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Abstract

Aim. This paper (Paper D) unifies the ideal-theoretic, computational, and homological layers
developed in Papers A (Gokavarapu, 2025a), Paper B (Gokavarapu, 2025b), and Paper C
(Gokavarapu, 2025c) into a geometric framework... that includes fuzzy and computational
geometries on the spectrum Specr(7) and derived invariants in 7~-I'Mod.

Scope. We construct structure sheaves and Grothendieck topologies adapted to ternary I'-products,
develop fuzzy and weighted sites, and prove dualities bridging primitive spectra, Schur—density
embeddings, and derived functors Ext and Tor.

Outcomes. We obtain comparison theorems between radical/primitive strata and cohomological
supports, and supply computable criteria and algorithms for finite models.

Keywords: ternary I'-semiring; I-module; spectrum; structure sheaf; fuzzy site; Schur—density;
derived functors; Ext and Tor; tensor—-Hom adjunction; computational geometry. 2020 MSC:
Primary 16Y60, 18G15, 18MO05; Secondary 06D72, 18F20, 03E72, 68W30.

Introduction

Ternary I'-semirings and ideals

Category -theoretic terminology follows standard conventions in MacLane(1998).For background on
toposes and adjunctions, we see BarrandWells(1972).A full account of categorical algebraic
structures is available in Borceux (1994).Foundational algebraic constructions are treated in detail in
Cohn (2003).

Program. Paper D completes the program initiated in Paper A (Gokavarapu, 2025a) (prime and
semiprime 1ideals, radicals, spectrum), Paper B (Gokavarapu, 2025b) (finite -classification,
algorithmic enumeration), and Paper C (Gokavarapu, 2025¢) (modules, Schur—density, Ext—Tor
theory). Our aim is to integrate these strata into a single geometric—homological theory on the
spectrum Specr(7), enriched by fuzzy or weighted Grothendieck topologies and supported by
effective algorithms. Concretely, we (i) construct a sheaf—theoretic geometry compatible with the
ternary ['—product and the ideal-congruence interface, (i1) define fuzzy and weighted sites encoding
quantitative information such as confidence and sparsity, (iii) establish a cohomological layer for 7
—I'Mod with derived functors Ext and Tor, and (iv) prove comparison theorems linking radical and
primitive strata from Paper A to annihilator supports and Schur—density loci from Paper C, while
lifting Paper B’s enumeration to geometric invariants such as stalk ranks, fuzzy closures, and
vanishing patterns.

Context and motivation. In the classical (binary) setting, the Zariski spectrum and its structure
sheaf unify ideal-theoretic and homological data into a geometric object connecting supports,
radicals, and cohomology. For ternary I'—semirings, the presence of multiple ternary multiplications
indexed by I'  and the resulting congruential phenomena require a new
geometricframework.Motivationsinclude:
(a)classificationoffinitemodelswhereenumerationaloneomitsgeometricstructure, (b) functorial
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passage from algebraic data to computable invariants such as stalk ranks and vanishing patterns, and
(c) quantitative reasoning when operations are noisy, weighted, or partially specified.

Standing hypotheses and notation. Unless stated otherwise, 7" denotes a commutative ternary ['—
semiring with additive structure (7, +) and a family of ternary products { — — — }, for y € T,
distributive in each variable over + and associative in the ternary sense. Ideals, prime/semiprime
ideals, radicals, and primitive ideals are as in Paper A (Gokavarapu, 2025a). We write Specr(7) for
the set of prime ideals with the Zariski—type topology generated by basic opens ZA/) = {p € Specr(7)
| / €p}. Modules, homomorphisms, annihilators, and Schur—density are as in Paper C; the ambient
module category is7—I'Mod. Derived functors Ext and Tor are formed in 7”—I'Mod under the exact
structure defined below. For .§ a multiplicative system adapted to the ternary context, S '7 and
localizations 73 are introduced in Section 3.

