RAN 

section is careful in work. The slice type, slice period, the slice size in conditions of the figure of 

users, and the value per time unit typify a slice request. The complexity is formulated as a Semi-

Markov Decision Process (SMDP), where the elastic and inelastic complex slice requests follow a 

Poisson process. Each state is modeled as a three-sized tulle in lieu of the number of elastic and 

inelastic slices in the system at a given decision time and the next event (new arrival of an elastic or 

inelastic slice request or de fractionate of a slice of any type) that triggers a decision process. The 

possible actions include admitting a new request for an elastic or inelastic slice or rejecting the 

new request. In the rest case, the resource associated with the request is decided to the tenant, and the 

worker immediately earns a reward, compute as the product of the slice type price and length. The 

second case has no immediate reward, but the resources re chief contactable for future requests. 

Requests that are surplus are no longer considered by the system. The SMDP difficulty is then solved 

using Q-Erudition (QL), an RL algorithm where the learning function that maps the input state to the 

expected reward when taking a septic action is realized as a investigate table. Simulations with the 

slice period following an exponential sharing showed that QL achieved close to optimal performance. 

Despite the good performance, an inherent drawback of RL algorithms such as QL is their lack 

of scalability when the state space becomes too large. Inspired by this limitation, in a later work, 

Began et al. [37] propose a Deep Q-Erudition (DQL) algorithm, named NS Neural Complex 

Admission Control (N3AC), to solve the slice permission difficulty. DRL algorithms use Neural 

Complex (NNs) to generalize the knowledge learned from some states to be applied to other states 

with similar features. In fraction ocular, N3AC uses a feed- forward NN structure, where the neurons 

of one layer are fully interconnected with the neurons of the next. In addition, N3AC relies on a single 

hidden layer and uses the Gradient Descent approach to back-propagate the measured error at the 

output layer to the input layer. Furthermore, N3AC does not apply any ground truth to train the NN. 

This training is achieved using output estimations, which become more accurate as explorations are 

performed. The performance of N3AC was evaluated through simulation where the tune time follows 

an exponential distribution and slice request arrivals follow a Poisson process. 

Similar to [37], Bari et al. [38] proposed a DQL algorithm to solve the slice admission difficulty. 

The authors compare the performance of the DQL solution with two other algorithms: QL, and be 

sorry Matching. The QL and DQL approach are evaluated using the offline account of the 

algorithms, while Regret Matching performs online. Results show that Regret identical reacts faster 

to load change than the other two algorithms. 

Dandachi et al. [39] propose a slice entrance control con- side ring communication, computing, 

and storage space resources to maximize resource utilization and operator revenue. The slice 

admission control considers two types of slices, Best Effort (BE) and guaranteed Quos slices, with 

elastic requirements. Resources from the RAN and CN do chiefs are considered. The slice admission 

control comprises two steps: at the commencement of each time slot, the slice admission control 

evaluates the similarity between the income requests and the slices already active in the system to 

recognize slice instances that can serve the new slice requests with a minimum amount of additional 

resources. The rest step uses a normalized spectral clustering algorithm based on the Jacquard 

similarity, while the second is implement using State-Action-Reward-State-Action (SARSA). In 

the second step, based on the current state of system utilization, the admission control rest decides 

whether to scale down the resources allocated to BE slice instances, then selects the income slice 

requests to admit. estimate is carried out by simulation using slice templates customized by the 
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authors. 

Reza et al. [40] propose an RL agent to decide whether or not a new slice request should be 

accepted. A slice request is specie in terms of its duration, tune type (priority), and the number of 

Central Processing Unit (CPU) and link resources needed. The purpose is to maximize the complex 

operator’s total revenue while matching the melody requirements of the slices in operation as closely 

as possible. The work focuses on the RAN do chief. The RL agent is implemented using a NN that 

receives the slice request and the resources currently available in the system as input. NN minimizes 

the loss of revenue resultant by rejecting the slice requests and the loss derived by degrading the tune 

of a slice in operation. NN is trained in an episodic manner, and at the end of an episode, the 

increasing reward for all the actions up to the current point in time is compute. Evaluation is 

performed using a custom-built simulator, where the inter- arrival time of requests and slice duration 

are exponentially distributed. 

Akashi et al. [41] propose a slice admission control in a federated environment formed by one 

consumer and provider d o chief. For a given slice request, the admission control decides whether to 

deploy the slice in the consumer or the provider do chief or reject it. The decision is based on the 

cost of deploying the slice locally (consumer do chief) or remotely (provider do chief) and on the 

current resource availability. The model is focused on computing resources, thus more suitable for the 

edge, CN, and cloud do chiefs. The authors compare the performance of two RL algorithms for 

solving the difficulty: QL and R-Erudition, an average reward erudition algorithm. Results are obtain 

through simulation using customized slice templates and show that R-Erudition performs better than 

QL for the federated difficulty due to QL’s dependency on the discount factor. 

Sciancalepore et al. [26] propose the concept of slice overbooking, where more slice requests are 

admitted than the overall system capacity to maximize the operator revenue. In their proposal, a slice 

command comprises the amount of physical wireless resources assigned to the slice and its duration. 

The slice entrance control difficulty is formulate as an online close process using a variant of the 

MAB model. Each tenant 

TABLE II 

SUMMARY  OF  ML-APPROACHES  FOR  NS DIFFICULTY  IN  THE  PREPARATION  

PHASE. 

Ref. NS 

Difficulty 

Eruditio

n 

Paradig

m 

Erudition 

Method 

Resource 

Type 

Complex 

Segment 

Performance 

Evaluation 

[25] Tune profile 

translation 

NLP Latent Dirichlet 

Allocation 

Complex, 

computing, 

storage 

TN Emulation - Custom-

built intent 

tune 

 

[36] 

Slice 

admission 

control 

 

RL 

 

QL 

 

Complex 

 

RAN 

Simulation - Poisson 

distribution 

for request and 

exponential 

distribution for slice 

duration 

[37] Slice 

admission 

control 

RL DQL Complex RAN Simulation - Similar 

to [36] 

[38] Slice 

admission 

control 

RL QL, DQL, 

Regret Matching 

Complex RAN Simulation - Similar 

to [36] 

[39] Slice 

admission 

UL, RL Norm. spectral 

clustering, 

Complex, 

computing, 

RAN, 

CN 

Simulation - 

Customized slice 
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control SARSA storage templates 

 

[40] 

Slice 

admission 

control 

 

RL 

 

DRL 

Complex, 

computing 

 

RAN 

Simulation - 

Exponential 

distribution 

for request inter-

arrival time and slice 

duration 

[41] Slice 

admission 

control 

RL QL, 

R-Erudition 

Computing Edge, 

CN, 

cloud 

Simulation - 

Customized slice 

templates 

[26] Slice 

admission 

control 

RL UCB, ONETS, 

𝜖 -Greedy 

Complex RAN Simulation and 

experimental 

 

is a bandit that, if pulled at a certain round, returns a fraction ocular reward. Multiple bandits can be 

pulled at a given round, and tenants with active slices must be selected while their slices are 

operational. If a lock-up period runs, the gambler must select the same arm as in the earlier round. 

The reward accounts for the total amount of resources asked within the slice request and the ratio 

flanked by what has been used and what is being asked, following the rationale that tenants under- 

utilizing assigned resources are preferred for the ones fully using them. The authors realize the MAB 

model using three RL algorithms: Upper Condense Bound (UCB), Online Complex Slice  Broker 

(ONETS),  and 𝜖 -Greedy, providing a trade-off between difficulty and sub-optimality. act evaluation is 

accepted out by imitation. In addition, proof-of- concept implementation is accessible considering 

three complex slices: ebb for Guaranteed Bit Rate, ebb for BE, and Public Safety. Table II 

summarizes the chief individuality of the literature related to ML applied to NS difficulty in the 

preparation phase. 

 

ML FOR NS IN THE COMMISSIONING PHASE 

In the commission phase, NS difficulty are essentially related to making resource allocation 

decisions for the ad- mitted slices. After being admitted to the system, the slice is instantiated by 

allocating resources in the RAN, TN, and CN do chiefs. A RAN slice subnet comprises the 

broadcasting  contact and processing function from a set of Base Stations (BSs) and the billed 

Physical supply Blocks (PRBs) to support a communiqué tune. A CN slice subnet contains a set of 

compound tunes functionalities and associated computing resources. A TN slice subnet, on the other 

hand, comprise a set of relatives flanked by a group of virtual or/and physical complex functions 

from both the RAN and the CN, each one having its own SLA. This section discusses state-of-the-art 

ML solutions for instantiating a slice within the RAN, TN, and CN do chiefs. First, we argue ML 

resource portion solution for instantiating a RAN slice subnet. Then, we present ML resource 

allocation approaches for instantiating a TN and a CN slice subnet. 

Broadcasting  supply distribution 

RAN slice subnet instantiation is usually formulated as the difficulty where the resources of one 

or more BSs, i.e., spectrum, power, antennas, among others, must be shared between multiple slices 

[42]. In the literature, the RAN slicing difficulty has been tackled on two different levels: preparation 

and runtime. In the following, we discuss works dealing with RAN slicing at the planning level. At 

the runtime level, RAN slicing is realized through slice elasticity, which will be discussed in Section 

V. 

At the planning level, RAN resources are allocated to each slice before its operation based on 

capacity and isolation requirements. In our scrutiny, we observed that works dealing with RAN 

slicing at the planning level fall into two categories: those applying a combined slice admission 
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control and re- source allocation solution and those using slice traffics/resource demand prediction. 

Since ML solutions for the slice admission control difficulty have been introduced in Section III-B, in 

this section, we discuss relevant works that use ML for predicting traffics/resource usage for RAN 

slicing. 

Gutter man et al. [43] proposed a metric for a slice named REVA, denned per Quos Class Identifier 

(QCI) and traffics direction. REVA measures the resource rate (in PRBs/sec) accessible for a Very 

Active bearer, i.e., a bearer that con- tenuously attempts to obtain more PRBs than a maximal fair 

share available. The authors then urbanized a prediction model for this metric and used it for slice 

provisioning. The work collected traces of RAN resource allocation from a custom-calculated new 

Long Term execution (LTE) tested under different multipart tradition patterns to build the model 

prediction. The authors then designed a muddied Long Short name recollection (LSTM) model to 

predict REVA tens of second in move on. The precision of the LSTM was Evaluated against the 

Autoregressive Integrated Moving Aver- age (ARIMA) model and traditional LSTM neural complex, 

showing that the proposed model outperforms ARIMA and LSTM by up to 31%. Finally, the authors 

designed a slice provisioning algorithm that exploits the prediction models to minimize costs for 

tune providers. 

A complex slice admittance control joined with resource share guided by a forecasting module that 

predicts net- work slices traffics and user mobility patterns is presented by Sciancalepore et al. 

[44]. In their proposal, the authors assumed that traffics needs within a slice follow a periodic 

pattern, applying time-series forecasting based on the Holt- Winters technique to predict the 

aggregate traffics for every admitted slice. The authors also employed the Self-similar least-action 

human walk (SLAW) mobility model for user mobility prediction. Using traffics generated by this 

model, the authors developed a Markova chain to capture the mobility pattern of a user and 

assumed that a weighted combination of such patterns rejects the mobility of a tenant. The authors 

then employed an UL method to learn the weights of each tenant. Next, they shared the overall load 

predicted by the Holt-Winters method and the mobility model to derive the predicted amount of 

resources requested by the tenant under a BS. Finally, the authors designed a RL algorithm to 

perform admission control considering the SLA of the different tenants, their traffics usage, and user 

distribution. Performance evaluation was conducted using a MATLAB simulation with 7 BSs, 10 

tenants, and 100 UEs per tenant distributed firmly. Results show that proper forecasting increases 

system utilization, especially as the number of complex slice requests and system capacity grows. 

Sapavath et al. [45] studied the Sparse Bayesian Linear Regression (SBLR) and Support Vector 

Engine (SVM) tech- inquest to estimate and predict Channel State Information (CSI) to make a 

decision about broadcasting  frequency slicing. The system model was composed of infrastructure 

providers that sublease their broadcasting  frequency for Mobile Virtual Complex Operators 

(MVNOs) based on the requests coming from MVNOs and their SLAs. Depending on the demands 

and requirements, users are classier into three user groups (stationary, mobile, and indoor) and the 

infrastructure provider’s wireless resources are allocated to MVNOs to serve the users of individual 

groups. Given the end-user demands, RAN resource pool, the number of available antennas, and 

the total bandwidth of the broadcasting  frequency slices, the solution assigns wireless resources for 

the slice considering the data rate of each user of the slice. This data rate, in turn, is computed based 

on the estimated CSI. The training dataset was acquired through pilot- based training and data 

augmentation. Performance evaluation focused mostly on the accuracy of the predictors and showed 

that SBLR results in better outcomes than SVM, demonstrating that this technique is less sensitive to 

sparse CSI information. 

 

VNF Placement 

The TN and/or CN Slice Subnet Instantiation difficulty is usually formulated as the placement of a 

set of VNFs towards the underlying physical infrastructure. This approach is a typical VNE 

difficulty reformulated to consider septic re- quirements of the 5G system such as Random Contact 
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Memory (RAM), CPU, disk, bandwidth, and latency constraints, as well as node sharing. Indeed, in 

the VNF placement difficulty, given a physical complex 𝐺, representing the underlying physical 

infrastructure, and a virtual complex 𝐻, representing the slice, we have to embed the virtual onto 

the physical complex so that each virtual node 𝑚     𝐻  is mapped onto a physical node in 𝐺  and 

each virtual link   𝑚, 𝑛        𝐻  is mapped to a loop- free physical path in 𝐺 connecting the two 

physical nodes to which the virtual nodes 𝑚 and 𝑛 have been mapped [16]. The objective is to and 

an embedding with the least cost that stases all link and node capacity constraints. The cost may 

represent congestion, preference in terms of operator agreements, load balancing, or real cost of 

operation. 

The most relevant works that use ML to solve the VNF placement difficulty formulate it as a 

Markov Decision Process (MDP) and solve it using DRL. Yan et al. [46] proposed a combined 

DRL with a neural complex structure based on graph convolution complex to solve the VNF 

placement difficulty. In their proposal, states are represented by eight attributes: the number of CPU 

resources over all nodes, the amount of bandwidth available in each node, the amount of free CPU 

currently available in each node, the amount of bandwidth not allocated in each node, a vector 

describing the embedding for the current slice request, the number of CPU and bandwidth resources 

needed by the current slice request, and the number of unallocated virtual nodes in the current 

request. To reduce the number of input features, links are not explicitly considered in the state 

representation. Instead, a Graph Convolution Complex (GCN), a Convolution Neural Complex 

(CNN) used to extract features from homogeneous graphs, is employed to automatically extract link 

features from the physical complex. The action taken by the RL agent is the index of the physical 

node in which to place a septic VNF of the slice. This way of modeling the actions breaks the 

process of placing one slice in a sequence of VNF placements and reduces the size of the action 

space to the number of physical nodes. The reward function combines the acceptance ratio, the 

placement cost, and the load balance. The solution was evaluated through simulation using a 

substrate complex topology generated following the Waxman random graph. CPU and bandwidth 

resources of the substrate complex were uniformly distributed between 50 and 100 units, while slice 

requests were generated by a Poisson process. 

Khaki et al. [47] also employed DRL and CNNs to improve the quality of a VNF placement 

heuristic. However, different from [46], the authors in [47] used a Relational GCN, which operates 

over heterogeneous graphs. The authors only consider resource-related features (CPU and 

bandwidth) to represent the system state, while the action is represented by a binary variable used 

to keep the same placement of the current VNF or to modify it based on a computed heuristic. The 

objective of the solution is to maximize the infrastructure provider revenue. The evaluation was 

performed through sum- elation on a complex topology following the Waxman random graph. CPU 

and bandwidth requests are drawn uniformly, as well as the number of VNFs in each request. 

A Deep Deterministic Policy Gradient (DDPG) approach is employed by Quant et al. [48]. 

Different from [46] and [47], in [48], the state representation includes resource-related tares (CPU 

and bandwidth) and latency-related properties. The action taken by the DRL agent is represented 

by two sets of weights: one indicating the placement priority of each VNF in the slice request on 

each physical node and the other indicating the placement priority of each virtual link on each 

physical link. The reward function of action is modeled as the acceptance ratio. To assess the 

performance of the proposed approach, the authors employed simulations using a real-world complex 

topology with 24 nodes and 37 links. Link capacities are randomly chosen, the requested VNF 

resources are uniformly distributed, and virtual links are arbitrarily requested with bandwidth in the 

range of 1 Mbps to 40 Mbps and latency of 1 ms to 100 Mrs. 

Ensuring that a DRL agent converges to an optimal poll- icy in the VNF placement difficulty is a 

challenge since its performance depends on the exploration of a huge number of states and 

actions. To overcome this difficulty, Estevez et al. [49] introduced the concept of Heuristically 

Assisted DRL, which combines a DRL algorithm based on Advantage Actor-Critic (A2C) and a 
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GCN with a Power of two Choices heuristic to control the DRL convergence. The RL elements of 

the solution (i.e., state, action, and reward) follow the same approach in [46]. The performance 

evaluation is carried out through simulation with three data center types (edge, core, and cloud) and 

one slice type (ebb). Slice requests involve eve VNFs, and arrival rates follow three complex load 

conditions (under load, normal load, and critical load). 

Mei et al. [50] handled the VNF placement difficulty by creating a VNF pool. This pool integrates 

all individual VNFs distributed in the complex d o chiefs, providing a variety of complex abilities 

to meet the requirements of Vehicle-to- Everything (V2X) tunes. An Intelligent Control Layer is re- 

possible for orchestrating the available VNF (e.g., allocating VNFs and complex resources to 

complex slices). The solution intends to support the deployment of VNFs on remote and edge clouds 

by using Deep Q-Complex (DQN) with CNNs. The solution was evaluated through simulation with 

an urban scenario based on the Manhattan grid layout and two types of Vehicle-to-Vehicle (V2V) 

tunes: traffics safety and efficiency tune and autonomous driving-related tune. 

Kabila et al. [51] tackled the multi-do chief slicing as a multi-substrate VNF difficulty. In 

their proposal, a DRL algorithm selects the optimal set of infrastructure providers among all the 

feasible candidates to maximize the revenue-to- cost ratio for deploying the slice requests. The DRL 

algorithm is based on a NN that takes as input an 𝑀 x 𝑁 feature matrix, where 𝑀 is the number of 

infrastructure providers and 𝑁 is the number of extracted features. The latter rejects the attributes of 

both the slice request and substrate complex. The NN was trained offline using demands of the 

size of 500 requests per epoch, with the request delay uniformly distributed between 1 to 200 units. 

The evaluation considered an online scenario where the request arrival follows a Poison 

distribution. A comparison with a combinatorial scheme showed that the DRL algorithm 

presents a better performance, especially in the presence of high request arrival rates. 

Antacid et al. [52] proposed an NS strategy that uses FL to support slice allocation through VNF 

placement in distinct tune areas with different costs and processing and storage capabilities. In their 

proposal, UEs are mapped into three slice classes (high-rate communications; highly dynamic, low- 

rate, and delay-tolerant communications; and URLLC), and a FL framework is employed to 

foresee the UEs’ demand of each tune class. The aim is to use the forecast UEs’ demand to provide 

a VNF placement that maximizes the infrastructure provider revenue while improving the end user’s 

Woe. The FL framework applies ML models trained at the UE level, and then a central layer 

aggregates to improve the global erudition model. To capture the UE request behavior, the authors use 

Prospect Theory (PT). The latter aims at evaluating a prospect (tune area) denned over a set of 

outcomes (UE tune completion time) and the probability associated with each of them. The proposed 

framework was evaluated through simulation involving eight different areas with processing and 

storage capacities, VNF types, and costs uniformly distributed. The VNFs requests were modeled by 

using the Movie Lens dataset. 

Panayiotis et al. [53] focused on the TN Slice Subnet Instantiation difficulty. The objective is to 

dine a transport path considering a multi-do chief complex slice, which could span many paths. In 

this context, the authors work on the Quality of Transmission (Sot) estimation for sliceable optical 

complex. The authors examine centralized and distributed NN-based Sot estimation model for 

sliceable optical net- works. The objective is to and Sot model(s) that are new- tuned to the diverse 

requirements of each slice. The centralized difficulty is formulated as a multiclass classier trained 

with global complex information while the distributed difficulty is formulated as a set of binary 

classiness, each of them trained according to data that is relevant to a single type of slice. The results 

show that the distributed Sot model performs better than the centralized model, being independent of 

the number of slice types. Table III summarizes the chief characteristics of the literature related to 

ML applied to ML difficulty in the commissioning phase. 

 

ML FOR NS IN THE OPERATION PHASE 

The complex slice operation phase requires intense manage- men activity in run-time. In addition to 
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activating the complex slice instance provisioned in the commissioning phase, the operation phase 

also cares about the supervision, performance reporting, medication, and resource capacity planning 

[29]. Therefore, the state-of-the-art brings several ML approaches for various complex slice 

operation tasks. In our review, we and out that ML is often adopted to solve the following NS 

difficulty in the operation phase: complex slice elasticity, user admission control; traffics 

classification and prediction; anomaly detection, task offloading, congestion control, RAT selection, 

and NS with mobility. This section details how relevant works in the state-of-the-art tackle each 

difficulty. Table IV summarizes the chief characteristics of the literature related to ML applied to 

LCM difficulty in the operation phase. 

TABLE III 

SUMMARY  OF  ML-APPROACHES  FOR  NS DIFFICULTY  IN  THE  

COMMISSIONING  PHASE. 

Ref. NS 

Difficulty 

Erudition 

Paradigm 

Erudition 

Method 

Resource 

Type 

Complex 

Segment 

Performance 

Evaluation 

[43] Broadcasting  

sharing with 

traffic 

prediction 

SL Modified 

LSTM 

Complex RAN Experimental - Traces 

collected from 

a LTE testbed 

[44] Broadcasting  

sharing with 

traffic 

prediction 

Time-

series, 

UL, and 

RL 

Holt-Winters, 

Customized RL 

algorithm 

Complex RAN Simulation - SLAW 

mobility model 

[45] Broadcasting  

sharing with 

traffic 

prediction 

SL SBLR, SVM Complex RAN Simulation - Pilot-

based symbols 

[46] VNF 

placement 

RL GCN Computin

g, 

complex 

TN, CN Simulation - Poisson 

distribution for 

slice requests 

[47] VNF 

placement 

RL Relational GCN Computin

g, 

complex 

TN, CN Simulation - Uniform 

distribution for 

slice requests 

[48] VNF 

placement 

RL DDPG Computin

g, 

complex 

TN, CN Simulation - Uniform 

distribution for 

slice requests 

[49] VNF 

placement 

RL A2C, GCN, 

heuristic 

Computin

g, 

complex 

Cloud, 

CN, 

Edge 

Simulation - 

Customized arrival rate 

[50] VNF 

placement 

RL DQN, CNN Computin

g 

Cloud, 

Edge 

Simulation - 

Customized V2V tunes 

[51] VNF 

placement 

RL CNN Computin

g, 

complex 

TN, CN Simulation - Poisson 

distribution for 

slice requests 

[52] VNF 

placement 

FL PT Computin

g, 

storage 

CN Simulation - VNF 

request generated from 

real-world dataset 

[53] Path 

configuration 

SL NN Complex TN Simulation - Poisson 

distribution for 

connection request 
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Complex Slice Elasticity 

Complex slice elasticity embraces run-time tasks to modify the current slice deployed to support a 

user demand or apply- action requirement. Li et al. [54] brought solid contributions to reviewing the 

background of DRL and its usage for resource running in NS. The work follows two chief scenarios: 

(i) resource running for RAN; and (ii) priority scheduling in typical VNF. Relying on DQL, the 

authors proposed an approach based on allocating resources regarding the users’ activity. Such 

solution performed better than other intuitive approaches, such as demand prediction, no slicing, and 

hard slicing. 

I et al. [55] presented an enhancement to the Applica- ability of DQL. The authors show how 

to allocate/reallocate limited spectrum across slices by improving the calculation and approximation 

of the Q-value function. The authors argue that their approach is suitable for NS tasks, having faster 

con- mergence and better performance than typical DQL. However, they point out that there is still 

space for research in aspects such as SLA assurance. 

Li et al. [56] proposed an algorithm for end-to-end NS resource allocation based on DQN. 

However, we at this work into the complex slice operation phase due to its contra- bunion to slice 

elasticity, which assumes slice instantiation and execution. The authors presented a framework 

for 5G resource allocation, considering wireless resources on RAN and VNF on CN. A DQN 

algorithm uses the feedback from the environment dynamically and in real-time to update the 

wireless resources and map the tune links. Simulations support the results in terms of contact rate. 

Boozed et al. [57] demonstrated an intelligent solution for dynamic capacity allocation in an end-

to-end complex slice with multiple cloud-enabled virtualized segments for a video replay tune. A 

RL algorithm is used with predictive models (trend-based and parametric methods) for state 

estimation. Authors argue that the predictive models with RL can manage the elasticity through a 

servicing gateway and Web servers and cooperate to enhance the global system efficiency. 

 

Guan et al. [58] proposed a hierarchical resource man- argument framework that utilizes DRL to 

perform resource adjustment within admitted end-to-end slices. The proposed framework introduces 

1) multiple local resource manager to deal with the demand changes in resource requirements for an 

individual slice; and 2) a global resource manager to control the local resource managers. The local 

resource manager executes a DQL algorithm, where states represent the current tune quality 

satisfaction, actions denote whether slice adapt- tin is required, and reward is denied as the revenue 

obtained by adjusting resources minus the resource consumption cost and operational cost. 

Evaluation is performed using simulation on complex and computing resources. 

Indeed, because of its edibility, dynamism, and high applicability for large-scale difficulty, ML 

techniques apply to the most diverse complex slice elasticity issues, such as complex performance 

and overall resource optimization and Quos guarantee. The vast majority of reviewed work in our 

scrutiny concentrates on this category (Table IV presents a summary of all of them). In addition, most 

of these difficulty sit on the RAN segment, and DRL is the most selected ML technique to deal with 

them [59]–[70], followed by supervised erudition [71]–[77]. The authors in [30] use a Deep Neural 

Complex (DNN) to decide on complex slice re configuration in a Metro-Core optical complex. 

purchaser entry manage 

The user admission control NS difficulty aggregates articles regarding challenges in deciding 

whether a new user, upon request, should be added to a running complex slice or not. The difference 

between user admission control and slice admission control is that, in the former, the request is for 

including a new user into an instantiated and running complex slice. Overall, user admission control 

is a process that ponders what is being requested vs. what is or will be available to be consumed 

(e.g., bandwidth, computing, storage, and broadcasting  spectrum). Admitting new users into a 

running complex slice means that the operator commits to the availability of resources (e.g., 

spectrum and bandwidth) to serve all the users hosted in the slice. 

In 5G complex, typically, user requirements may change over time (e.g., depending on the 
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running applications) and a single UE may connect to up to 8 complex slices simulate- onerously 

[78]. Therefore, ML techniques act in this decision- making based on the time-varying user 

requirements, possible resource allocation for newcomers, eventual slice elasticity, and long-term 

SLA holding, for example. 

Shame and Kudeshia [79] focused on the RAN and consider- erred three different generic slice 

templates: match, URLLC, and ebb. Based on a muddied version of classical DQL, users are 

allocated/reallocated to slices regarding their current needs. In the literature, this type of difficulty 

is also called Slice Selection. However, we consider it fraction of user admission since the process 

requires aggregating new users into running slices. In [79], the authors set up an experiment 

simulation scenario with multiple MVNOs sharing virtual BS resources. The experiment sets 30 

MHz bandwidth for each virtual BS, distributing it among 100 users. Each one of the users has 

requirements sting them in at least one of the three generic slice templates (match, URLLC). Results 

show that the authors’ proposal keeps a high average user satisfaction score during the experiment. 

Nasser and Wilma [80] considered a 5G scenario and discussed the limitation of resources at the 

complex edge, specifically at fog nodes supporting vehicular and smart-city complex. The NS 

proposal includes creating a cluster of fog nodes with a controller, referred to as Edge Controller 

(EC), responsible for efficiently managing resources. The EC uses DRL to adapt to optimal slicing 

policies, performing admission control tasks (e.g., serving or avoiding new users, serving or avoiding 

septic requests) towards load balancing, saving resources, and denying tasks better performed in the 

cloud. The authors evaluate the proposal’s suitability for the edge complex using simulations. 

Traffic classification and guess 

This category embraces works on the slice run-time using ML techniques for traffic classification 

and/or prediction. Traditionally, classifying complex traffic involves three com- mom approaches: 

port-based, Deep Packet Scrutiny (DPI), and statistical. ML techniques are especially appropriate for 

statistical approaches, which classify the traffic according to, for example, the packets’ size and 

transmission direction.Therefore, the state-of-the-art presents NS methods based on classifying the 

traffic to infer running applications, predict bandwidth, and dynamically allocate/reallocate 

resources. 

Le et al. [81] presented early-state contributions for the future Self-Organized Complex (SONs) 

NS. The authors aim to build an architecture for NS based on mobile broadband traffic classification. 

Based on past contributions working on big data, ML, and SDN/NFV, the authors use K-means 

as an UL algorithm for clustering mobile applications, resulting in three slices (0.5Mbps, 1Mbps, 

3Mbps). They also apply several SL techniques (e.g., Naive Bays, SVM, NN) for classifying new 

coming traffic bows into the three distinct slices. 

Results show high accuracy in traffic classification and therefore promising early-state 

contributions. 

The authors in [82] used an FL method based on Key Performance Indicator (KPI) data collection 

(e.g., complex traffic) at virtualized Central Units (CUs) to chieftain dis- tribute local datasets, 

referred to as Mini-Datasets. These distributed Mini-Datasets compose the FL model for resource 

allocation with long-term SLA constraints. In this context, the authors have another complementary 

publication [83] focusing on the energy efficiency perspective of their approach. 

Terra et al. [84] presented an analysis of explainable Artificial Intelligence (XAI) methods applied 

to telecomm- inaction complex. XAI methods are applied to analyze the cause of SLA violation 

prediction made in 5G complex. The proposal analyzes the explanation directly generated from the 

SLA violation prediction instead of expert knowledge. Local Interpretable Model-Agnostic 

Explanations (LIME), Shapely Additive Explanations (SHAP), Permutation Importance (PI), and 

Extreme Gradient Boosting (XGBoost) XAI methods are used to analyze SLA violation prediction 

causes, and these methods are further compared among them. 
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TABLE V 

SUMMARY OF  ACRONYMS. 

Acronym Definition Acrony

m 

Definition 

3GPP 3rd Generation Fractionnership 

Project 

N3AC Neural Complex Admission 

Control 

5G fifth-generation NFV Complex Function Virtualization 

6G sixth-generation NN Neural Complex 

A2C Advantage Actor-Critic NS Complex Slicing 

ACM Association for Computing 

Enginery 

NS-3 Complex Simulator 3 

AI Artificial Intelligence NSS Complex Slice Subnet 

ARIMA Autoregressive Integrated Moving 

Average 

O-RAN Open RAN 

BE Best Effort ONETS Online Complex Slice Broker 

BS Base Station PI Permutation Importance 

CN Core Complex PRB Physical Resource Block 

CNN Convolutional Neural Complex PT Prospect Theory 

CPU Central Processing Unit QCI QoS Class Identifier 

C-RAN Cloud-RAN QoE Quality of Experience 

CSI Channel State Information QoS Quality of Tune 

CU Central Unit QoT Quality of Transmission 

DDPG Deep Deterministic Policy 

Gradient 

RAM Random Contact Memory 

DQL Deep Q-Erudition RAN Broadcasting  Contact Complex 

DQN Deep Q-Complex RAT Broadcasting  Contact Technology 

DL Deep Erudition RIC RAN Intelligent Controller 

DNN Deep Neural Complex RL Reinforcement Erudition 

DPI Deep Packet Scrutiny RU Broadcasting  Unit 

DRL Deep Reinforcement Erudition SARSA State-Action-Reward-State-Action 

DU Distributed Unit SDN Software-Defined Complex 

EC Edge Controller SDO Standards Developing 

Organization 

FL Federated Erudition SHAP SHapely Additive Explanations 

F-RAN Fog-Broadcasting  Contact 

Complex 

SL Supervised Erudition 

GCN Graph Convolutional Complex SLA Tune Level Agreement 

H2H Human-to-Human SLAW Self-similar least-action human 

walk 

HDBSCA

N 

Hierarchical Density Based Spatial 

Clustering 

SMDP Semi-Markov Decision Process 

IEEE Institute of Electrical and 

Electronics Engineers 

SMO Tune Running and Orchestration 

IoT Internet of IoT SON Self-Organized Complex 

IP Internet Protocol SVM Support Vector Engine 

KPI Key Performance Indicator TL Transfer Erudition 

LCM Being Series Running TN Transport Complex 

NLP Natural Language Processing TRPO Trust Region Policy Optimization 

LIME Local Interpretable Model-

Agnostic Explanations 

UCB Upper Confidence Bound 
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LSTM Long Short Term Memory UE User Equipment 

LTE Long Term Evolution UL Unsupervised Erudition 

M2M Engine-to-Engine URLLC ultra-Reliable and Low-Latency 

Communications 

MAB Multi-Armed Bandit V2V Vehicle-to-Vehicle 

MDP Markov Decision Process V2X Vehicle-to-Everything 

ML Engine Erudition VNE Virtual Complex Embedding 

mMTC Engine Type Communication VNF Virtualized Complex Function 

MPLS Multiprotocol Label Switching XAI eXplainable Artificial Intelligence 

MVNO Mobile Virtual Complex Operator XGBoos

t 

Extreme Gradient Boosting 

ZSM Zero touch complex & Tune 

Running 

  

 

Sahib et al. [85] proposed a micro-tune-based expert- mental prototype with a regression tree 

algorithm to vale- date the impact of forecasting capabilities on the RAN slice- in running. The 

experimental prototype, based on the Open Air Interface deployment, collects data while managing 

several Iota devices. This data then forms a time series used to train the regression tree. The 

objective is to forecast the number of PRBs to be used by each slice to dynamically provision the 

optimum slicing ratio out of the available pool of PRBs. Results show that the forecasting model 

can increase substantially the throughput of the complex at the cost of increased computing resources 

utilization. 

 

additional investigation 

This subsection groups together relevant difficulty for the complex slice operation phase. 

However, in our research, no substantial amount of articles discussed an ML approach to solve them. 

In this sense, we present at least one publication approaching each difficulty. Refer to Table IV for a 

complete list of publications regarding the operation phase. 

1) Anomaly Detection: AI-assisted anomaly detection is a classical research held in computer 

complex [86], [87]. Analyzing the complex behavior (e.g., based on KPIs such 

as packet loss and downlink delay) is a running task during the complex slice operation phase. In 

[88], the authors implemented an AI-based module for assisting administrators in detecting 

anomalies among tunes in slices deployed on a virtualized infrastructure. The solution of the authors, 

aiming to classify complex traffic, has three phases: (i) pre-processing and feature selection, (ii) 

clustering, and (iii) anomaly de- section. Data is modeled as a time series composed of the following 

features: number of lost packets per tune and user, uplink and downlink delay, Reference Signal 

Received Power, transfer protocol, and UE received bytes. In the second phase, the time series is 

processed by a Hierarchical Density Based Spatial Clustering (HDBSCAN) clustering algorithm, 

which divides the dataset into three groups: normal, moderate, and anomalous behavior. Such clusters 

are used to label the samples in the time series. Finally, in the third phase, the labeled dataset is used 

to train a feed-forward DNN to perform a classification task. After, the DNN is used to predict 

anomaly and assign a cluster to new data in real-time. Preliminary results using the Complex 

Simulator 3 (NS-3) discrete-event simulator show a high accuracy score. However, increasing the 

number of clusters and the algorithm granularity decreases the prediction performance. 

2) Task Offloading: The task offloading difficulty category addresses articles regarding decision-

making on the most suitable do chief to run a task (e.g., UE, cloud, fog). In this sense, the authors of 

[89] discuss the adaptive mode selection in Fog-RAN (F-RAN), which refers to the 

communication mode serving each UE (e.g., Cloud-RAN (C-RAN), fog-broadcasting  contact point, 

device-to-device). 

3) Congestion Control: Selected works approaching the congestion control difficulty with ML 
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fall into the scenario of connection establishment for RAN and traffic congestion control in general 

for 5G/6G wireless complex. The authors in [90] argue that Engine-to-Engine (M2M) complex 

traffic may surpass Human-to-Human (H2H) in the future. However, current approaches for dealing 

with M2M traffic rely on legacy congestion control schemes, which will no longer suit the demand in 

5G and beyond scenarios. Therefore, the authors propose an improved congestion control scheme 

based on RL. 

4) RAT selection: Cellular complex adopting multiple different RAT impose the well-known 

RAT selection chalk- lunge [97]. The article [91] presents IRIS, a shared spectrum contact 

architecture for indoor neutral-host small cells. IRIS adopts a RL algorithm based on DDPG to 

dynamically price the cost of a broadcasting  spectrum block in an indoor shared setting according to 

the previous price, tenants (operators) demands, acquisition costs, and neutral-host revenue target. 

5) NS with Mobility: This difficulty category considers works discussing scenarios with mobility 

in terms that the UE is not static. To the best of our knowledge, the chief concerns, up to now (the 

date of this research), in the context of NS with mobility are coverage area [93]; content caching 

[92]; and slice migration (e.g., UE moves out of the coverage and needs reallocation to another 

slice) [95], [96]. Added et al. [94] propose and evaluate two DRL-based algorithms for the 

intelligent selection of triggers supporting NS mobility actions. Authors argue their approach is 

new by consideringusers mobility, tune mobility, and resource mobility among slices for slice, tune, 

and resource allocation. The run-time mobility decision-making process is evaluated considering 

the A2C, a hybrid DRL method combining value-based and policy-based approaches and DQN. 

 

unhook do study issue AND prospect strategy 

This section identifies and discusses a non-exhaustive set of open issues on ML for intelligent 

NS. The identified challenges result from our analysis of the preparation, com- visioning, and 

operation phases of the NS process, presented in sections III, IV, and V. Moreover, we highlight the 

chief gaps in the literature between requirements and proposals for intelligent NS. 

 

smart paraphrase for NS supplies 

Translation of tune prowls into NS requirements is a complex task that requires low-level 

complex slice con- gyration parameters, such as virtual engine parameters, complex configurations, 

topology, and protocols [98]. With the evolution of complex toward beyond 5G, the complexity of 

this task tends to increase [99]. Consequently, an intent layer will be required to translate tune prowls 

into slice requirements [100]. 

Intent-driven complex was conceived to enable apply- captions to express desired operational aims 

using high-level descriptive specifications known as intents [101]. Addressing this aim, however, 

poses several challenges, among them, denting rich semantics to express the intent of verticals [102]. 

Although the integration with AI technologies, and Natural Language Processing (NLP) in 

fractionicular, can bridge this gap, those technologies are still at their early stage and require 

further research efforts before being integrated into the complex slice LCM [100]. This research gap 

can be evinced in our scrutiny, where only one work [25] uses ML to bridge this gap. 

 

Datasets and research duplicate 

High-quality datasets are essential to support the extensive dissemination of ML in various 

application do chiefs. Intel- gent NS, according to our research scrutiny, is yet another area where 

openly available high-quality datasets are a research issue, regardless of the slice being series 

phase, as can be seen in the column Performance Evolution of Tables II, III, and IV. A directly 

related aspect of dataset availability is experiment reproduction. In effect, the unavailability of 

datasets for most of the research work is an obstacle to allowing experiment reproduction and, to 

some extent, the explain ability of the proposed solutions and their dissemination. In our scrutiny, 

most works (e.g., in [36], [37], [38], [40],[46] [47], [48], [49], [51], [53], [54], [55], [56], [58], 
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among others) use data generated from simulation to evaluate their ML solutions. However, to 

evaluate the effectiveness of ML approaches when dealing with NS difficulty in practice, ex- tensile 

evaluations are needed taking more realistic scenarios into consideration. To this end, some works 

[26] [43] [72] [77] 

TABLE IV 

SUMMARY  OF  ML-APPROACHES  FOR  NS DIFFICULTY  IN  THE  OPERATION  

PHASE. 

Ref. NS 

Difficulty 

Eruditio

n 

Paradig

m 

Erudition 

Method 

Resource 

Type 

Complex 

Segments 

Performanc

e 

Evaluation 

[54] Slice Elasticity RL DQL Complex RAN, CN Simulation 

[55] Slice Elasticity RL DQL Complex RAN Simulation 

[56] Slice Elasticity RL DQN Complex RAN, TN, 

CN 

Simulation 

[57] Slice Elasticity RL QL Complex RAN, TN, 

CN 

Not clear 

[58] Slice Elasticity RL DQL Complex, computing RAN, TN, 

CN 

Simulation 

[59] Slice Elasticity RL DQN Complex RAN Simulation 

[60] Slice Elasticity RL DRL Complex RAN Simulation 

[61] Slice Elasticity RL DQL Complex RAN Simulation 

[62] Slice Elasticity RL DDPG Complex RAN Simulation 

[63] Slice Elasticity RL Duel. DNN, QL Complex, computing, 

storage 

C-RAN Simulation 

[64] Slice Elasticity RL DRL Complex RAN Simulation 

[65] Slice Elasticity RL DQN Complex RAN Simulation 

[66] Slice Elasticity RL DQN Complex RAN Simulation 

[67] Slice Elasticity RL DQN Complex RAN Not clear 

[68] Slice Elasticity RL LSTM, A2C DRL Complex RAN Simulation 

[69] Slice Elasticity RL DQL Complex, computing RAN, edge Simulation 

[70] Slice Elasticity RL A2C Complex RAN Simulation 

[71] Slice Elasticity SL DNN Complex RAN, CN Real-world 

dataset 

[72] Slice Elasticity SL LSTM Complex RAN, CN Exp. & real-

world 

dataset 

[73] Slice Elasticity SL LSTM Complex RAN, TN Real-world 

dataset 

[74] Slice Elasticity SL DNN, LSTM Complex RAN Simulation 

[75] Slice Elasticity SL DNN Complex, computing RAN Not clear 

[76] Slice Elasticity SL DNN Complex, computing RAN, TN Real-world 

dataset 

[77] Slice Elasticity SL LSTM Complex RAN, TN Experimenta

l 

[30] Slice Elasticity RL DNN Complex TN Simulation 

[79] User Adm. 

Control 

RL DQL Complex RAN Simulation 

[80] User Adm. 

Control 

RL DQN Complex, computing RAN, edge Simulation 
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[81] Traffic 

Prediction 

UL, SL Naive Bayes, 

SVM, NN 

Complex RAN, CN Experimenta

l 

[82] Traffic 

Prediction 

FL Non-zero sum Complex RAN Real-world 

dataset 

[84] Traffic 

Prediction 

XAI XGBoost, SHAP Complex TN Experimenta

l 

[85] Traffic 

Prediction 

SL Regression Tree Complex RAN Experimenta

l 

[88] Anomaly 

Detection 

UL, SL HDBSCAN, DNN Complex RAN Simulation 

[89] Task 

Offloading 

RL QL Complex, computing RAN Simulation 

[90] Congestion 

Control 

RL TRPO Complex RAN Simulation 

[91] RAT Selection RL DDPG Complex RAN Exp. & 

Simulation 

[92] NS Mobility RL DQN Complex, computing F-RAN Simulation 

[93] NS Mobility SL DNN Complex RAN, edge Simulation 

[94] NS Mobility RL A2C, DQN Complex, computing RAN, edge Simulation 

[95] NS Mobility RL A2C, LSTM Complex RAN Simulation 

[96] NS Mobility RL QL Complex RAN Simulation 

 

[81] [84] [85] [91] create septic experimental test beds for validating their model or algorithm. 

Although such initiatives are important, data collected from test beds still misses the representative 

of the complexity and dynamicity of real-world mobile complex [103]. In addition, none of such 

works have made the collected data available for the research community, hindering and 

compromising the reproduction of the mental fractions deployed for validation purposes. Finally, 

10% of the scrutiny end works [52] [71] [72] [73] [82] [76] use real- world complex data. Although 

such data are much richer and more representative than those generated from simulation or test beds, 

they still may suffer from noise, sparsely, and lack of label, which limits the ML algorithms that can 

be applied. In summary, rich and adequate data is still an issue for applying ML in NS 

difficulty.Suitability of the ML Technique for the Complex Slice Being Series Phase 

While ML is an unquestionable enable for the realization of NS, it is impossible to and a single 

technique that completely addresses the requirements of all the complex slice LCM difficulty. Thus, 

an open research issue in ML-enhanced NS is the suitability of the ML techniques for the target 

complex slice being series phase with regard to, for example, granularity or timing [23]. In the 

preparation phase, as the slice does not exist, ML techniques using offline erudition can be applied to 

solve the difficulty of such phase. Indeed, the authors in [38] conclude that offline training solutions 

for the slice admission control difficulty require a training period before use but give the best results. 

In the slice commissioning and operation phases, SL, which usually relies on offline erudition, 

has been usually applied to solve traffic prediction, traffic classification, and anomaly detection 

difficulty [43] [45] [81] [85] [88]. However,  

elms that involve resource allocation, such as broadcasting  resource sharing, VNF placement, and 

complex slice elasticity, have to make decisions on low scale and cannot afford for a period of 

training time [104]. Thus, some works [44] [57] 

[89] [90] use classical RL algorithms with online training for these difficulty. However, resource 

running in NS usually involves multidimensional parameters, leading to a large state space and a low 

convergence rate to the optimal policy [104]. In practice, this means that, until the RL algorithm 

converges, it can make bad resource running decisions. Although DRL algorithms have been used 

to face this limitation (e.g., in [46], [47], [48], [49], [50], [51], [80], [54], [55], [56], [58], among 
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others), DRL solutions present some shortcomings. First, DRL algorithms usually rely on DQN to 

encode state. However, an important component of DQN is a target complex, i.e., a copy of the 

estimated value function that is kept axed for some number of steps to stabilize erudition [105], 

[106]. This copy, in turn, prevents the algorithm from reacting fast to environment changes, a desired 

property of RL. More recently, other NN algorithms (e.g., in [68]) have been investigated to deal 

with this difficulty. Nevertheless, further investigations are required to determine their efficacy 

and generalization in the context of DRL. With this regard, TL has also been considered a possible 

solution [104]. Another difficulty with DRL algorithms is that NNs with multiple layers cannot 

explain the essential features that impudence their decisions or the impact of data bias on the 

uncertainty of outputs [107]. As complex slices are expected to host an increasing number of 

mission-critical tunes in beyond 5G, trust will become critical. Despite this need, our scrutiny 

identified only one work [84] addressing explainable ML-enhanced NS. Finally, it is important to 

highlight that DRL algorithms have a high demand for computing, memory, and energy resources 

[103]. Considering that beyond 5G complex will make pervasive use of intelligence [21], DRL 

algorithms that make more deficient use of computing and power resources are still an open issue. 

 

End-To-End NS 

NS is applied in challenging systems such as 5G and beyond 5G, Industry 4.0/5.0, and intelligent 

transportation systems. End-to-end NS is an essential requirement and current trend for these 

systems. However, in most scrutiny end works, ML support is focused on complex segment solutions 

(e.g., RAN [89], RAN + edge [80], TN [84], and RAN + CN [71], leaving end-to-end NS as an open 

research issue. We consider that an article effectively approaches end-to-end NS if it deals with the 

three complex segments (RAN, TN, and CN) completely. However, this issue is not a consensus in 

the literature. For example, in [77], the authors assume that the end-to-end can start inside the RAN, 

crosses a TN, and noshes at the frontier of a CN. The authors do not consider the front haul, i.e., 

fraction of the RAN is not sliced, nor the CN. In our scrutiny, only a few works effectively tackle 

the end-to-end slicing difficulty in the three segments (RAN, TN, and CN) [56] [57] [58], and the 

arts two only deal with complex resources. While [58] is a more comprehensive work considering 

complex and computing resources, the recital evaluation in this article is based on a small and 

implied simulation. The authors are focused on calling attention to the importance of ML-enabled 

NS in 6G and the challenges in the real-world implementation. 

Slicing by segment with ML support is undoubtedly reel- event. Nevertheless, the end-to-end 

design must consider the interdependence of resource allocation and orchestration among complex 

segments. End-to-end intelligent slicing brings another level of complexity, which involves issues 

such as the need for a high-deficient (re)erudition process and coordination among multiple entities 

[58]. In this context, FL and other distributed erudition approaches may be relevant since the works 

can explore the spread processing capacity offered by edge computing and reduce the amount of 

information exchange. 

 

unlock RAN intelligent portion 

RANs are a fundamental fraction of the slicing process in 5G complex and Open RAN (O-

RAN) is one the most relevant evolution aspect towards 6G in this segment. Not surprisingly, O-

RAN architecture has AI and ML work bows in its design [108]. The O-RAN approach brings a 

new level of edibility for complex operators allowing them to deploy the RAN segment, potentially 

focusing on the business. NS has being considered a very important capability in the O-RAN context 

and has been already investigated in some articles [109]–[111]. O-RAN slicing with ML allows 

deficient RAN deployment to accomplish challenging user requirements regarding SLA, Foe, and 

user mobility. 

The design, implementation, deployment, and evaluation of O-RAN with ML is a hot research 

topic and open research issue. In the context of O-RAN, an ML-based solution must be designed 
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and implemented as a app. and/or a Rapp, depending on their time demands. While Capps run 

over a near-real-time RAN Intelligent Controller (RIC) (10ms to 1s), rap’s run over a non-real-time 

RIC (more than 1s) [108]. Deployment and evaluation of caps and/or raps still depend on 

simulation (e.g., [109]), previously collected (and so non-interactive) datasets (e.g., [110]), or 

limited-size test beds using early-stage RICs (e.g., [111]). In fact, even the optimized deployment 

and operation of the RICs components are challenging since they are a new software platform still 

under development. 

 

as of proposition to survive out 

Based on the text presented in the previous sections, it is clear that several theoretical works are 

using AI and ML, considering the being series phases of NS. However, sciatic research with 

practical and experimental approaches to NS is still in the beginning. As mention previously, most 

works use only simulation for validating their proposals, while some works focus on real-world 

traces or datasets, which is very useful for ML-based approaches. However, they also face hard 

issues such as information from outdated pre-NS technologies (LTE/4G, for instance) or data with 

low statistical bearing. Asexpected, only few works [26] [43] [72] [77] [81] [84] [85] [91] have 

already accepted the challenge of evaluate an 

ML-based approach in an experimental tested. In this con- text, not only sciatic but also 

technological issues become relevant. For example, technological advances in telecomm- negations 

are increasingly based on native cloud computing platforms. Nevertheless, these platforms were not 

designed to support telecommunication tunes natively. Indeed, in our scrutiny, only the work [85] 

has validated its proposal using a micro-tune-based RAN experimental prototype. 

Pushing the frontier of science by integrating theoretical advances in AI and ML with practical 

solutions for NS is an open issue that needs further investigation and advance efforts. 

 

FINAL    CONSIDERATIONS 

This scrutiny focused on presenting NS with ML research contributions. The contributions are 

organized by the phases of the slice being series as denied by standardization organizations 

(preparation, commissioning, and operation phases), aiming to identify trends and correlated 

contributions for the different slicing phases. The contributions are rigorous in the 5G do chief, 

with few NS solutions applied to other areas. Specifically, in the 5G do chief, the end-to-end solution 

is a trend not yet fully explored, and ML is being extensively used to provide intelligence for 

segmented solutions. 5G end- to-end NS approach allows a global view of the resource allocation 

difficulty allowing for optimizing resource sharing aiming, for instance, to improve operation, 

achieve deficient running, and optimize operational expenditure. Although 5G end-to-end slicing is 

essential for tune providers and telecommunications operators, the scrutiny end articles primarily 

focus on slicing and optimizing segments like RAN and the CN. 

We have observed that ML is already being investigated to solve several tasks in slice 

preparation, commissioning, and operation. In this context, different ML techniques and algorithms 

have been employed, chiefly the ones popularized in the last decades, such as CNN, GCN, LSTM, 

DRL, and XGBoost. ML has exhibited satisfactory or promising results in many automation tasks 

in the slice being series, which is critical to provide many berets related to the concept of Zero 

touch complex & Tune Running (ZSM). However, the practical and wide adoption of ML-enabled 

NS still faces several challenges. Some of these challenges, such as large and open datasets and the 

explain ability of ML-based solutions, are already being tackled by the academy and industry, which 

can count on the experience from other areas such as computer vision and natural language 

processing. However, other issues, such as the demand for short-time for model training, energy- 

efficient ML solutions, and distributed computation of ML models, still need much investigation. AI 

and ML are also evolving intensely, giving rise to new models, algorithms, techniques, and even 

hardware architectures. Traditionally, these novelties are not designed or tested arts in complex. 
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However, they must be imported and sometimes adapted in NS, for example. 

Finally, we highlight the availability of various multi- technology (SDN, wireless, It, slicing, and 

others) test bedsworldwide for untried research expansion. These test beds, in most cases, innately 

facilitate experiment repro- diction using openly available software to control the expel- impend and 

having the ability to create experimental datasets. An essential point for researchers would be to 

evaluate to what extent these test beds can be used for developing and validate research results in 

bright NS. 
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