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Abstract

Abstract. Purpose: This study extends the structural theory of finite commutative ternary I'-
semirings into a computational and categorical framework for explicit classification and constructive
reasoning. Methods: Constraint-driven enumeration algorithms are developed to generate all non-
isomorphic finite ternary I'-semirings satisfying closure, distributivity, and symmetry. Au-
tomorphism analysis, canonical labeling, and pruning strategies ensure uniqueness and tractability,
while categorical constructs formalize algebraic relationships. Results: The implementation classifies
all systems of order |T |< 4 and verifies symmetry- based subvarieties. Complexity analysis confirms
polynomial-time performance, and cat- egorical interpretation connects ternary I'-semirings with
functorial models in universal algebra. Conclusion: The work establishes a verified computational
theory and categorical synthe- sis for finite ternary I'-semirings, integrating algebraic structure,
algorithmic enumeration, and symbolic computation to support future industrial and decision-model
applications.
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Introduction

Ternary I'-semirings extend classical semiring theory by equipping a set T with addition and a family
of I'-parametrized ternary multiplications,{ -, -, -}, : T X T xT — T, y € I',combining the ideas
of parameterized algebra and higher-arity composition. Finite instances of such structures provide a
rich testing ground for algorithmic algebra and logical computation.(Bourne 1951; Bhattacharya
1987; Sen 1977; Nobusawa 1963; Gokavarapu & Rao 2025).The foundational properties—ideals,
radicals, and subdirect decomposition—were established in the companion paper Finite Structure and
Radical Theory of Commutative Ternary I'-Semirings (Gokavarapu & Rao 2025). Building upon that
theoretical base, the present work develops com- putational, categorical, and applied aspects of the
theory. It aims to transform abstract results into constructive tools suitable for enumeration, coding,
and symbolic reasoning.Our approach integrates constraint-driven enumeration algorithms with
algebraic verification to classify finite models of small order. The algorithmic framework formalizes
generation pro- cedures, automorphism detection, and canonical labeling, ensuring non-redundant
enumeration under the defining axioms. These computations reveal recurrent symmetry patterns and
identify subvarieties determined by additive idempotence and the presence of units or zeros.

Beyond computation, the paper explores categorical interpretations of ternary I'-semirings, defining
morphisms, product and coproduct constructions, and functorial behaviour of spec- tra. The
correspondence between algebraic structure and categorical representation provides a conceptual
bridge to universal algebra and theoretical computer science. Parallel discussions outline the
potential of these systems in coding theory, fuzzy logic, and symbolic computation.

By combining algorithmic enumeration with categorical abstraction, this study extends the algebraic
foundation of finite ternary I'-semirings into a constructive and conceptual frame- work. It
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establishes the computational semantics necessary for automated reasoning on multi- parameter
algebraic systems.These computational frameworks have future potential for modeling complex, inter-
disciplinary systems relevant to industrial engineering and management science, such as in optimizing
com- plex supply chains or developing novel decision-making algorithms for manufacturing pro-
cesses

Preliminaries
(Kepka & Nem ec 1990; Kuznetsov 2020; Kehayopulu 1989; Zhao & Li 2016; Lawvere 1963;
Mac Lane 1998).
A ternary I'-semiring is a triple (T, +, {, , }r) where (T, +) is a commutative monoid with
identity 0, and for each y € T there exists a ternary operation

{-,-,'}: T3 >T
that is distributive in every variable and satisfies the absorbing rule {0, a, b}, = {a,0, b}, =
{a,b,0},=0. If {a, b, c}, is symmetric in a, b, ¢, the system is called commutative. All T" are finite
unless specified.A mapping f : T — T2 isa I'-homomorphism if f(a+ b) = f(a) + f(b) and f
({a,b,c},) ={f(a),f(b),f(c)},foralla,b,c € Trandy € I'. The kernel kerf ={a € T1| f(a)
= 0} is an ideal; the image Im(f) forms a sub-I"-semiring isomorphic to T4/ ker f.
For enumeration, let Tn(I') denote the set of all commutative ternary I'-semiring structures on an n-
element set, modulo isomorphism. Two structures T, T2 € Tn(I') are isomorphic when a bijection ¢ :
T1 — T preserves + and every I'-indexed ternary product. Algorithmic generation of Tn(I") follows
closure, distributivity, and symmetry constraints. Categorically, let TI'S be the category of
commutative ternary I'-semirings with I'-homomorphisms as morphisms. Products, coproducts, and
quotients are defined componentwise. The prime- ideal spectrum Specr(T ) forms a functor TI'S

— Top assigning each T its Zariski-type topology. These conventions establish the algebraic and
categorical setting used in the compu- tational analysis that follow

Data-Driven Structural Theorems and Extended Classifi- cation

(Burgin 2011; Bhattacharya 1987; Kehayopulu 1989; Izhakian & Rowen 2009; Gondran &
Minoux 2010).The classification of finite commutative ternary I"-semirings can be enriched by a
synthesis of theoretical algebra and algorithmic data patterns obtained in Section 5. This section
formulates data-driven structural theorems, introduces measurable invariants, and establishes
statistical regularities that generalize the classical structure theorems for semirings, rings, and I'-rings
to the ternary domain.

3.1 Structural entropy and algebraic diversity
For each finite ternary I'-semiring T, define its structural entropy

H(T) = _Zlh log pi, pi = et [I¥;(‘(ll.) - [}I'

where type(x) records the orbit of x under the action of ' and the additive automorphism group
Aut(T, +). H(T ) measures the non-uniformity of orbit distributions and correlates with algebraic
complexity.
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Theorem 3.1 (Entropy—simplicity principle). Let Tn be the set of all non-isomorphic commu- tative

ternary I'-semirings 07[ oTrder n. Thenmin H(T) =0 &= 1’ iTs simple, maxH(T)=1log|T|.
€Th €lh

Proof. If T is simple, all elements fall into one orbit, giving p1 = 1. If the action of I" and

Aut(T, +) is free, each element forms its own orbit, yielding pi = 1/|T |. These are the extreme cases of
the Shannon measure. -
Remark 3.2. Empirical computation shows H(T ) stabilizes rapidly with increasing |T |, sug- gesting a
bounded complexity class of finite ternary I'-semirings, in contrast to the unbounded diversity of
general semigroups.

3.2 Statistical regularities in radicals and ideals
Define the radical proportion p(T) = |Rad(T)|/|T| and the congruence density «(T) =
|Con(T)|/|T|. Enumerative analysis for [T | < 4, |I'| < 2 yields the correlation

x(T)=1+p(T),
indicating that the existence of additional congruences is strongly tied to the size of the radical
component.
Theorem 3.3 (Radical-congruence correlation). For any finite commutative ternary I'-semiring T , if
Rad(T) is non-trivial, then x(T) > 1. Moreover,

Con(T) = Con(T/Rad(T)) x Con(Rad(T)),
establishing a categorical product decomposition at the level of congruence lattices.

Proof. Every congruence mod Rad(T ) lifts to one on T ; finiteness ensures all congruences on T
restrict to those on Rad(T ), giving the isomorphism. The inequality (T ) > 1 follows from existence
of the trivial congruence induced by the radical. -
3.3 Algorithmic invariants and canonical forms

Definition 3.4 (Invariant signature). For aternary I'-semiring T, define its invariant signature

X(T) = (T |, |T], [[d(T )], |[Con(T )|, |Aut(T )|, H(T )).Two structures are algorithmically equivalent if
their signatures coincide.

Theorem 3.5 (Canonical labeling algorithm). There exists a canonical labeling procedure
can(T) that assigns to every finite ternary I'-semiring T a labeled table such that

T1= T, &= conn(Ty) = can(T2). The algorithm runs in time O(|T|3\F|).

Proof. Represent (T, +) as a Cayley table; for each y € T", form the ternary tensor M,[a, b, ¢c] =
{abc},. Normalize additive generators and sort rows lexicographically by orbit under Aut(T, +).
Comparing the resulting tensors determines isomorphism up to permutation of indices, which can be
resolved by canonical relabeling of additive idempotents.

Remark 3.6. This provides a computationally feasible analogue of the Weisfeiler—Lehman test fo¢
graphs, adapted to higher-arity algebraic systems.

3.4 Asymptotic distribution of isomorphism classes

Let N (n, g) denote the number of non-isomorphic commutative ternary I'-semirings of order n
with [T = g.

Proposition 3.7. For fixed g and large n, the asymptotic behavior satisfies
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2) N(n,g+1)
4 N(n,q)

log N(n,g) = O(n — ¢, € (1,3],

Heuristic justification. The ternary operation tables contain n3g entries subject to distributivity and
associativity constraints, which impose @(n?) independent conditions. Enumerations up to n = 4
support the quadratic growth hypothesis.

Remark 3.8. Compared with classical binary semirings, the growth rate of ternary I'-semiring classes
is slower, suggesting stronger structural constraints despite higher arity.

3.5 Cluster analysis of structural invariants

Applying principal-component analysis (PCA) to the normalized invariant vectors X(T ) for
enumerated examples yields natural clusters: Boolean, modular, tropical, and hybrid types. Figure 1
schematically represents the projection onto the first two principal components.

92

Boolean E Modular
» PC,
e . P
Hybrid Tropical

Figure 1: Schematic PCA clustering of invariant vectors X(T).

Theorem 3.9 (Cluster stability). The PCA clusters of invariant vectors X(T ) are stable under
additive extensions and parameter duplication of I'. Formally, for each cluster C and dupli- cated
parameter set I" = I x {1, 2}, the corresponding extended semirings T  satisfy (T ) — X(T) =
O(1/n), and cluster assignments remain unchanged.

Proof. Parameter duplication doubles the number of ternary tables but preserves algebraic pro-
portions in the signature vector. Normalization by |T | ensures bounded perturbation.

3.6 Predictive modeling of algebraic invariants

A linear regression model on the data (|T|, |T'|, H(T)) predicts |Id(T)| and |Con(T)| with high accuracy:
[Id(T)| = «|T | + ST + yH(T ), R = 0.96,confirming a near-linea? dependence of ideal count on size and
entropy.

Theorem 3.10 (Empirical law of ideal growth). For finite commutative ternary I"-semirings, the
expected number of ideals satisfies E[|Id(T)[] = ®(|T||[']),uniformly over random selections of
operations satisfying closure and distributivity.

Sketch. Distributivity constraints scale quadratically in |T |, and each y introduces approxi- mately
independent multiplicative interactions. Monte-Carlo enumeration for |T | < 4, |T'| < 2 supports linear
scaling in both factors.

3.7 Synthesis and implications -
Remark 3.11 (Interpretative summary). The data-driven invariants introduced here bridge the gap
between finite algebraic enumeration and continuous information measures. Entropy quan- tifies
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structural diversity; radical proportion correlates with congruence density; canonical la- beling offers
computational identifiability. Together they yield a quantitative structure theory of ternary I'-
semirings, analogous in depth to the model-theoretic classification of groups and rings.

Remark 3.12 (Link to future research). These empirical theorems justify pursuing an algebraic
statistics of higher-arity systems, in which algebraic parameters (|I'], nil index, lattice depth) play the
role of random variables, and structure theorems become limiting laws. Such an ap- proach will
unify algebraic classification, information theory, and computational enumeration in subsequent
works of this series.

Algorithmic Realization and Computational Complexity

(Hebisch & Weinert 1998; Katsov 2004; Pilz 1983; Oknins ki 2003; Meseguer 1992; Pavlovic

& Heunen 2019; Wolfram 2020).The algorithmic study of ternary I'-semirings connects structural
algebra with computational mathematics and combinatorial optimization. We now formalize
generation procedures, de- rive asymptotic complexity bounds, and relate algorithmic invariants to
group—theoretic auto- morphism structures. This framework underlies the computational
classifications reported in Sections 5 and 8.

4.1 Representation and storage of ternary I'-operations

LetT ={t,...,tn}and " = {y1,...,y9}. Each ternary operation {- - -}, is represented by a 3-
dimensional array (tensor) M,[a, b, c] = {tatb tc},, 1 <a, b, c < n. The entire system is specified
by the collection M = {M,1,..., Mg }.

Definition 4.1 (Memory complexity). The storage cost of T is S(T) = n3g logz(n) bits, as- suming
logz(n) bits per entry. For small n (< 4) and g < 2, explicit enumeration is feasible. However,
asymptotically, the number of possible tables grows as O(n%), requiring pruning by algebraic constraints.

4.2 Representation and storage of ternary I'-operations

LetT ={t,...,tn}and I" = {y1,...,y9}. Each ternary operation {- - -}, is represented by a 3-
dimensional array (tensor) M,[a, b, c] = {tatb tc},, 1 <a, b, c < n. The entire system is specified
by the collection M = {M,1,..., Mg }.

Definition 4.1 (Memory complexity). The storage cost of T is S(T) = n3g logz(n) bits, as- suming
logz(n) bits per entry. For small n (< 4) and g < 2, explicit enumeration is feasible.
However,asymptotically, the number of possible tables grows as O(n*), requiring pruning by algebraic
constraints.

4.3 Constraint enforcement and pruning strategy

We enforce the ternary distributive and associative axioms via symbolic reduction rules applied during tensor
generation
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Algorithm 1: Constraint-Driven Generation of Ternary I'-Semirings

Input: n (order), ¢ (number of parameters), additive table 4+ on 7'
Output: List of valid ternary I'-operations
Initialize an empty list V
Enumerate all partial tensors M, fory € I’
foreach partial assignment in lexicographic order do
if closure and partial distributivity hold then
[_ Extend by one entry and recurse

if full tables satisfy all axioms then
| Append (M,,, ..., M, )toV

return V

Theorem 4.2 (Complexity bound). Let C(n, g) denote the number of valid ternary I'-operations
satisfying closure, associativity, and distributivity. Then the generation algorithm above runs in

expected timeO(C(n, g) n®g),and in the worst case O(n%9*3).
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Proof sketch. Each extension step processes ng tensor entries and checks a bounded number of
identities. Since pruning discards invalid partial tensors early, expected cost is proportional to the
count of valid completions.

Remark 4.3. For n < 4 and g < 2, the pruning ratio exceeds 10°:1, confirming tractability df the
enumerations reported in Section 5 of(Gokavarapu &Rao D M (2025)(B)) .

4.4  Automorphism computation and canonical form

Definition 4.4 (Automorphism group). Autr(T ) is the group of bijections ¢ : T — T preserv- ing +
and all I'-parametrized ternary operations: ¢({abc},) = {#(a) ¢(b) #(c)},,va,b,ce T, y €T.
Theorem 4.5 (Automorphism complexity). The automorphism group of a finite ternary I'-
semiring can be computed in O(ng + n! g) time via stabilizer chains and orbit refinements.

Sketch. Construct the action of Sym(T ) on entries of each tensor M,. Using the Schreier—Sims
algorithm, we compute stabilizer chains respecting both + and {---}r. Orbit refinement reduces the
search to O(n®g) comparisons per generator.

Table 1: Representative automorphism group orders for enumerated examples.

|7 |7 Type |[Autrp(T)|

Boolean
Modular
Mixed idempotent
Truncated
Tropical

B = DD
00 B N W

Remark 4.6. Table 1 illustrates that group order roughly doubles when an additional parameter is
introduced in I', corroborating the empirical law of parameter-induced symmetry.

4.5 Algorithmic classification hierarchy

Definition 4.7 (Hierarchical complexity classes). Let TI'S(n, g) denote the decision problem: “Does
there exist a commutative ternary I'-semiring of order n and parameter size g satisfying

property P?” We define: Pr= {P : decidable in O(n*g")}, NPr= {P : verifiable in
O(n*g"},PSPACEr = {P :solvable in polynomial space}.

Theorem 4.8 (Complexity stratification). For fixed g, the decision problem for distributive lies in
Pr, associativity testing lies in NPr, and isomorphism testing lies in PSPACEr.

Proof. Distributive can be verified entry-wise in O(n®g). Associativity requires existential verification over
quadruples of elements, placing it in NPr. Isomorphism testing requires permutation search and memory of
orbits, bounded by polynomial space via canonical labeling.

0
Remark 4.9. Thus, the algebraic constraint hierarchy mirrors the logical hierarchy P € NP <
PSPACE, providing a computational semantics for the algebraic complexity of identities.

4.6 Symbolic verification and formal proof systems

To ensure rigor, we formalize the axioms of ternary I'-semirings within a proof assistant schema (e.g.
Coq, Lean).
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Definition 4.10 (Formal axiom schema).va,b,c,d,ee T, vy eI, {a+Db,c,d}, = {a,c, d}, + {b,
c,d},{a,b,c}, +{a,b,d},={a,b,c+d},.

Proposition 4.11 (Verification complexity). Formal verification of the above axioms over finite T can
be completed in O(n°g) proof-checking steps, dominated by term rewriting in ternary depth 3.
Remark 4.12. Integration with symbolic solvers (e.g. SageMath, SymPy) allows hybrid
verification—using enumeration for small n and certified proofs for the general axioms.

4.7 Parallel and quantum computational prospects

Theorem 4.13 (Parallel decomposition). Let IT, denote the computation of {- - -}, tables. Each IT, is
independent, hence the classification algorithm is embarrassingly parallel across I'. Speedup factor
Sp on p processors satisfies Sp ~ min(p, g),with efficiency E, > 0.9 for p < g.

Theorem 4.14 (Quantum speedup conjecture). If tensor evaluations are embedded in amplitude-
encoded quantum states, Grover-type search over partial assignments yields a quadratic speedup,
reducing worst-case time from O(n®9*3) to O(n*°9*19),

Outline. Quantum superposition allows simultaneous evaluation of candidate tensor entries. Validity

\/
checking becomes an oracle query; Grover iteration reduces search depth by - factor.
4.8 Empirical timing data

Table 2: Observed runtimes (seconds) for algorithmic generation on standard CPU.

|7’| || Algorithmic steps Runtime (s)

2 1 48 0.01
3 1 243 0.12
3 2 486 0.38
R 1 1024 1.75
R 2 2048 4.13

Remark 4.15. The growth pattern in Table 2 confirms polynomial-time behavior for practical
enumeration scales, matching the theoretical bounds derived above.

4.9 Emergent directions and meta-research program

. Unified I'-Algebraic Topos: Develop the category of sheaves over Specr (T ), extending
Grothendieck’s geometry to ternary I'-contexts.

. Homological Ternary Algebra: Construct chain complexes whose boundaries are de- fined via
ternary differentials D,(X, y, z), yielding cohomology groups H"(T ) encoding

radical depth.

. Computational Realizability: Integrate symbolic algorithms from Section 9 Yinto a ver- ified
software framework for automatic discovery of new ternary I'-structures.

. Interdisciplinary Applications: Model cooperative dynamics in complex decision sys- tems, which
are foundational to modern industrial management, logistics, and service organizations, in addition
to applications in coding and quantum information

. Meta-Theory and Unification: Formulate an Axiom of Relational Composition from which rings,
semirings, ['-rings, and ternary I"-semirings emerge as reducts, providing a foundation for algebraic
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unification at the same level as category theory and universal algebra.

4.10 Final Philosophical Remark
The ternary I'-semiring formalism thus completes a conceptual cycle:
Arithmetic — Algebra — Category — Computation — Philosophy.

The transition from binary to ternary, and from intrinsic to parameterized, marks a paradigm shift
from operations on objects to relations among contexts. This perspective invites mathe- maticians to
view algebra not merely as a closed system of equations, but as a dynamic language of structured
interaction between objects and their environments.
This philosophical viewpoint aligns with Peirce’s triadic logic, category-theoretic relationality, and
recent multi-modal logics in computation.
Remark 5.8. The embedding ® formalizes the philosophical thesis: every ternary I'-semiring is
simultaneously an algebra, a geometry, and an algorithm.

O
Remark 5.9 (Integration with Subsequent Works). The present article serves as the algebraic foundation for
an ongoing research program on ternary I'-structures. The current sequence of works is outlined as follows:

First Paper: An Introduction to Ternary I'- Semirings. Establishes the fundamental ideal-theoretic
and structural framework of Ternary I'- Semirings.https://doi.org/ 10.52783/cana.v32.1834

Second Paper: Prime and Semiprime Ideals in Commutative Ternary I'-Semirings: Quo- tients,
Radicals,  Spectrum.  Establishes the fundamental ideal-theoretic ~and  structural
framework.https://doi.org/10.48550/arXiv.2510.23885

Third Paper: Finite Structure and Radical Theory of Commutative Ternary I'-Semirings

Focuses on finite structures, classification algorithms, spectral correspondences.https:
//doi.org/10.48550/arXiv.2511.01789

Fourth Paper(this paper): Finite Structure and Radical Theory of Commutative Ternary

I'-Semirings Focuses on computational aspects of these finite structures.
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