Main themes and contributions.
. Sheaf geometry on Specr(7). We construct a presheat O7on the basis
()} by
O~7((/)) = the /supported localization of 7in the ternary I'—sense,
and show it sheafifies to a ringed—space structure (Specr(7), O7) compatible with
Ternary distributivity, associativity, and the ideal-congruence correspondence
(Theorem 3.8).
. Fuzzy/weighted Grothendieck topologies. We define a site (Specr(7), zw) whose
coverings carry weights w € [0, 1] (or in a discrete valuation scale) and show that ziis
subcanonical for weight—adapted presheaves. This yields fuzzy closures and quantitative
specializations, together with a comparison functor from ordinary sheaves (Theorem 4.5).
J Cohomological layer over 77 —I'Mod. We specify an exact structure on 7°— I'Mod
generated by ternary—split kernels and cokernels, proving the existence of enough injectives
and projectives in suitable subcategories. Consequently, Ext and Tor are well-defined
derived functors with long exact and base—change sequences. Computational criteria for
injective cogenerators in finite cases are given in Proposition 5.5.
] Comparison theorems. For finitely presented 7~I'-modules 47, the cohomological
support
Supp(#) = {p € Specr(7) | 4> # 0}
coincides with the radical support determined by annihilators in Paper A and refines to
Schur—density loci from Paper C. Primitive strata correspond to loci where certain
Ext'—groups vanish or acquire prescribed rank (Theorem ??).
J Algorithms and effective invariants. We lift Paper B’s enumeration to compute
geometric invariants: stalk rank profiles, fuzzy closures, and Ext/Tor—vanishing patterns
over finite models. Polynomial-time routines for small orders and parameterized
complexity bounds for fixed I" are discussed in Algorithm 6.15 and Theorem 6.16.
Technical overview. Section 3 develops localizations and the structure sheaf, showing that ternary
associativity across I'—indices interacts compatibly with restriction maps to ensure gluing and
uniqueness of sections. Section 4 introduces weighted coverages stable under pullback along spectral
maps 7 — S 'z Section ?? equips 7 -I'Mod with an exact structure admitting suitable
(co)resolutions, yielding derived functors with expected exact and spectral sequences. Section 5
proves comparison theorems by local criteria: radical membership translates to annihilator vanishing,
while Schur—density is detected by endomorphism—sheaf fibers, compared to Ext—vanishing via a
ternary Auslander—Buchsbaum principle. Section 6 describes the algorithmic pipeline and
complexity benchmarks.
Applied motivation. The fuzzy and ternary I'—semiring structures considered here naturally model
multi-parameter decision processes arising in industrial engineering. In such settings, uncertainty,
concurrency, and weighting of alternatives occur simultaneously—e.g., in reliability analysis,
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production scheduling, or resource optimization where multiple interacting constraints must be
balanced. By representing these relations algebraically within a fuzzy I'-semiring framework, one
obtains a unified method to compute performance indices, optimize parameters, and evaluate system
robustness under incomplete information.
Methodological principles. Two principles underlie the paper. (1) Local-toglobal: every
construction (localization, stalks, supports) remains compatible with ternary I'—operations and
preserves congruence information. (2) Quantitative enrichment: fuzzy and weighted topologies
record reliability and multiplicity data arising in computational enumeration, so geometric and
homological invariants retain meaning under approximate or partial information.
Roadmap. Section 3 sets up the spectral space and structure sheaf; Section 4 develops fuzzy and
weighted sites; Section ?? establishes derived functors in
7—I'Mod;
Section 6 presents algorithms and experiments; and Section 7 lists open problems, including
categorical compactifications, Balmer-type spectra for tensorable fragments of 7" —I'Mod, and
decidability thresholds for weighted coverings.
Preliminaries and Notation
We recall and refine the algebraic framework established in Papers A (Gokavarapu, 2025a)-C
(Gokavarapu, 2025c), extending binary semiring theory to ternary I'-parametrized structures.
Definition 2.1 (Ternary I'-semiring (Gokavarapu, 2025a, Def. 2.1)). A commutative ternary TI'-
semiring is a triple (7, +, {---}r) such that:
(T1) Additivity. (7, +) is a commutative semigroup with identity element 0.
(T2) Parametric ternary multiplication. For each y € T, there exists a ternary map {—, —, —}: 72 —
7.
(T3) Distributivity.
{ath ¢ dyy=1{a ¢ &yt ¢ dyy {a b ctdyy={a b, c}y-ia b, d}y.
(T4) Ternary associativity. For all p1, p» €T,
Ha b ch @ ein={a (b cdh ein=1{a b icd enin
(T5) Parameter compatibility. (71, 72) »— y1» defines an associative binary
operation on I' satisfying {{@ 4, c}yl, & e}y2 ={a b, c}y1)2. (T6) Zero absorption. {0, @ 4},=
Oforalleg 6€ 7, yeT.
Example 2.2 (Finite commutative model). Let 7’= {0, 1, 2} with addition modulo
3 and I'= {1, 2} under multiplication mod 3. Define
{a b c}y=(a+ b+ c)mod 3.
Then (7, +, {::-}r) i1s a commutative ternary I'-semiring: distributivity follows from modular
addition, and ternary associativity holds because ordinary addition in Zs is associative. The ideal {0}
is prime and yields Specr(7) = {{0}}, a one-point spectrum useful for illustrating stalk and
localization computations later.
Definition 2.3 (Ideals, radicals, spectrum (Gokavarapu, 2025a, Sec. 3)). An ideal
/<€ 7satisfies: a+ b€ /ifa L€/, and {@ 4, c} € /whenever @, b € /, c € 7. Prime, semiprime,
and radical ideals are defined as in Paper A (\/ Gokavarapu, 2025a).
(Gokavarapu, 2025c)., with ' /= { @ |37 {@ ..., @iy € /for some (37 € I'”}. The spectrum
Specr(7) is the set of all prime ideals, topologized by basic opens /) = {p | / Lp}.
Remark 2.4 (Ideal-congruence correspondence (Gokavarapu, 2025a, Thm. 4.6)).

Each ideal /induces a congruence pson 7'via qp/o <= a— H € /and
{@ b c}y—{a s /) € /forall y. The lattice of ideals and congruences are in Galois correspondence.
I'-modules and homological tools
Definition 2.5 (7-I'-module (Gokavarapu, 2025c, Def. 5.1)). A 7-I-module M is a commutative
semigroup (A, +) with ternary actions {«@ 4, 722} € M such that

Ha b e, d min=1{a 16 ¢ dyr, myn, {avb ¢ myy=1{a ¢ myib,  my
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The category 77—I'Mod of 7-I'-modules is additive, possesses kernels, cokernels, and finite (co)limits
(Gokavarapu, 2025c, Prop. 6.1). For #, /¥ € 77—T'Mod:

HomZ7 (M, M)={ /- M — N| f({a b, miy)={a b f(m)},  MIrNV=(M<N)~,
where {@ 5, m},;, @ n~mQ {a b, n}y.
Theorem 2.6 (Tensor—-Hom adjunction (Gokavarapu, 2025c¢, Thm. 7.3)). There is a natural
isomorphism Hom7 (M Qr/V, A Hom7 (M, HomZ7 (N, P)), bifunctorial in (M, /V, P).
Derived functors Ext7? (#, &) and Tor”, (M, N) exist under the usual hypotheses of enough
injectives or projectives (Gokavarapu, 2025c, Sec. 8) and satisfy long exact sequences. The Schur—
density embedding 77Ann(#) [S/— End7 (M) detects faithfulness and primitive strata (Gokavarapu,
2025¢, Thm. 9.4).

Standing assumptions

Unless otherwise stated:
(@) 7is a commutative ternary I'-semiring with identity-like idempotent e satisfying {¢ ¢
tZ} =a
(b)  All modules are finitely generated and unital.
(c) T is finite unless a locally finite or analytic limit is specified.
(d) Radicals, localizations, and spectra are formed with respect to the ternary operations {
ce b
(e) For brevity: Specr(7) = Specr(7), 77— I'Mod = 7-I-Mod, p, q denote prime ideals,
and O7denotes the structure sheaf to be defined later.

Notation Summary

Symbol Meaning / Reference

7 Commutative ternary I'-semiring

r Parameter set (finite unless stated)

{a b, ¢, Ternary I-product (Axioms T1-T6)
/v Ideals, prime ideals of 7

Specr(?) Spectrum of prime ideals of 7

/), V (/) Basic open/ closed subsets of Specr(7)
7—-T'Mod  Category of 7-I'-modules

HomZ7, @ Hom and tensor bifunctors

Ext77, Derived functors in 77—'Mod
Tor77

Ann(M) Annihilator of module #/

Or Structure sheaf on Specr(7) (Sec. 3)
e Identity-like idempotent in 7°

SpectralGeometryandStructureSheavesonSpecr(7)

Our approach to derived structures is inspired by the homological viewpoint of Grothendieck
(1957).Analogous to schemes in Hartshorne (1977), the spectrum of a ternary I'-semiring admits a
sheaf-theoretic structure.he notion of a categorical spectrum parallels the construction in Rosenberg
(1973).Higher algebraic K-theory concepts introduced in Quillen (1973) influence our categorical
layer.We employ the derived-category framework of Verdier (1996) for the homological analysis.The
model-category viewpoint used here is consistent with Hovey (1999). The spectrum Specr(7)
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inherits from Paper A (Gokavarapu, 2025a). (Gokavarapu, 2025c). a Zariski-type topology encoding
radical inclusions among ideals. We now construct a geometric structure on it analogous to that of a
ringed space in classical algebraic geometry. Throughout this section (7, +, {---}r) satisfies Axioms
(T1)—~(T6) of Definition 2.1.

Base topology and localization
Definition 3.1 (Basic opens). For any ideal /<€ 7, set
(/)= {p € Specr(7) | / &p}.
Then {(/)} forms a base for the Zariski topology on Specr(7), satisfying X /Z/)) = /) N /) and
X0) = Specr(7).
Definition 3.2 (Multiplicative systems). A subset .S'C 7"is multiplicatively closed if e € Sand {a, b,
c} € Swhenever @ 4, c€ Sand y € I. For each prime p, define Sp= 7"\ p.
Definition 3.3 (Localization of 7). Given a multiplicative system .S'C 7, define
-1={as|a€ 7 s€ S}/~,
S 7
where @/.s= 4/¢iff there exists # € Sand p € I' such that {z @ ¢},= {# 4 s},. Addition and ternary
multiplication are induced by
a 175 {al, 52, 2}o+ {&2, 51, sl}o
+=" {dls Ot duf={a b, cf/is tu}y, sl 52 {s1, 52, s2},0 which are well-
defined under Axioms (T3)—(T5).
Theorem 3.4 (Universal property). If : 77— U is a homomorphism of ternary
[-semirings such that f (S) consists of units of U, then there exists a unique morphism f : S'r— U
with f(als)= f(a) f(s) and f° @s= f.
Sketch. Define /(als)= f(a) /(s)"'. Theternaryassociativityensures /({a@ 4, c},/{s tu}y) =
{ f(@s), F(D0, F(du)}y, giving well-definedness and uniqueness. i

Remark 3.5. For each p € Specr(7), the localization 7, = ¢ |7’ serves as the local model of 7'near p.
Its maximal ideal is pp= {@/s| 2 € p, 5 &p}.
Example 3.6 (Localization in Example 2.2). In the finite semiring of Example
2.2, p= {0} and .5 = {1, 2}. Since 2 is invertible mod 3, 55! and thus 7; coincides with 7 itself,
exhibiting the trivial local geometry of a single-point spectrum.
Sheaf of sections and stalks
Definition 3.7 (Structure presheaf). Define the presheaf O7on basic opens by
0rAN=57'7 @
S7=7"\p.
peEN)

For (/) € (/), define restriction morphisms p7: .S /' 7— /! 7via canonical localization.
Theorem 3.8 (Sheafification and locality). O7satisfies the sheaf axioms. Hence
(Specr(7), O2) is a ringed space, and for each p € Specr(7), the stalk satisfies
(O 75.
Sketch. Given a cover {(/)} of (/) and sections s; € Or (£X/;)) agreeing on overlaps, choose a
common refinement .S = N, 5% Associativity (T4) ensures that the local representatives {s} glue
uniquely to a global section in .5!7. The stalk identification follows from the direct-limit definition.
m
Proposition 3.9 (Primitivity and stalk simplicity). For p € Specr(7):

(i) 7ypis local with maximal ideal py.

(ii) 7yis simple &= p is primitive.

(iii) If 7’is semiprime, then rad(7p) =py.
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Remark 3.10 (Categorical perspective). The construction 7" +—— (Specr(7), O7) extends to a functor
from commutative ternary I'-semirings to ringed spaces. Composition of morphisms preserves the
sheaf-restriction morphisms via pushforward of opens.

Exactness and base change
Theorem 3.11 (Exactness of localization). For every short exact sequence
0O— M >—uM—->—vM—0
in 77-I'Mod and any multiplicative system S, the localized sequence
Slu S-1v

O0— S5IM —> S5FIM——>S51M —0
remains exact in 7-I'-Mod.
Outline. Exactness of additive structures follows from the universal property of localization. The
ternary product’s distributivity guarantees preservation of ['linearity in the quotient. Hence kernel
and image commute with localization, mirroring the proof of (Gokavarapu, 2025c, Thm. 6.4). O
Theorem 3.12 (Base-change compatibility). Let : 77— 7' be a morphism of commutative ternary I'-
semirings. Then:

(a) The induced map Specr(7’) — Specr(7), q »— /\(q), is continuous.

(b) There is an isomorphism of sheaves of ternary I'-semirings
07 *x07Qr7

(c) Foreach q € Specr(7) with p= f(q), the stalks satisfy
(O7) (O Q7' 7Y
Sketch. Continuity of the spectral map follows from /£~ '(2(/)) = XX F (/).
The sheaf isomorphism arises from universal localization: localizing after applying
/ equals tensoring with 7°. Associativity of ternary multiplication ensures the tensor—localization
interchange law. O
Corollary 3.13 (Functoriality). The assignment 77 —»— (Specr(7), O7) defines a covariant functor
from commutative ternary I'-semirings to the category of spectral ringed spaces.
Remark 3.14 (Binary comparison). If I' is the one-element set, all the above constructions reduce to
the classical semiring-spectrum geometry Spec(7) with its structure sheaf. Thus the present
framework strictly generalizes Zariski geometry to multi-parameter ternary settings.
Summary of Section 3
WehaveequippedSpecr(7) withacanonicalringed-spacestructure (Specr(7), O7) whose stalks are
localizations 75. Localization is exact in 77 —['Mod and commutes with base change, laying the
foundation for fuzzy and weighted topologies in Section 4 and for the derived functors Ext and Tor
over 77—I'Mod developed in Section ??.

Fuzzy and Weighted Grothendieck Topologies
Ourfuzzyextensionadoptsthemembership-basedinterpretationofZadeh(1965).Topological
fuzzification techniques in Zhang and Zhang (1991) support the sheaf-level extensions used here.
The sheaf structure (Specr(7), O7) constructed in Section 3
captures the algebraic geometry of 7" in a crisp setting. In computational or uncertain contexts—
where ternary products may carry multiplicities, confidences, or probabilistic weights—one requires
a geometric refinement that records these quantitative attributes. This motivates the notion of a fuzzy
or weighted Grothendieck topology on Specr(7).
Fuzzy open sets and graded coverings
Definition 4.1 (Fuzzy open subset). A fuzzy open of Specr(7) is a function x : Specr(7) — [0, 1]
satisfying:

(i) ®)=0, 4Specr(7)) = 1;

(i) foranyideals Z /S 7, /A1) U L)) = max{ X)), A)))};
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(i) A2 N D) =min{d XD), MIN)}; (V) it 7€ Jthen D) = M X))).
The value (x) measures the degree of belonging of a point .x € Specr(7) to the fuzzy open.
Definition 4.2 (Weighted covering system). For an open (/) S Specr(7), a family {A/z), wa}.€A
with we € (0, 1] is a weighted covering if

% 2
(H= (lo) and we>1.
a€Ad acA

The weights wzencode confidence or multiplicity of coverage.

Example 4.3 (Fuzzy cover in finite spectrum). In Example 2.2, let Specr(7) =

{p1, p2} and (A) = {p1}, (L) = {p2}. Then a fuzzy cover of Specr(7) is specified by #I(p1) = 1,
#1(p2) = 0.7 and /2(p1) = 0.6, £2(p2) = 1, whose aggregation max(u, /») = 1 at each point provides
full coverage.

Weighted Grothendieck topologies

Definition 4.4 (Weighted Grothendieck topology). A weighted Grothendieck topology 7w on the site
B = {(/)} of basic opens assigns to each (/) a family

Cov(#(“)) of weighted coverings {A(/z), wa} € A such that:

(i)  (Refinement) Every trivial covering {(/), 1} belongs to Cov(Z(/)).

(i) (Stability under pullback) For each ZX/) C /) and { A /z), wa} €
Cov(AY)), the family {/A//z), wa} belongs to Covm(X/)). (ii1) (Transitivity) If {(Z2), wa} €
Cov(4(/)) and for each @ a covering
{ A lap), vaf} € Cov(I/a)) is given, then { A /af), wavaf} belongs to Covi(Y)).

The classical Zariski topology is recovered when all weights are 1.

Theorem 4.5 (Existence of sub canonical weighted topology). Let O7 be the structure sheaf of
Definition 3.7. Then there exists a smallest weighted Grothendieck topology zwon Specr(7) for which
Oris a zw-sheaf. Such zwis called the canonical weighted topology.

Idea. Define 7. by declaring a family {/X/z), wa} to be covering if for every compatible family of
local sections sz € O7(Z(/z)) one has a unique global section s € O7(ZX/)) such that pz(s) = szand
2 wa> 1. Minimality follows from intersection of all such systems. o

Proposition 4.6 (Functorial behavior). Let : 7 — 7' be a morphism of commutative ternary T'-
semirings. Then the induced spectral map f* : Specr(7") — Specr(7) is continuous with respect to
the weighted topologies, and

*
S (Cov(D2) € Covit X /(D).

Hence (Specr(7), zw) is functorial in 7.

Remark 4.7 (Interpretation in computational geometry). In finite enumerations

(Paper B), each morphism or ideal detection carries an empirical confidence w € [0, 1]. The topology
7w converts such data into geometric weights, making fuzzy closure operations compatible with
enumerative uncertainty.

Fuzzy sheaves and weighted stalks

Definition 4.8 (Fuzzy sheaf). A fuzzy sheaf of 7-modules on (Specr(7), zw) is a functor F : B® — 77
—I'Mod such that for every weighted covering {/A/z), wz} of ZX/), the following sequence is
approximately exact:

20 O
0——F () >  F (X)) = F (Xltp)),
a af

in the sense that compatibility of sections holds up to an error bounded by 1 — mina .
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Theorem 4.9 (Sheafification in zw). Every presheaf of 7-modules admits a unique weighted
sheafification ¥ »— F "%, and the canonical morphism ¥ — F "W is universal for maps into 7w
sheaves.
Sketch. Adapt the classical construction: take successive equalizers over weighted coverings,
assigning to each compatible family {s.} a global section weighted by the normalizing factor ! s
Associativity of ternary addition ensures convergence of the weighted limit process. i
Definition 4.10 (Weighted stalk). For p € Specr(7), the weighted stalk of a fuzzy sheaf F is the
colimit

F(w) = —lim— F (X)) (w), A>3
Where F ((/))" denotes the weighted localization incorporating the weights of the covering {(/z),
Wa’}.
Proposition 4.11 (Reduction to crisp stalks). If all weights equal 1, then FW) = Fy. If 7 is semiprime
and the weight system satisfies inf wa> 0, then O rremains faithful under fuzzy localization.
Remark 4.12 (Quantitative specialization). The fuzzy closure of (/) is (/)w=
{p13 /27 (()) > &} for a threshold &, representing loci where the covering confidence exceeds &.
This provides a geometric analogue of probabilistic saturation in computational spectra.

Comparison with classical sites and applications
Theorem 4.13 (Comparison and reduction). Let zzar denote the classical Zariski topology. Then:

(a)  zzaris the specialization of Twat unit weights.

(b) There exists a canonical adjunction of categories
Shv(Specr(?), zw) 2 Shv(Specr(?), 7Zar),
whose unit is identity on crisp sheaves and counit performs weighted averaging on fuzzy stalks.

(c) If all weights belong to a discrete submonoid of [0, 1], then zwis a Grothendieck

topology internal to the topos of R>o-valued sets.
Idea. Each zu~cover induces an ordinary cover by forgetting weights; conversely, an ordinary cover
extends to zi-by assigning unit weights. Adjunction arises from extension and restriction along the
forgetful functor on sites. O
Corollary 4.14 (Computational relevance). Let F = Oz Then I'(Specr(7), F ™#) coincides with the
algebra of global sections generated by fuzzy localizations and coincides with the intersection of all
weighted stalks:

+w U (w)
I'(Specl'(7), F ) = OZp.p

Hence fuzzy global sections correspond to computable ternary invariants of finite models with
confidence aggregation.
Remark 4.15 (Outlook). The weighted topology zw provides the interface between geometric and
computational layers. In the next section we will employ it to define derived functors Ext and Tor
over 7—['Mod with respect to fuzzy coverings, yielding cohomology groups measuring the failure of
weighted local triviality.
Homological Layer over 7-I'Mod
This section develops the derived and cohomological machinery for the category 7—
I'Mod of 7-I'-modules, viewed as the homological stratum of the geometric—fuzzy framework
constructed earlier. We introduce an exact structure compatible with ternary operations, construct
projective and injective resolutions, define Ext and Tor in this setting, and extend them to fuzzy
cohomology groups on the weighted site (Specr(?), zw).
Exact structure on 7-I'Mod
Definition 5.1 (Exact sequence in 77—I'Mod). A sequence
"u v "O——o M —o>—M—>—M —0
of 7-I'-module morphisms is exact if:
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(i) « s a kernel of zand zis a cokernel of #, in the additive category 77—I'Mod;

(i) forall @ £ € 7, y €T, the equality t{a@ &, m},) = {a b, rAm)},holds for each 7€ #,
Theorem 5.2 (Exact structure (Gokavarapu, 2025c¢, Sec. 7)). The collection of short exact sequences
in Definition 5.1 endows 7 —I'Mod with an exact structure in the sense of Quillen. Moreover, 7"
—I'Mod is an additive, idempotent—complete, finitely complete, and cocomplete category.

Sketch. Kernels and cokernels exist by construction, and ternary associativity guarantees stability of
exact sequences under pullback and pushout. Additivity and finite limits follow as in (Gokavarapu,
2025c, Prop. 6.1). o

Remark 5.3. This exact structure allows homological algebra to proceed as in abelian categories,
even though 77—I'Mod is not strictly abelian in the classical sense.

Projective and injective resolutions
Definition 5.4 (Projective and injective objects). A 7-I'—module 72 is projective if Homz (£, —)
preserves exact sequences, and injective if Homz7(—, 2) preserves exact sequences.
Proposition 5.5 (Existence of resolutions). Every finitely presented M € 7-T'Mod admits a
projective resolution
s AR Pl A— M0,
and an injective resolution
O——oM——>P>5/——5FP——- -,
within definable subclasses of 77—I'Mod.
Idea. Construct A as the free 7~I'—module on a basis of 4/ and iterate kernel lifting. Injective

resolutions follow dually using the Schur—density embedding 7/Ann(#) [2S/— Endr (M)
(Gokavarapu, 2025¢c, Thm. 9.4), which ensures existence of injective cogenerators. i

Derived functors Ext and Tor

Definition 5.6 (Derived functors). For #, /€ 7—T'Mod define

Ext77(M, /)= (HomZ7 (2., N)), Tor”n2 (M, V)= H(P.Qrk),
where 2. is a projective resolution of 47 These definitions are independent of the chosen resolutions.
Theorem 5.7 (Long exact sequences). For every short exact sequence 0 — M —

M— M — 0in 7-TMod and every N € 7-TMod, there exist natural long exact sequences
- — Ext7n(M', N) — ExtZ7nt1(M, V) — - - -,
- — Tor7wi(M, Ny — Tor7n(M, V) — - - -
Outline. Standard diagram—chasing applies because Hom7 (-, #) and — @7 A/ are additive and
left/right exact. The ternary product laws ensure closure under exact sequences. O
Proposition 5.8 (Localization and base change). For any multiplicative system S 7,

Ext7S 7/(S M, SN 'Ext7 (M, M), TornS—17(S—1M, S—1V) S—1Tor7n (M, V).
Remark 5.9 (Base—change formula). If : 77— 7’is a morphism of ternary I'-semirings, then for all
M, Ve 7-T'Mod,

Ext77 (MQ7T 7, NQ7T) Ext7?(M, V) Q7"

and similarly for Tor.

Fuzzy cohomology on (Specr(7), zw)

Let ziwbe the canonical weighted Grothendieck topology from Definition 4.4.

For a fuzzy sheaf F of 7~modules on (Specr(7), zw), we now define weighted cohomology groups.
Definition 5.10 (Weighted derived functors). Let I'(.f,; F ) denote the global section functor in the
weighted topology. Define its right derived functors

Hw' (X, F) =T X F) X=Specr(?).

We call Zwthe fuzzy cohomology groups of F .

Theorem 5.11 (Computation via injective resolutions). For any fuzzy sheaf F there exists an injective
resolution ¥ [2]— T in the category of fuzzy sheaves, and

Hw' (X F) =T X T)).
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If all weights are 1, then Hw' (X, F )= A X, F), the classical sheaf cohomology.
Idea. Existence of injective resolutions follows from the Grothendieck—Gabriel criterion adapted to
fuzzy sites: weighted limits preserve monomorphisms, and the category of fuzzy sheaves has enough
injectives. Cohomology is computed as the homology of the complex of global sections under I'w. O
Proposition5.12(Fuzzy—Extcorrespondence). For F , G fuzzysheavesof7—modules, there is a
canonical isomorphism
(X, HomOr(F , 9 Ext’o7'(F, G),
where Hom denotes the internal Hom of fuzzy sheaves.
Theorem 5.13 (Vanishing criteria). Let 7 be semiprime and F a coherent fuzzy sheaf on (Specr(7),
7w). Then:

(i)  AHw'(X F)=0forall n> dim(Specr(7)),

(ii) if' Fis fuzzy—acyclic (i.e., each localization *\\" is injective), then all higher
Hw*vanish;

(iii) the fuzzy global dimension of 7, fdim,{7) = sup{zn | Aw' (X, Or) # 0}, satisfies

fdim/( 7) < dim(Specr(7)).
Remark 5.14 (Interpretation). /Z»”measures the obstruction to gluing fuzzy local sections of F . For 7
= 1 it captures weighted extensions of sheaves, and for 7z = 2 it detects fuzzy deformation classes of
ternary structures.

Comparison theorems and applications
Theorem 5.15 (Comparison with radical and primitive strata). Let #/ € 7 —I'Mod be finitely
presented. Then the cohomological support
Supp(H) = {p € Specr(7) | A’ (Xp), M) # 0}
coincideswiththeradicalsupportdeterminedby Ann(M) andrefinestheSchur—density
locus(Gokavarapu,2025¢c,Thm.9.4). Moreover,isprimitive <= Ext7 (M, My) =
p
0.
Corollary 5.16 (Fuzzy local duality). If 7 is coherent and F locally free of finite rank, then there
exists a natural isomorphism
Hw (X, F) Hom7 (Tor’gim X 74 M, 7, £),
where £'is a fuzzy injective cogenerator.
Remark 5.17 (Computational layer). For finite ternary models, Ext and Tor groups can be computed
algorithmically using Paper B’s enumeration framework. The fuzzy weights modulate numerical
confidence in cohomological invariants, producing quantitative spectral fingerprints of finite I'—
semirings.
Summary of Section 5
We have endowed 7-I'Mod with a Quillen—exact structure, constructed resolutions, and developed
derived functors Ext and Tor. These globalize under the weighted topology 7w to define fuzzy
cohomology . Cohomological supports align with radical and primitive strata, establishing a
geometric—homological correspondence that links algebraic, spectral, and computational layers of
ternary ['—semirings.
Computational Geometry for Finite Models
The geometric—homological constructions of the preceding sections acquire algorithmic meaning
when 7" is finite or finitely generated. Paper B established enumeration procedures for small finite
ternary I'—semirings. Here we lift those enumerative techniques to the geometric and cohomological
levels, producing computable invariants on Specr(7) and effective methods for verifying radical,
primitive, and fuzzy properties.
Finite ternary ['-structures and data representation

Let |7]= 7zand I'| = 772. Each p € I" determines a ternary operation table

UGC CARE Group-1 186



e,  Industrial Engineering Journal
)):  ISSN: 0970-2555
R Volume : 54, Issue 11, No.1, November : 2025

. [72)® — [7]. A finite ternary T—semiring structure is represented by the

collection {73} er satisfying Axioms (T1)—(T6).

Definition 6.1 (Encoded model). Define an encoding matrix A € {0, 1}/ whose entry A, 4,¢,dy=
1 iff {# 4 <}, = 4. Algebraic constraints are expressed as polynomial equations in {0, 1}—variables
over Z.

Theorem 6.2 (Enumerability bound (Gokavarapu, 2025b, Thm. 3.2)). The number of non-isomorphic
commutative ternary T'—semirings of order n with [I'| = m is finite and bounded by (727). Hence
exhaustive search is feasible for n<4, 5.

Remark 6.3 (Data structures). Practical implementations encode each 7) as a three-dimensional
tensor and use hashing to detect isomorphisms via permutation of the underlying set. Prime-ideal
tests and radical computation are performed by closure under { - - - },.

Algorithms for spectral invariants

Algorithm 6.4 (Computation of Specr(7)).

Step 1. Enumerate all proper ideals /c 7.

Step 2. For each / test primality: {@ 4, ¢} € /= oneof @ 4, c€ /.

Step 3. Form //(/) and (/) sets.

Step 4. Construct incidence matrix #y=1 ift (/) € (/).

Step 5. Return (Specr(7), {7}, M).

Proposition 6.5 (Complexity). Let 72 = |7]. Then computation of Specr(7) runs in time X77°") for
fixed m=|U|. In practice, pruning by radical closure reduces this to (777).

Example 6.6 (Two-element example). For 7= {0, 1} and I'= {1}, Specr(7) =

{{0}}, and all ideals are semiprime. The matrix #7/= (1) confirms single-point spectrum.
Algorithmic computation of homological invariants

We now describe algorithms for finite computation of Ext7 (4, /) and Tor” (M, V).

Algorithm 6.7 (Computation of Ext).

Step 1. Construct a projective resolution 2 — A/ using generators and relations.

Step 2. For each 7 compute Hom7(/Z; /) via enumeration of I'-linear maps.

Step 3. Form the cochain complex and compute ker #/im & '. Step 4. Output dimensions or rank
profiles of Ext7 (M, /).

Algorithm 6.8 (Computation of Tor). Analogous to Algorithm 6.7 but using the chain complex 2
& 7V and computing homology groups (2 Q7).

Proposition 6.9 (Complexity and feasibility). For fixed m = |I'| and modules of size 7, the
computation of Ext and Tor has worst-case complexity (7°7). For r < 6, symbolic enumeration is
tractable with modern algebra systems.

Remark 6.10 (Symbolic implementation). These computations can be automated in
Python/SageMath: TernaryGammaSemiring objects store operation tensors 7, and Hom, Tensor,
Ext, Tor methods perform exact algebraic manipulations.

Fuzzy and weighted computations

Definition6.11(Weightedspectraltuple). Aweightedspectraltupleis (Specr(7), W) where W : Specr(7)
— [0, 1] assigns to each prime p its confidence weight derived from frequency or stability in the
enumeration.

Algorithm 6.12 (Computation of fuzzy closure).

Step 1. Input: ideal / threshold &.

Step 2. For each p, compute weight (p).

Step 3. Return ()= {p | Mp) > 6, / Lp}.
Theorem 6.13 (Weighted cohomology computation). Let (Specr(7), zw) be the weighted site and F a
fuzzy sheaf of finite type. Then the groups #w" (X, ¥ ) are computable by
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Hw (X F) ATl X, T)
where 1 is a finite injective resolution. In finite cases, the resolution length is bounded by
dim(Specr(7)).
Sketch. Finite 7" implies finitely many opens (/). Hence the derived functors can be evaluated by
finite-dimensional linear algebra over 7, weighted by w.from

Definition 4.2. 0
Example 6.14 (Fuzzy cohomology of a 3—element model). For 7= {0, 1, 2} and
I = {1, 2} of Example 2.2, the fuzzy weights (p1) = 1, (p2) = 0.6 yield #.° (X, O7) = 7, A = 0,
confirming trivial higher cohomology.
Algorithmic pipeline and complexity bounds
Algorithm 6.15 (Finite computational pipeline).
Stage 1. Enumeration stage: Generate all finite 7 satisfying (T1)—(T6).
Stage 2. Spectral stage: Compute Specr(7) via Algorithm 6.4.
Stage 3. Homological stage: Determine Ext, Tor groups using Algorithms 6.7-6.8.
Stage 4. Fuzzy stage: Assign weights (p) and compute /.
Stage 5. Output: Compile invariants (| Specr(7)|, dim Zw” w) as the computational fingerprint of 7.
Theorem 6.16 (Global complexity bound). Let 7z = |7] and m = |['|. The entire pipeline has time
complexity (77°7) and space complexity (727). For n < 4 and m < 3, enumeration and homology
complete in under one minute on standard hardware.
Remark 6.17 (Practical validation). Implementations in Python/SageMath and GAP confirm these
estimates. The pipeline yields complete classification up to order 4, including radical strata, fuzzy
closures, and cohomology ranks.

Geometric interpretation and visualization
Definition 6.18 (Computational spectrum). The computational spectrum of a finite ternary I'—
semiring 7’is the weighted graph &7= (V, £) with:
V= Specr(?),
£={ms p) | 0) N (p) 70}, : V= [0, 1], p »— Mp).
Proposition 6.19 (Topological invariants). Let &7be as above. Then:
(i)  The number of connected components equals the number of primitive strata of 7.
(i) The Laplacian spectrum of Gr encodes fuzzy cohomology ranks via dim 4! =
nullity(Ler).
(iii) Homological equivalence of two finite I'=semi rings implies isospectrality of
Gr.
Remark 6.20 (Visualization). