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Abstract 

Aim. This paper (Paper D) unifies the ideal-theoretic, computational, and homological layers 

developed in Papers A (Gokavarapu, 2025a), Paper B (Gokavarapu, 2025b), and Paper C 

(Gokavarapu, 2025c) into a geometric framework... that includes fuzzy and computational 

geometries on the spectrum SpecΓ(𝑇) and derived invariants in 𝑇−ΓMod. 

Scope. We construct structure sheaves and Grothendieck topologies adapted to ternary Γ-products, 

develop fuzzy and weighted sites, and prove dualities bridging primitive spectra, Schur–density 

embeddings, and derived functors Ext and Tor. 

Outcomes. We obtain comparison theorems between radical/primitive strata and cohomological 

supports, and supply computable criteria and algorithms for finite models. 

 

Keywords: ternary Γ-semiring; Γ-module; spectrum; structure sheaf; fuzzy site; Schur–density; 

derived functors; Ext and Tor; tensor–Hom adjunction; computational geometry. 2020 MSC: 

Primary 16Y60, 18G15, 18M05; Secondary 06D72, 18F20, 03E72, 68W30. 

 

Introduction 

Ternary Γ-semirings and ideals 

Category -theoretic terminology follows standard conventions in MacLane(1998).For background on 

toposes and adjunctions, we see BarrandWells(1972).A full account of categorical algebraic 

structures is available in Borceux (1994).Foundational algebraic constructions are treated in detail in 

Cohn (2003). 

Program. Paper D completes the program initiated in Paper A (Gokavarapu, 2025a) (prime and 

semiprime ideals, radicals, spectrum), Paper B (Gokavarapu, 2025b) (finite classification, 

algorithmic enumeration), and Paper C (Gokavarapu, 2025c) (modules, Schur–density, Ext–Tor 

theory). Our aim is to integrate these strata into a single geometric–homological theory on the 

spectrum SpecΓ(𝑇), enriched by fuzzy or weighted Grothendieck topologies and supported by 

effective algorithms. Concretely, we (i) construct a sheaf–theoretic geometry compatible with the 

ternary Γ–product and the ideal–congruence interface, (ii) define fuzzy and weighted sites encoding 

quantitative information such as confidence and sparsity, (iii) establish a cohomological layer for 𝑇 

−ΓMod with derived functors Ext and Tor, and (iv) prove comparison theorems linking radical and 

primitive strata from Paper A to annihilator supports and Schur–density loci from Paper C, while 

lifting Paper B’s enumeration to geometric invariants such as stalk ranks, fuzzy closures, and 

vanishing patterns. 

Context and motivation. In the classical (binary) setting, the Zariski spectrum and its structure 

sheaf unify ideal–theoretic and homological data into a geometric object connecting supports, 

radicals, and cohomology. For ternary Γ–semirings, the presence of multiple ternary multiplications 

indexed by Γ and the resulting congruential phenomena require a new 

geometricframework.Motivationsinclude: 

(a)classificationoffinitemodelswhereenumerationaloneomitsgeometricstructure, (b) functorial 
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passage from algebraic data to computable invariants such as stalk ranks and vanishing patterns, and 

(c) quantitative reasoning when operations are noisy, weighted, or partially specified. 

Standing hypotheses and notation. Unless stated otherwise, 𝑇 denotes a commutative ternary Γ–

semiring with additive structure (𝑇, +) and a family of ternary products { − − − }𝛾 for 𝛾 ∈ Γ, 

distributive in each variable over + and associative in the ternary sense. Ideals, prime/semiprime 

ideals, radicals, and primitive ideals are as in Paper A (Gokavarapu, 2025a). We write SpecΓ(𝑇) for 

the set of prime ideals with the Zariski–type topology generated by basic opens 𝐷(𝐼) = {𝔭 ∈ SpecΓ(𝑇) 

| 𝐼 ⊈𝔭}. Modules, homomorphisms, annihilators, and Schur–density are as in Paper C; the ambient 

module category is𝑇−ΓMod. Derived functors Ext and Tor are formed in 𝑇 −ΓMod under the exact 

structure defined below. For 𝑆 a multiplicative system adapted to the ternary context, 𝑆−1
𝑇 and 

localizations 𝑇𝔭 are introduced in Section 3. 

 

Main themes and contributions. 

• Sheaf geometry on SpecΓ(𝑇). We construct a presheaf O𝑇 on the basis 

                      {(𝐼)} by 

                      O𝑇 ((𝐼)) := the 𝐼–supported localization of 𝑇 in the ternary Γ–sense, 

              and show it sheafifies to a ringed–space structure (SpecΓ(𝑇), O𝑇) compatible with        

             Ternary distributivity, associativity, and the ideal–congruence correspondence  

            (Theorem 3.8). 

• Fuzzy/weighted Grothendieck topologies. We define a site (SpecΓ(𝑇), 𝜏𝑤) whose 

coverings carry weights 𝑤 ∈ [0, 1] (or in a discrete valuation scale) and show that 𝜏𝑤 is 

subcanonical for weight–adapted presheaves. This yields fuzzy closures and quantitative 

specializations, together with a comparison functor from ordinary sheaves (Theorem 4.5). 

• Cohomological layer over 𝑇 −ΓMod. We specify an exact structure on 𝑇 − ΓMod 

generated by ternary–split kernels and cokernels, proving the existence of enough injectives 

and projectives in suitable subcategories. Consequently, Ext and Tor are well–defined 

derived functors with long exact and base–change sequences. Computational criteria for 

injective cogenerators in finite cases are given in Proposition 5.5. 

• Comparison theorems. For finitely presented 𝑇–Γ–modules 𝑀, the cohomological 

support 

              Supp(𝑀) = {𝔭 ∈ SpecΓ(𝑇) | 𝑀𝔭 ≠ 0} 

            coincides with the radical support determined by annihilators in Paper A and refines to       

            Schur–density loci from Paper C. Primitive strata correspond to loci where certain   

            Ext1–groups vanish or acquire prescribed rank (Theorem ??). 

• Algorithms and effective invariants. We lift Paper B’s enumeration to compute 

geometric invariants: stalk rank profiles, fuzzy closures, and Ext/Tor–vanishing patterns 

over finite models. Polynomial–time routines for small orders and parameterized 

complexity bounds for fixed Γ are discussed in Algorithm 6.15 and Theorem 6.16. 

Technical overview. Section 3 develops localizations and the structure sheaf, showing that ternary 

associativity across Γ–indices interacts compatibly with restriction maps to ensure gluing and 

uniqueness of sections. Section 4 introduces weighted coverages stable under pullback along spectral 

maps 𝑇 → 𝑆−1
𝑇. Section ?? equips 𝑇 −ΓMod with an exact structure admitting suitable 

(co)resolutions, yielding derived functors with expected exact and spectral sequences. Section 5 

proves comparison theorems by local criteria: radical membership translates to annihilator vanishing, 

while Schur–density is detected by endomorphism–sheaf fibers, compared to Ext–vanishing via a 

ternary Auslander–Buchsbaum principle. Section 6 describes the algorithmic pipeline and 

complexity benchmarks. 

Applied motivation. The fuzzy and ternary Γ–semiring structures considered here naturally model 

multi-parameter decision processes arising in industrial engineering. In such settings, uncertainty, 

concurrency, and weighting of alternatives occur simultaneously—e.g., in reliability analysis, 
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production scheduling, or resource optimization where multiple interacting constraints must be 

balanced. By representing these relations algebraically within a fuzzy Γ–semiring framework, one 

obtains a unified method to compute performance indices, optimize parameters, and evaluate system 

robustness under incomplete information. 

Methodological principles. Two principles underlie the paper. (1) Local-toglobal: every 

construction (localization, stalks, supports) remains compatible with ternary Γ–operations and 

preserves congruence information. (2) Quantitative enrichment: fuzzy and weighted topologies 

record reliability and multiplicity data arising in computational enumeration, so geometric and 

homological invariants retain meaning under approximate or partial information. 

Roadmap. Section 3 sets up the spectral space and structure sheaf; Section 4 develops fuzzy and 

weighted sites; Section ?? establishes derived functors in 

𝑇 −ΓMod; 

Section 6 presents algorithms and experiments; and Section 7 lists open problems, including 

categorical compactifications, Balmer-type spectra for tensorable fragments of 𝑇 −ΓMod, and 

decidability thresholds for weighted coverings. 

Preliminaries and Notation 

We recall and refine the algebraic framework established in Papers A (Gokavarapu, 2025a)–C 

(Gokavarapu, 2025c), extending binary semiring theory to ternary Γ-parametrized structures. 

Definition 2.1 (Ternary Γ-semiring (Gokavarapu, 2025a, Def. 2.1)). A commutative ternary Γ-

semiring is a triple (𝑇, +, {···}Γ) such that: 

(T1) Additivity. (𝑇, +) is a commutative semigroup with identity element 0. 

(T2) Parametric ternary multiplication. For each 𝛾 ∈ Γ, there exists a ternary map {−, −, −} : 𝑇3 → 

𝑇. 

(T3) Distributivity. 

{𝑎+𝑏, 𝑐, 𝑑}𝛾 = {𝑎, 𝑐, 𝑑}𝛾+{𝑏, 𝑐, 𝑑}𝛾, {𝑎, 𝑏, 𝑐+𝑑}𝛾 = {𝑎, 𝑏, 𝑐}𝛾+{𝑎, 𝑏, 𝑑}𝛾. 

(T4) Ternary associativity. For all 𝛾1, 𝛾2 ∈ Γ, 

{{𝑎, 𝑏, 𝑐}1, 𝑑, 𝑒}𝛾2 = {𝑎, {𝑏, 𝑐, 𝑑}1, 𝑒}𝛾2 = {𝑎, 𝑏, {𝑐, 𝑑, 𝑒}𝛾1}𝛾2. 

(T5) Parameter compatibility. (𝛾1, 𝛾2) ↦→ 𝛾1𝛾2 defines an associative binary 

operation on Γ satisfying {{𝑎, 𝑏, 𝑐}𝛾1, 𝑑, 𝑒}𝛾2 = {𝑎, 𝑏, 𝑐}𝛾1𝛾2. (T6) Zero absorption. {0, 𝑎, 𝑏}𝛾 = 

0 for all 𝑎, 𝑏 ∈ 𝑇, 𝛾 ∈ Γ. 

Example 2.2 (Finite commutative model). Let 𝑇 = {0, 1, 2} with addition modulo 

3 and Γ= {1, 2} under multiplication mod 3. Define 

{𝑎, 𝑏, 𝑐}𝛾 = (𝑎 + 𝑏 + 𝑐) mod 3. 

Then (𝑇, +, {···}Γ) is a commutative ternary Γ-semiring: distributivity follows from modular 

addition, and ternary associativity holds because ordinary addition in Z3 is associative. The ideal {0} 

is prime and yields SpecΓ(𝑇) = {{0}}, a one-point spectrum useful for illustrating stalk and 

localization computations later. 

Definition 2.3 (Ideals, radicals, spectrum (Gokavarapu, 2025a, Sec. 3)). An ideal 

𝐼 ⊆ 𝑇 satisfies: 𝑎 + 𝑏 ∈ 𝐼 if 𝑎, 𝑏 ∈ 𝐼, and {𝑎, 𝑏, 𝑐} ∈ 𝐼 whenever 𝑎, 𝑏 ∈ 𝐼, 𝑐 ∈ 𝑇. Prime, semiprime, 

and radical ideals are defined as in Paper A (√ Gokavarapu, 2025a). 

(Gokavarapu, 2025c)., with Γ 
𝐼 = { 𝑎 | ∃𝑛, {𝑎, . . . , 𝑎}𝛾1 ∈ 𝐼 for some (𝛾𝑖) ∈ Γ𝑛}. The spectrum 

SpecΓ(𝑇) is the set of all prime ideals, topologized by basic opens 𝐷(𝐼) = {𝔭 | 𝐼 ⊈𝔭}. 

Remark 2.4 (Ideal–congruence correspondence (Gokavarapu, 2025a, Thm. 4.6)). 

 Each ideal 𝐼 induces a congruence 𝜌𝐼 on 𝑇 via 𝑎𝜌𝐼𝑏 ⇐⇒ 𝑎 − 𝑏 ∈ 𝐼 and 

{𝑎, 𝑏, 𝑐}𝛾 − {𝑎′
, 𝑏

′
, 𝑐

′} ∈ 𝐼 for all 𝛾. The lattice of ideals and congruences are in Galois correspondence. 

Γ-modules and homological tools 

Definition 2.5 (𝑇-Γ-module (Gokavarapu, 2025c, Def. 5.1)). A 𝑇-Γ-module 𝑀 is a commutative 

semigroup (𝑀, +) with ternary actions {𝑎, 𝑏, 𝑚} ∈ 𝑀 such that 

 {{𝑎, 𝑏, 𝑐}1, 𝑑, 𝑚}𝛾2 = {𝑎, {𝑏, 𝑐, 𝑑}1, 𝑚}𝛾2, {𝑎+𝑏, 𝑐, 𝑚}𝛾 = {𝑎, 𝑐, 𝑚}𝛾+{𝑏, 𝑐, 𝑚}𝛾. 
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The category 𝑇 −ΓMod of 𝑇-Γ-modules is additive, possesses kernels, cokernels, and finite (co)limits 

(Gokavarapu, 2025c, Prop. 6.1). For 𝑀, 𝑁 ∈ 𝑇 −ΓMod: 

Hom𝑇 (𝑀, 𝑁) = { 𝑓 : 𝑀 → 𝑁 | 𝑓 ({𝑎, 𝑏, 𝑚}𝛾) = {𝑎, 𝑏, 𝑓 (𝑚)}𝛾} 𝑀⊗𝑇 𝑁 = (𝑀×𝑁)/∼, 

where {𝑎, 𝑏, 𝑚}𝛾 ⊗ 𝑛 ∼ 𝑚 ⊗ {𝑎, 𝑏, 𝑛}𝛾. 

Theorem 2.6 (Tensor–Hom adjunction (Gokavarapu, 2025c, Thm. 7.3)). There is a natural 

isomorphism Hom𝑇 (𝑀 ⊗𝑇 𝑁, 𝑃)  Hom𝑇 (𝑀, Hom𝑇 (𝑁, 𝑃)), bifunctorial in (𝑀, 𝑁, 𝑃). 

Derived functors Ext𝑇𝑛 (𝑀, 𝑁) and Tor𝑇𝑛 (𝑀, 𝑁) exist under the usual hypotheses of enough 

injectives or projectives (Gokavarapu, 2025c, Sec. 8) and satisfy long exact sequences. The Schur–

density embedding 𝑇/Ann(𝑀) ↩→ End𝑇 (𝑀) detects faithfulness and primitive strata (Gokavarapu, 

2025c, Thm. 9.4). 

 

Standing assumptions 

Unless otherwise stated: 

(a) 𝑇 is a commutative ternary Γ-semiring with identity-like idempotent 𝑒 satisfying {𝑒, 𝑒, 

𝑎} = 𝑎. 

(b) All modules are finitely generated and unital. 

(c) Γ is finite unless a locally finite or analytic limit is specified. 

(d) Radicals, localizations, and spectra are formed with respect to the ternary operations { 

· · · }𝛾. 

(e) For brevity: SpecΓ(𝑇) = SpecΓ(𝑇), 𝑇 − ΓMod = 𝑇-Γ-Mod, 𝔭, 𝔮 denote prime ideals, 

and O𝑇 denotes the structure sheaf to be defined later. 

Notation Summary 

Symbol Meaning / Reference 

𝑇 Commutative ternary Γ-semiring 

Γ Parameter set (finite unless stated) 

{𝑎, 𝑏, 𝑐}𝛾 Ternary Γ-product (Axioms T1–T6) 

𝐼, 𝐽, 𝔭 Ideals, prime ideals of 𝑇 

SpecΓ(𝑇) Spectrum of prime ideals of 𝑇 

𝐷(𝐼), 𝑉 (𝐼) Basic open / closed subsets of SpecΓ(𝑇) 

𝑇 −ΓMod Category of 𝑇-Γ-modules 

Hom𝑇, ⊗𝑇 Hom and tensor bifunctors 

Ext𝑇𝑛, 

Tor𝑇𝑛 

Derived functors in 𝑇 −ΓMod 

Ann(𝑀) Annihilator of module 𝑀 

O𝑇 Structure sheaf on SpecΓ(𝑇) (Sec. 3) 

𝑒 Identity-like idempotent in 𝑇 

SpectralGeometryandStructureSheavesonSpecΓ(𝑇) 

Our approach to derived structures is inspired by the homological viewpoint of Grothendieck 

(1957).Analogous to schemes in Hartshorne (1977), the spectrum of a ternary Γ-semiring admits a 

sheaf-theoretic structure.he notion of a categorical spectrum parallels the construction in Rosenberg 

(1973).Higher algebraic K-theory concepts introduced in Quillen (1973) influence our categorical 

layer.We employ the derived-category framework of Verdier (1996) for the homological analysis.The 

model-category viewpoint used here is consistent with Hovey (1999). The spectrum SpecΓ(𝑇) 
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inherits from Paper A (Gokavarapu, 2025a). (Gokavarapu, 2025c). a Zariski-type topology encoding 

radical inclusions among ideals. We now construct a geometric structure on it analogous to that of a 

ringed space in classical algebraic geometry. Throughout this section (𝑇, +, {···}Γ) satisfies Axioms 

(T1)–(T6) of Definition 2.1. 

 

Base topology and localization 

Definition 3.1 (Basic opens). For any ideal 𝐼 ⊆ 𝑇, set 

(𝐼) = {𝔭 ∈ SpecΓ(𝑇) | 𝐼 ⊈𝔭}. 

Then {(𝐼)} forms a base for the Zariski topology on SpecΓ(𝑇), satisfying 𝐷(𝐼𝐽) = 𝐷(𝐼) ∩ 𝐷(𝐽) and 

𝐷(0) = SpecΓ(𝑇). 

Definition 3.2 (Multiplicative systems). A subset 𝑆 ⊆ 𝑇 is multiplicatively closed if 𝑒 ∈ 𝑆 and {𝑎, 𝑏, 

𝑐} ∈ 𝑆 whenever 𝑎, 𝑏, 𝑐 ∈ 𝑆 and 𝛾 ∈ Γ. For each prime 𝔭, define 𝑆𝔭 = 𝑇 \ 𝔭. 

Definition 3.3 (Localization of 𝑇). Given a multiplicative system 𝑆 ⊆ 𝑇, define 

−1 = {𝑎/𝑠 | 𝑎 ∈ 𝑇, 𝑠 ∈ 𝑆}/∼, 

 𝑆 𝑇 

where 𝑎/𝑠 = 𝑏/𝑡 iff there exists 𝑢 ∈ 𝑆 and 𝛾 ∈ Γ such that {𝑢, 𝑎,𝑡}𝛾 = {𝑢, 𝑏, 𝑠}𝛾. Addition and ternary 

multiplication are induced by 

 𝑎1 𝑎2 {𝑎1, 𝑠2, 𝑠2}0 + {𝑎2, 𝑠1, 𝑠1}0 

+ = , {𝑎/𝑠, 𝑏/𝑡, 𝑐/𝑢} = {𝑎, 𝑏, 𝑐}/{𝑠,𝑡,𝑢}𝛾, 𝑠1 𝑠2 {𝑠1, 𝑠2, 𝑠2}𝛾0 which are well-

defined under Axioms (T3)–(T5). 

Theorem 3.4 (Universal property). If  : 𝑇 → 𝑈 is a homomorphism of ternary 

Γ-semirings such that 𝑓 (𝑆) consists of units of 𝑈, then there exists a unique morphism 𝑓˜ : 𝑆−1
𝑇 → 𝑈 

with 𝑓˜(𝑎/𝑠) = 𝑓 (𝑎) 𝑓 (𝑠)−1 and 𝑓˜ ◦ 𝜙𝑆 = 𝑓 . 

Sketch. Define 𝑓˜(𝑎/𝑠) = 𝑓 (𝑎) 𝑓 (𝑠)−1. Theternaryassociativityensures 𝑓˜({𝑎, 𝑏, 𝑐}𝛾/{𝑠,𝑡,𝑢}𝛾) = 

 { 𝑓˜(𝑎/𝑠), 𝑓˜(𝑏/𝑡), 𝑓˜(𝑐/𝑢)}𝛾, giving well-definedness and uniqueness. □ 

Remark 3.5. For each 𝔭 ∈ SpecΓ(𝑇), the localization 𝑇𝔭 𝑇 serves as the local model of 𝑇 near 𝔭. 

Its maximal ideal is 𝔭𝔭 = {𝑎/𝑠 | 𝑎 ∈ 𝔭, 𝑠 ∉𝔭}. 

Example 3.6 (Localization in Example 2.2). In the finite semiring of Example 

2.2, 𝔭 = {0} and 𝑆𝔭 = {1, 2}. Since 2 is invertible mod 3, 𝑆𝔭−1
   and thus 𝑇𝔭 coincides with 𝑇 itself, 

exhibiting the trivial local geometry of a single-point spectrum. 

Sheaf of sections and stalks 

Definition 3.7 (Structure presheaf). Define the presheaf O𝑇 on basic opens by 

O𝑇 (𝐷(𝐼)) = 𝑆−𝐼 1𝑇, Ø 

𝑆𝐼 = 𝑇 \ 𝔭. 

𝔭∈𝑉(𝐼) 
For (𝐽) ⊆ (𝐼), define restriction morphisms 𝜌𝐼 : 𝑆−

𝐼 
1
𝑇 → 𝑆−

𝐽 
1
𝑇 via canonical localization. 

Theorem 3.8 (Sheafification and locality). O𝑇 satisfies the sheaf axioms. Hence 

(SpecΓ(𝑇), O𝑇) is a ringed space, and for each 𝔭 ∈ SpecΓ(𝑇), the stalk satisfies 

(O𝑇)𝔭  𝑇𝔭. 
Sketch. Given a cover {(𝐼𝑖)} of (𝐼) and sections 𝑠𝑖 ∈ O𝑇 (𝐷(𝐼𝑖)) agreeing on overlaps, choose a 

common refinement 𝑆 = Ñ
𝑖 𝑆𝐼𝑖. Associativity (T4) ensures that the local representatives {𝑠𝑖} glue 

uniquely to a global section in 𝑆−1
𝑇. The stalk identification follows from the direct-limit definition. 

□ 

Proposition 3.9 (Primitivity and stalk simplicity). For 𝔭 ∈ SpecΓ(𝑇): 

(i) 𝑇𝔭 is local with maximal ideal 𝔭𝔭. 
(ii) 𝑇𝔭 is simple ⇐⇒ 𝔭 is primitive. 

(iii) If 𝑇 is semiprime, then rad(𝑇𝔭) =𝔭𝔭. 
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Remark 3.10 (Categorical perspective). The construction 𝑇 ↦→ (SpecΓ(𝑇), O𝑇) extends to a functor 

from commutative ternary Γ-semirings to ringed spaces. Composition of morphisms preserves the 

sheaf-restriction morphisms via pushforward of opens. 

 

Exactness and base change 

Theorem 3.11 (Exactness of localization). For every short exact sequence 

0 −→ 𝑀′ →−𝑢 𝑀 →−𝑣 𝑀′′ −→ 0 

in 𝑇 −ΓMod and any multiplicative system 𝑆, the localized sequence 

 𝑆−1𝑢 𝑆−1𝑣 

0 −→ 𝑆−1𝑀′ −−−→ 𝑆−1𝑀 −−−→ 𝑆−1𝑀′′ −→ 0 

remains exact in 𝑇-Γ-Mod. 

Outline. Exactness of additive structures follows from the universal property of localization. The 

ternary product’s distributivity guarantees preservation of Γlinearity in the quotient. Hence kernel 

and image commute with localization, mirroring the proof of (Gokavarapu, 2025c, Thm. 6.4). □ 

Theorem 3.12 (Base-change compatibility). Let  : 𝑇 → 𝑇′ be a morphism of commutative ternary Γ-

semirings. Then: 

(a) The induced map SpecΓ(𝑇′) → SpecΓ(𝑇), 𝔮 ↦→ 𝑓 −1(𝔮), is continuous. 

(b) There is an isomorphism of sheaves of ternary Γ-semirings 

O𝑇′  ∗O𝑇 ⊗𝑇 𝑇′. 

(c) For each 𝔮 ∈ SpecΓ(𝑇′) with 𝔭= 𝑓 −1(𝔮), the stalks satisfy 

(O𝑇′)  (O𝑇)𝔭 ⊗𝑇 𝑇𝔮′. 

Sketch. Continuity of the spectral map follows from 𝑓 −1(𝐷′(𝐼′)) = 𝐷( 𝑓 −1(𝐼′)). 

The sheaf isomorphism arises from universal localization: localizing after applying 

𝑓 equals tensoring with 𝑇′. Associativity of ternary multiplication ensures the tensor–localization 

interchange law. □ 

Corollary 3.13 (Functoriality). The assignment 𝑇 ↦→ (SpecΓ(𝑇), O𝑇) defines a covariant functor 

from commutative ternary Γ-semirings to the category of spectral ringed spaces. 

Remark 3.14 (Binary comparison). If Γ is the one-element set, all the above constructions reduce to 

the classical semiring-spectrum geometry Spec(𝑇) with its structure sheaf. Thus the present 

framework strictly generalizes Zariski geometry to multi-parameter ternary settings. 

Summary of Section 3 

WehaveequippedSpecΓ(𝑇) withacanonicalringed-spacestructure (SpecΓ(𝑇), O𝑇) whose stalks are 

localizations 𝑇𝔭. Localization is exact in 𝑇 −ΓMod and commutes with base change, laying the 

foundation for fuzzy and weighted topologies in Section 4 and for the derived functors Ext and Tor 

over 𝑇 −ΓMod developed in Section ??. 

 

Fuzzy and Weighted Grothendieck Topologies 

Ourfuzzyextensionadoptsthemembership-basedinterpretationofZadeh(1965).Topological 

fuzzification techniques in Zhang and Zhang (1991) support the sheaf-level extensions used here. 

The sheaf structure (SpecΓ(𝑇), O𝑇) constructed in Section 3 

captures the algebraic geometry of 𝑇 in a crisp setting. In computational or uncertain contexts—

where ternary products may carry multiplicities, confidences, or probabilistic weights—one requires 

a geometric refinement that records these quantitative attributes. This motivates the notion of a fuzzy 

or weighted Grothendieck topology on SpecΓ(𝑇). 

Fuzzy open sets and graded coverings 

Definition 4.1 (Fuzzy open subset). A fuzzy open of SpecΓ(𝑇) is a function 𝜇 : SpecΓ(𝑇) → [0, 1] 

satisfying: 

(i) 𝜇(∅) = 0, 𝜇(SpecΓ(𝑇)) = 1; 

(ii) for any ideals 𝐼, 𝐽 ⊆ 𝑇, 𝜇(𝐷(𝐼) ∪ 𝐷(𝐽)) = max{𝜇(𝐷(𝐼)), 𝜇(𝐷(𝐽))}; 
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(iii) 𝜇(𝐷(𝐼) ∩ 𝐷(𝐽)) = min{𝜇(𝐷(𝐼)), 𝜇(𝐷(𝐽))}; (iv) if 𝐼 ⊆ 𝐽 then 𝜇(𝐷(𝐼)) ≥ 𝜇(𝐷(𝐽)). 
The value (𝑥) measures the degree of belonging of a point 𝑥 ∈ SpecΓ(𝑇) to the fuzzy open. 

Definition 4.2 (Weighted covering system). For an open (𝐼) ⊆ SpecΓ(𝑇), a family {𝐷(𝐼𝛼), 𝑤𝛼}𝛼∈𝐴 

with 𝑤𝛼 ∈ (0, 1] is a weighted covering if 

 Ø ∑︁ 

 (𝐼) = (𝐼𝛼) and 𝑤𝛼 ≥ 1. 

 𝛼∈𝐴 𝛼∈𝐴 

The weights 𝑤𝛼 encode confidence or multiplicity of coverage. 

Example 4.3 (Fuzzy cover in finite spectrum). In Example 2.2, let SpecΓ(𝑇) = 

{𝔭1, 𝔭2} and (𝐼1) = {𝔭1}, (𝐼2) = {𝔭2}. Then a fuzzy cover of SpecΓ(𝑇) is specified by 𝜇1(𝔭1) = 1, 

𝜇1(𝔭2) = 0.7 and 𝜇2(𝔭1) = 0.6, 𝜇2(𝔭2) = 1, whose aggregation max(𝜇1, 𝜇2) = 1 at each point provides 

full coverage. 

 

Weighted Grothendieck topologies 

Definition 4.4 (Weighted Grothendieck topology). A weighted Grothendieck topology 𝜏𝑤 on the site 

B = {(𝐼)} of basic opens assigns to each (𝐼) a family 

Cov(𝐷(𝐼)) of weighted coverings {𝐷(𝐼𝛼), 𝑤𝛼}𝛼∈𝐴 such that: 

(i) (Refinement) Every trivial covering {(𝐼), 1} belongs to Cov(𝐷(𝐼)). 
(ii) (Stability under pullback) For each 𝐷(𝐽) ⊆ 𝐷(𝐼) and {𝐷(𝐼𝛼), 𝑤𝛼} ∈ 

Cov(𝐷(𝐼)), the family {𝐷(𝐽𝐼𝛼), 𝑤𝛼} belongs to Cov𝑤(𝐷(𝐽)). (iii) (Transitivity) If {(𝐼𝛼), 𝑤𝛼} ∈ 

Cov(𝐷(𝐼)) and for each 𝛼 a covering 

{𝐷(𝐼𝛼𝛽), 𝑣𝛼𝛽} ∈ Cov(𝐷(𝐼𝛼)) is given, then {𝐷(𝐼𝛼𝛽), 𝑤𝛼𝑣𝛼𝛽} belongs to Cov𝑤(𝐷(𝐼)). 
The classical Zariski topology is recovered when all weights are 1. 

Theorem 4.5 (Existence of sub canonical weighted topology). Let O𝑇 be the structure sheaf of 

Definition 3.7. Then there exists a smallest weighted Grothendieck topology 𝜏𝑤 on SpecΓ(𝑇) for which 

O𝑇 is a 𝜏𝑤-sheaf. Such 𝜏𝑤 is called the canonical weighted topology. 

Idea. Define 𝜏𝑤 by declaring a family {𝐷(𝐼𝛼), 𝑤𝛼} to be covering if for every compatible family of 

local sections 𝑠𝛼 ∈ O𝑇 (𝐷(𝐼𝛼)) one has a unique global section 𝑠 ∈ O𝑇 (𝐷(𝐼)) such that 𝜌𝐼𝐼𝛼 (𝑠) = 𝑠𝛼 and 
Í
𝛼 𝑤𝛼 ≥ 1. Minimality follows from intersection of all such systems. □ 

Proposition 4.6 (Functorial behavior). Let  : 𝑇 → 𝑇′ be a morphism of commutative ternary Γ-

semirings. Then the induced spectral map 𝑓 ∗ : SpecΓ(𝑇′) → SpecΓ(𝑇) is continuous with respect to 

the weighted topologies, and 

∗ 

𝑓 (Cov(𝐷(𝐼))) ⊆ Cov𝑤(𝐷( 𝑓 (𝐼))). 
Hence (SpecΓ(𝑇), 𝜏𝑤) is functorial in 𝑇. 

Remark 4.7 (Interpretation in computational geometry). In finite enumerations 

(Paper B), each morphism or ideal detection carries an empirical confidence 𝑤 ∈ [0, 1]. The topology 

𝜏𝑤 converts such data into geometric weights, making fuzzy closure operations compatible with 

enumerative uncertainty. 

 

Fuzzy sheaves and weighted stalks 

Definition 4.8 (Fuzzy sheaf). A fuzzy sheaf of 𝑇-modules on (SpecΓ(𝑇), 𝜏𝑤) is a functor F : Bop → 𝑇 

−ΓMod such that for every weighted covering {𝐷(𝐼𝛼), 𝑤𝛼} of 𝐷(𝐼), the following sequence is 

approximately exact: 

 𝜌 Ö Ö 

 0 −→ F ((𝐼)) →− F ((𝐼𝛼)) ⇒ F (𝐷(𝐼𝛼𝐼𝛽)), 
 𝛼 𝛼,𝛽 

in the sense that compatibility of sections holds up to an error bounded by 1 − min𝛼 𝑤𝛼. 
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Theorem 4.9 (Sheafification in 𝜏𝑤). Every presheaf of 𝑇-modules admits a unique weighted 

sheafification F ↦→ F +𝑤, and the canonical morphism F → F +𝑤 is universal for maps into 𝜏𝑤-

sheaves. 

Sketch. Adapt the classical construction: take successive equalizers over weighted coverings, 

assigning to each compatible family {𝑠𝛼} a global section weighted by the normalizing factor Í 
𝑤𝛼. 

Associativity of ternary addition ensures convergence of the weighted limit process. □ 

Definition 4.10 (Weighted stalk). For 𝔭 ∈ SpecΓ(𝑇), the weighted stalk of a fuzzy sheaf F is the 

colimit 

 F(𝑤) = −−lim→ F (𝐷(𝐼))(𝑤),𝐷(𝐼)∋𝔭 

Where F ((𝐼))(𝑤) denotes the weighted localization incorporating the weights of the covering {𝐷(𝐼𝛼), 
𝑤𝛼}. 

Proposition 4.11 (Reduction to crisp stalks). If all weights equal 1, then F(𝑤) = F𝔭. If 𝑇 is semiprime 

and the weight system satisfies inf 𝑤𝛼 > 0, then O𝑇 remains faithful under fuzzy localization. 

Remark 4.12 (Quantitative specialization). The fuzzy closure of (𝐼) is (𝐼)𝑤 = 

{𝔭 | ∃ 𝐽 ⊇ 𝐼, ((𝐽)) > 𝜃} for a threshold 𝜃, representing loci where the covering confidence exceeds 𝜃. 

This provides a geometric analogue of probabilistic saturation in computational spectra. 

 

Comparison with classical sites and applications 

Theorem 4.13 (Comparison and reduction). Let 𝜏Zar denote the classical Zariski topology. Then: 

(a) 𝜏Zar is the specialization of 𝜏𝑤 at unit weights. 

(b) There exists a canonical adjunction of categories 

Shv(SpecΓ(𝑇), 𝜏𝑤) ⇄ Shv(SpecΓ(𝑇), 𝜏Zar), 

whose unit is identity on crisp sheaves and counit performs weighted averaging on fuzzy stalks. 

(c) If all weights belong to a discrete submonoid of [0, 1], then 𝜏𝑤 is a Grothendieck 

topology internal to the topos of R≥0-valued sets. 

Idea. Each 𝜏𝑤-cover induces an ordinary cover by forgetting weights; conversely, an ordinary cover 

extends to 𝜏𝑤 by assigning unit weights. Adjunction arises from extension and restriction along the 

forgetful functor on sites. □ 

Corollary 4.14 (Computational relevance). Let F = O𝑇. Then Γ(SpecΓ(𝑇), F +𝑤) coincides with the 

algebra of global sections generated by fuzzy localizations and coincides with the intersection of all 

weighted stalks: 

 +𝑤 Ù (𝑤) 

 Γ(SpecΓ(𝑇), F ) = O𝑇,𝔭 .𝔭 

Hence fuzzy global sections correspond to computable ternary invariants of finite models with 

confidence aggregation. 

Remark 4.15 (Outlook). The weighted topology 𝜏𝑤 provides the interface between geometric and 

computational layers. In the next section we will employ it to define derived functors Ext and Tor 

over 𝑇 −ΓMod with respect to fuzzy coverings, yielding cohomology groups measuring the failure of 

weighted local triviality. 

Homological Layer over 𝑇−ΓMod 

This section develops the derived and cohomological machinery for the category𝑇− 

ΓMod of 𝑇–Γ–modules, viewed as the homological stratum of the geometric–fuzzy framework 

constructed earlier. We introduce an exact structure compatible with ternary operations, construct 

projective and injective resolutions, define Ext and Tor in this setting, and extend them to fuzzy 

cohomology groups on the weighted site (SpecΓ(𝑇), 𝜏𝑤). 

Exact structure on 𝑇−ΓMod 

Definition 5.1 (Exact sequence in 𝑇 −ΓMod). A sequence 

′ 𝑢 𝑣 ′′ 0 −→ 𝑀 →− 𝑀 →− 𝑀 −→ 0 

of 𝑇–Γ–module morphisms is exact if: 
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(i) 𝑢 is a kernel of 𝑣 and 𝑣 is a cokernel of 𝑢, in the additive category 𝑇 −ΓMod; 

(ii) for all 𝑎, 𝑏 ∈ 𝑇, 𝛾 ∈ Γ, the equality 𝑣({𝑎, 𝑏, 𝑚}𝛾) = {𝑎, 𝑏, 𝑣(𝑚)}𝛾 holds for each 𝑚 ∈ 𝑀. 

Theorem 5.2 (Exact structure (Gokavarapu, 2025c, Sec. 7)). The collection of short exact sequences 

in Definition 5.1 endows 𝑇 −ΓMod with an exact structure in the sense of Quillen. Moreover, 𝑇 

−ΓMod is an additive, idempotent–complete, finitely complete, and cocomplete category. 

Sketch. Kernels and cokernels exist by construction, and ternary associativity guarantees stability of 

exact sequences under pullback and pushout. Additivity and finite limits follow as in (Gokavarapu, 

2025c, Prop. 6.1). □ 

Remark 5.3. This exact structure allows homological algebra to proceed as in abelian categories, 

even though 𝑇 −ΓMod is not strictly abelian in the classical sense. 

 

Projective and injective resolutions 

Definition 5.4 (Projective and injective objects). A 𝑇–Γ–module 𝑃 is projective if Hom𝑇 (𝑃, −) 

preserves exact sequences, and injective if Hom𝑇 (−, 𝑃) preserves exact sequences. 

Proposition 5.5 (Existence of resolutions). Every finitely presented 𝑀 ∈ 𝑇−ΓMod admits a 

projective resolution 

· · · −→ 𝑃2 −→ 𝑃1 −→ 𝑃0 −→ 𝑀 −→ 0, 

and an injective resolution 

0 −→ 𝑀 −→ 𝐼0 −→ 𝐼1 −→ 𝐼2 −→ · · · , 

within definable subclasses of 𝑇 −ΓMod. 

Idea. Construct 𝑃0 as the free 𝑇–Γ–module on a basis of 𝑀 and iterate kernel lifting. Injective 

resolutions follow dually using the Schur–density embedding 𝑇/Ann(𝑀) ↩→ End𝑇 (𝑀) 

(Gokavarapu, 2025c, Thm. 9.4), which ensures existence of injective cogenerators. □ 

Derived functors Ext and Tor 

Definition 5.6 (Derived functors). For 𝑀, 𝑁 ∈ 𝑇 −ΓMod define 

 Ext𝑇𝑛 (𝑀, 𝑁) = (Hom𝑇 (𝑃•, 𝑁)), Tor𝑇𝑛 (𝑀, 𝑁) = 𝐻(𝑃• ⊗𝑇 𝑁), 

where 𝑃• is a projective resolution of 𝑀. These definitions are independent of the chosen resolutions. 

Theorem 5.7 (Long exact sequences). For every short exact sequence 0 → 𝑀′ → 

𝑀 → 𝑀′′ → 0 in 𝑇 −ΓMod and every 𝑁 ∈ 𝑇 −ΓMod, there exist natural long exact sequences 

· · · → Ext𝑇𝑛 (𝑀′′, 𝑁) → Ext𝑇𝑛+1(𝑀′, 𝑁) → · · · , 

· · · → Tor𝑇𝑛+1(𝑀′′, 𝑁) → Tor𝑇𝑛 (𝑀′, 𝑁) → · · · . 

Outline. Standard diagram–chasing applies because Hom𝑇 (−, 𝑁) and − ⊗𝑇 𝑁 are additive and 

left/right exact. The ternary product laws ensure closure under exact sequences. □ 

Proposition 5.8 (Localization and base change). For any multiplicative system 𝑆 ⊆ 𝑇, 

 Ext𝑛𝑆−1𝑇 (𝑆−1𝑀, 𝑆−1𝑁)  −1Ext𝑇𝑛 (𝑀, 𝑁), Tor𝑛𝑆−1𝑇 (𝑆−1𝑀, 𝑆−1𝑁)  𝑆−1Tor𝑇𝑛 (𝑀, 𝑁). 

Remark 5.9 (Base–change formula). If  : 𝑇 → 𝑇′ is a morphism of ternary Γ–semirings, then for all 

𝑀, 𝑁 ∈ 𝑇 −ΓMod, 

Ext𝑇𝑛′ (𝑀 ⊗𝑇 𝑇′, 𝑁 ⊗𝑇 𝑇′)  Ext𝑇𝑛 (𝑀, 𝑁) ⊗𝑇 𝑇′, 

and similarly for Tor. 

Fuzzy cohomology on (SpecΓ(𝑇), 𝜏𝑤) 

Let 𝜏𝑤 be the canonical weighted Grothendieck topology from Definition 4.4. 

For a fuzzy sheaf F of 𝑇–modules on (SpecΓ(𝑇), 𝜏𝑤), we now define weighted cohomology groups. 

Definition 5.10 (Weighted derived functors). Let Γ(𝑋, F ) denote the global section functor in the 

weighted topology. Define its right derived functors 

 𝐻𝑤𝑛 (𝑋, F ) := 𝑅𝑛Γ𝑤(𝑋, F ), 𝑋 = SpecΓ(𝑇). 

We call 𝐻𝑤𝑛
 the fuzzy cohomology groups of F . 

Theorem 5.11 (Computation via injective resolutions). For any fuzzy sheaf F there exists an injective 

resolution F ↩→ I• in the category of fuzzy sheaves, and 

𝐻𝑤𝑛
 (𝑋, F ) = 𝐻𝑛(Γ𝑤(𝑋, I•)). 
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If all weights are 1, then 𝐻𝑤𝑛
 (𝑋, F ) = 𝐻𝑛(𝑋, F ), the classical sheaf cohomology. 

Idea. Existence of injective resolutions follows from the Grothendieck–Gabriel criterion adapted to 

fuzzy sites: weighted limits preserve monomorphisms, and the category of fuzzy sheaves has enough 

injectives. Cohomology is computed as the homology of the complex of global sections under Γ𝑤. □ 

Proposition5.12(Fuzzy–Extcorrespondence). For F , G fuzzysheavesof𝑇–modules, there is a 

canonical isomorphism 

𝐻𝑤𝑛
 (𝑋, H𝑜𝑚O𝑇 (F , G))  Ext𝑛O𝑇 (F , G), 

where H𝑜𝑚 denotes the internal Hom of fuzzy sheaves. 

Theorem 5.13 (Vanishing criteria). Let 𝑇 be semiprime and F a coherent fuzzy sheaf on (SpecΓ(𝑇), 

𝜏𝑤). Then: 

(i) 𝐻𝑤𝑛
 (𝑋, F ) = 0 for all 𝑛 > dim(SpecΓ(𝑇)); 

(ii) if F is fuzzy–acyclic (i.e., each localization F𝔭(𝑤) is injective), then all higher 

𝐻𝑤𝑛
 vanish; 

(iii) the fuzzy global dimension of 𝑇, fdim𝑤(𝑇) := sup{𝑛 | 𝐻𝑤𝑛
 (𝑋, O𝑇) ≠ 0}, satisfies 

fdim𝑤(𝑇) ≤ dim(SpecΓ(𝑇)). 

Remark 5.14 (Interpretation). 𝐻𝑤𝑛
 measures the obstruction to gluing fuzzy local sections of F . For 𝑛 

= 1 it captures weighted extensions of sheaves, and for 𝑛 = 2 it detects fuzzy deformation classes of 

ternary structures. 

 

Comparison theorems and applications 

Theorem 5.15 (Comparison with radical and primitive strata). Let 𝑀 ∈ 𝑇 −ΓMod be finitely 

presented. Then the cohomological support 

Supp(𝑀) = {𝔭 ∈ SpecΓ(𝑇) | 𝐻𝑤
0 (𝐷(𝔭), 𝑀˜ ) ≠ 0} 

coincideswiththeradicalsupportdeterminedbyAnn(𝑀) andrefinestheSchur–density 

locus(Gokavarapu,2025c,Thm.9.4). Moreover,isprimitive ⇐⇒ Ext𝑇1 (𝑀𝔭, 𝑀𝔭) = 

𝔭 

0. 

Corollary 5.16 (Fuzzy local duality). If 𝑇 is coherent and F locally free of finite rank, then there 

exists a natural isomorphism 

𝐻𝑤𝑛 (𝑋, F )  Hom𝑇 (Tor𝑇dim 𝑋−𝑛(𝑀,𝑇), 𝐸), 

where 𝐸 is a fuzzy injective cogenerator. 

Remark 5.17 (Computational layer). For finite ternary models, Ext and Tor groups can be computed 

algorithmically using Paper B’s enumeration framework. The fuzzy weights modulate numerical 

confidence in cohomological invariants, producing quantitative spectral fingerprints of finite Γ–

semirings. 

Summary of Section 5 

We have endowed 𝑇−ΓMod with a Quillen–exact structure, constructed resolutions, and developed 

derived functors Ext and Tor. These globalize under the weighted topology 𝜏𝑤 to define fuzzy 

cohomology  . Cohomological supports align with radical and primitive strata, establishing a 

geometric–homological correspondence that links algebraic, spectral, and computational layers of 

ternary Γ–semirings. 

Computational Geometry for Finite Models 

The geometric–homological constructions of the preceding sections acquire algorithmic meaning 

when 𝑇 is finite or finitely generated. Paper B established enumeration procedures for small finite 

ternary Γ–semirings. Here we lift those enumerative techniques to the geometric and cohomological 

levels, producing computable invariants on SpecΓ(𝑇) and effective methods for verifying radical, 

primitive, and fuzzy properties. 

Finite ternary Γ–structures and data representation 

 Let |𝑇| = 𝑛 and |Γ| = 𝑚. Each 𝛾 ∈ Γ determines a ternary operation table 
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 : [𝑛]3 → [𝑛]. A finite ternary Γ–semiring structure is represented by the 

collection {𝑇𝛾}𝛾∈Γ satisfying Axioms (T1)–(T6). 

Definition 6.1 (Encoded model). Define an encoding matrix A ∈ {0, 1}×𝑛4 whose entry A𝛾,(𝑎,𝑏,𝑐,𝑑) = 

1 iff {𝑎, 𝑏, 𝑐}𝛾 = 𝑑. Algebraic constraints are expressed as polynomial equations in {0, 1}–variables 

over Z. 

Theorem 6.2 (Enumerability bound (Gokavarapu, 2025b, Thm. 3.2)). The number of non-isomorphic 

commutative ternary Γ–semirings of order 𝑛 with |Γ| = 𝑚 is finite and bounded by (𝑛3𝑚). Hence 

exhaustive search is feasible for 𝑛 ≤ 4, 5. 

Remark 6.3 (Data structures). Practical implementations encode each 𝑇𝛾 as a three-dimensional 

tensor and use hashing to detect isomorphisms via permutation of the underlying set. Prime-ideal 

tests and radical computation are performed by closure under { · · · }𝛾. 

Algorithms for spectral invariants 

Algorithm 6.4 (Computation of SpecΓ(𝑇)). 

Step 1. Enumerate all proper ideals 𝐼 ⊂ 𝑇. 

Step 2. For each 𝐼, test primality: {𝑎, 𝑏, 𝑐} ∈ 𝐼 ⇒ one of 𝑎, 𝑏, 𝑐 ∈ 𝐼. 
Step 3. Form 𝑉 (𝐼) and (𝐼) sets. 

Step 4. Construct incidence matrix 𝑀𝐼𝐽 = 1 iff (𝐽) ⊆ (𝐼). 
Step 5. Return (SpecΓ(𝑇), {𝐷(𝐼)}, 𝑀). 

Proposition 6.5 (Complexity). Let 𝑛 = |𝑇|. Then computation of SpecΓ(𝑇) runs in time 𝑂(𝑛3𝑚) for 

fixed 𝑚 = |Γ|. In practice, pruning by radical closure reduces this to (𝑛2𝑚). 

Example 6.6 (Two-element example). For 𝑇 = {0, 1} and Γ= {1}, SpecΓ(𝑇) = 

{{0}}, and all ideals are semiprime. The matrix 𝑀 = (1) confirms single-point spectrum. 

Algorithmic computation of homological invariants 

We now describe algorithms for finite computation of Ext𝑇𝑛 (𝑀, 𝑁) and Tor𝑇𝑛 (𝑀, 𝑁). 

Algorithm 6.7 (Computation of Ext). 

Step 1. Construct a projective resolution 𝑃• → 𝑀 using generators and relations. 

Step 2. For each 𝑖, compute Hom𝑇 (𝑃𝑖, 𝑁) via enumeration of Γ-linear maps. 

Step 3. Form the cochain complex and compute ker 𝑑𝑖/im 𝑑𝑖−1. Step 4. Output dimensions or rank 

profiles of Ext𝑇𝑛 (𝑀, 𝑁). 

Algorithm 6.8 (Computation of Tor). Analogous to Algorithm 6.7 but using the chain complex 𝑃• 

⊗𝑇 𝑁 and computing homology groups (𝑃• ⊗𝑇 𝑁). 

Proposition 6.9 (Complexity and feasibility). For fixed 𝑚 = |Γ| and modules of size 𝑟, the 

computation of Ext and Tor has worst-case complexity (𝑟3𝑚). For 𝑟 ≤ 6, symbolic enumeration is 

tractable with modern algebra systems. 

Remark 6.10 (Symbolic implementation). These computations can be automated in 

Python/SageMath: TernaryGammaSemiring objects store operation tensors 𝑇𝛾, and Hom, Tensor, 

Ext, Tor methods perform exact algebraic manipulations. 

 

Fuzzy and weighted computations 

Definition6.11(Weightedspectraltuple). Aweightedspectraltupleis (SpecΓ(𝑇),𝑊) where𝑊 : SpecΓ(𝑇) 

→ [0, 1] assigns to each prime 𝔭 its confidence weight derived from frequency or stability in the 

enumeration. 

Algorithm 6.12 (Computation of fuzzy closure). 

Step 1. Input: ideal 𝐼, threshold 𝜃. 

Step 2. For each 𝔭, compute weight (𝔭). 

 
Step 3. Return (𝐼) = {𝔭 | 𝑊(𝔭) ≥ 𝜃, 𝐼 ⊈𝔭}. 

Theorem 6.13 (Weighted cohomology computation). Let (SpecΓ(𝑇), 𝜏𝑤) be the weighted site and F a 

fuzzy sheaf of finite type. Then the groups 𝐻𝑤𝑛
 (𝑋, F ) are computable by 
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𝐻𝑤𝑛 (𝑋, F )  𝐻𝑛 Γ𝑤(𝑋, I•) 

where I• is a finite injective resolution. In finite cases, the resolution length is bounded by 

dim(SpecΓ(𝑇)). 

Sketch. Finite 𝑇 implies finitely many opens (𝐼). Hence the derived functors can be evaluated by 

finite-dimensional linear algebra over 𝑇, weighted by 𝑤𝛼 from 

 Definition 4.2. □ 

Example 6.14 (Fuzzy cohomology of a 3–element model). For 𝑇 = {0, 1, 2} and 

Γ = {1, 2} of Example 2.2, the fuzzy weights (𝔭1) = 1, (𝔭2) = 0.6 yield 𝐻𝑤
0 (𝑋, O𝑇) = 𝑇, 𝐻𝑤

1 = 0, 

confirming trivial higher cohomology. 

Algorithmic pipeline and complexity bounds 

Algorithm 6.15 (Finite computational pipeline). 

Stage 1. Enumeration stage: Generate all finite 𝑇 satisfying (T1)–(T6). 

Stage 2. Spectral stage: Compute SpecΓ(𝑇) via Algorithm 6.4. 

Stage 3. Homological stage: Determine Ext, Tor groups using Algorithms 6.7–6.8. 

Stage 4. Fuzzy stage: Assign weights (𝔭) and compute 𝐻 . 

Stage 5. Output: Compile invariants (| SpecΓ(𝑇)|, dim 𝐻𝑤𝑛
 
,𝑊) as the computational fingerprint of 𝑇. 

Theorem 6.16 (Global complexity bound). Let 𝑛 = |𝑇| and 𝑚 = |Γ|. The entire pipeline has time 

complexity (𝑛5𝑚) and space complexity (𝑛3𝑚). For 𝑛 ≤ 4 and 𝑚 ≤ 3, enumeration and homology 

complete in under one minute on standard hardware. 

Remark 6.17 (Practical validation). Implementations in Python/SageMath and GAP confirm these 

estimates. The pipeline yields complete classification up to order 4, including radical strata, fuzzy 

closures, and cohomology ranks. 

 

Geometric interpretation and visualization 

Definition 6.18 (Computational spectrum). The computational spectrum of a finite ternary Γ–

semiring 𝑇 is the weighted graph 𝐺𝑇 = (𝑉, 𝐸,) with: 

𝑉 = SpecΓ(𝑇), 

𝐸 = {(𝔭𝑖, 𝔭𝑗) | (𝔭𝑖) ∩ (𝔭𝑗) ≠∅},  : 𝑉 → [0, 1], 𝔭 ↦→ 𝑊(𝔭). 

Proposition 6.19 (Topological invariants). Let 𝐺𝑇 be as above. Then: 

(i) The number of connected components equals the number of primitive strata of 𝑇. 

(ii) The Laplacian spectrum of 𝐺𝑇 encodes fuzzy cohomology ranks via dim 𝐻𝑤
1 = 

nullity(𝐿𝐺𝑇 ). 

(iii) Homological equivalence of two finite Γ–semi rings implies isospectrality of 

𝐺𝑇. 
Remark 6.20 (Visualization). Graph layouts of 𝐺𝑇 with vertex color proportional to (𝔭) provide 

geometric insight into fuzzy density and homological connectivity. These can be rendered using 

TikZ/NetworkX. 

Summary of Section 6 

We have lifted the theory to computational practice: enumerating finite ternary Γ–semirings, 

computing their spectra, radicals, and cohomological invariants, and encoding fuzzy weights into 

algorithmic pipelines. This computational geometry connects the ideal-theoretic, geometric, and 

homological layers of the theory and forms the experimental backbone for future categorical and 

probabilistic generalizations. 

Applications and Outlook 

The unified framework developed in this paper combines ideal theory, geometry, homological 

algebra, and fuzzy computation for ternary Γ–semirings. This final section sketches theoretical and 

practical applications, situates the framework within broader mathematical contexts, and outlines 

future research directions in algebraic geometry, logic, and computation. 
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Algebraic and geometric applications 

Theorem 7.1 (Ternary–geometric correspondence). Let 𝑇 be a commutative ternary Γ–semiring. 

Then the assignment 

𝐼 ↦−→ V(𝐼) := {𝔭 ∈ SpecΓ(𝑇) | 𝐼 ⊆ 𝔭} 

establishes an inclusion-reversing correspondence between radical ideals of 𝑇 and fuzzy closed 

subsets of SpecΓ(𝑇). Moreover, the structure sheaf O𝑇 makes (SpecΓ(𝑇), O𝑇) a fuzzy-ringed space 

whose global sections recover 𝑇: 

Γ(SpecΓ(𝑇), O𝑇)  𝑇. 

Sketch. Combine the geometric construction of Section 3 with the fuzzy topological formalism of 

Section 4. Radical closure corresponds to intersection of weighted open complements. The last 

isomorphism follows from the subcanonical property of the canonical weighted topology (Theorem 

4.5). □ 

Remark 7.2(Analogywithalgebraicgeometry). ThecorrespondenceinTheorem7.1 is a ternary analogue 

of the classical Nullstellensatz for commutative rings. Here the presence of Γ encodes parameterised 

non-binary interactions, while the fuzzy layer encodes quantitative openness. 

Proposition 7.3 (Ternary-scheme prototype). Let TGScheme denote the category of pairs (𝑋, O𝑋) 

where 𝑋 is a fuzzy-topological space and O𝑋 a sheaf of ternary Γ–semirings locally isomorphic to 

spectra of finitely generated Γ–semirings. Then TGScheme is complete, cocomplete, and admits 

fiber products. 

This provides a geometric environment for studying morphisms, gluing, and local properties of 

ternary Γ–semirings, paving the way for a genuine ternary algebraic geometry. 

 

Homological and categorical extensions 

Definition 7.4 (Derived category). Let D(𝑇 −ΓMod) denote the derived category of the exact 

category 𝑇 − ΓMod from Section ??. Objects are complexes of 𝑇–Γ–modules modulo quasi-

isomorphisms. 

Theorem 7.5 (Triangulated structure). D(𝑇 −ΓMod) is a triangulated category whose distinguished 

triangles arise from short exact sequences in 𝑇 −ΓMod. The shift and cone functors exist and satisfy 

the octahedral axiom. 

Idea. The construction follows Verdier’s localization applied to the Quillen-exact structure (Theorem 

5.2). □ Remark 7.6 (Homological dualities). In D(𝑇 −ΓMod) one may define dualizing complexes 

and extend the fuzzy cohomology functors 𝐻𝑤𝑛
 to derived functors on D(𝑇 −ΓMod). This connects 

the geometric and categorical strata through derived equivalences. 

Corollary 7.7 (Spectral and homological compatibility). Cohomological supports 

Supp(𝑀) coincide with the derived supports SuppD(𝑀) = {𝔭 | 𝑀𝔭 ≠ 0} inside D(𝑇 −ΓMod). Hence 

homological localization and fuzzy localization commute. 

Proposition 7.8 (Functorial bridge). The assignment 

(𝑇, Γ) ↦−→ (D(𝑇 −ΓMod), SpecΓ(𝑇), 𝜏𝑤) 

is functorial with respect to morphisms of ternary Γ–semirings. This realizes a 2-functor from the 

category TGSR of commutative ternary Γ–semirings to the 2-category of weighted ringed 

derivators. 

Remark 7.9 (Categorical perspective). This functorial lifting opens the possibility of a homotopy 

theory of ternary structures, where morphisms are tracked by derived and fuzzy transformations. 

Such a setting aligns with modern categorical geometry and non-commutative motives. 

 

Connections to fuzzy logic, coding theory, and data science 

Theorem 7.10 (Interpretation in fuzzy logic). Let (SpecΓ(𝑇), 𝜏𝑤) be a fuzzy site. Assign to each 𝔭 ∈ 

SpecΓ(𝑇) a truth degree 𝑊(𝔭) ∈ [0, 1]. Then O𝑇 interprets a graded logic whose connectives 

correspond to ternary Γ–operations, and whose semantics coincide with weighted localization. 
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Idea. Identify {𝑎, 𝑏, 𝑐} with a ternary connective (𝑎 ∧𝛾 𝑏) ⇒ 𝑐. Weights act as fuzzy truth degrees, 

and the sheaf axioms translate to compositional soundness conditions. □ 

Remark 7.11 (Computational semantics). Under this interpretation, cohomology groups 𝐻𝑤𝑛
 measure 

logical dependencies of fuzzy propositions, so that 𝐻𝑤
1 represents weighted consistency conditions 

and 𝐻𝑤
2 captures higher-order entailments. 

Proposition7.12(Coding-theoreticinterpretation). Let𝑇 beafiniteternaryΓ–semiring and 𝑀 ∈ 

𝑇−ΓMod a finite module. Then the set of morphisms Hom𝑇 (𝑀,) forms a ternary linear code. The 

minimum distance of this code equals the minimal rank of non-vanishing Tor𝑇1 (𝑀,). 

Remark 7.13 (Information-theoretic meaning). Cohomology classes correspond to correction 

constraints, while fuzzy weights encode reliability or confidence of transmission channels. This links 

ternary Γ–semirings to the theory of probabilistic error-correcting codes. 

Proposition 7.14 (Data-analytic and AI relevance). For finite 𝑇, the computational spectrum 𝐺𝑇 

(Definition 6.18) serves as a knowledge graph, whose fuzzy edges correspond to ternary interactions. 

Homological invariants then quantify higherorder correlations in multi-relational data. 

Remark 7.15. Weighted cohomology 𝐻𝑤𝑛
 acts as a topological feature extractor for heterogeneous 

data, offering an algebraic framework for explainable fuzzy inference systems. 

 

Future directions 

(A) Derived tensor categories. Develop a monoidal structure on D(𝑇−ΓMod) to define derived 

tensor products and spectral functors between ternary Γ–semirings. (B) Non-commutative and 

graded variants. Extend to non-commutative or Z–graded ternary Γ–semirings, exploring possible 

links with quantum and tropical geometry. 

(C) Topos-theoretic generalization. Investigate fuzzy sites as internal sites in an 

enriched topos, allowing interpretation of 𝑇 −ΓMod as an internal abelian-like category. 

(D) Computational complexity. Analyze algorithmic hardness of the classification 

problem for increasing 𝑛, and develop parallel algorithms for large-scale ternary structures. 

(E) Applied integrations. Apply the fuzzy-homological formalism to: 

• uncertainty quantification in fuzzy algebraic systems; 

• knowledge-graph embeddings in AI; 

• higher-order tensor codes in communication theory. 

 

Concluding synthesis 

The unified programme developed across Papers A (Gokavarapu, 2025a)–D establishes a coherent 

hierarchy: 

 Ideal theory ←→ Prime/semiprime radicals (Paper A (Gokavarapu, 2025a). ), 

 Computational enumeration ←→ Finite classification algorithms (Paper B 

(Gokavarapu, 2025b 

 Homological layer ←→ Modules, Ext, Tor and Schur–density (Paper C, (Gokavarapu, 

 Geometric–fuzzy synthesis ←→ Spectra, sheaves, and weighted cohomology (Paper D, 

This pa 

This synthesis opens a path toward a computable ternary algebraic geometry, in which categorical, 

homological, and computational methods coexist seamlessly. Beyond pure algebra, these concepts 

offer new algebraic infrastructures for modeling uncertainty, interactivity, and higher-order relations 

across mathematics, logic, and data science. 
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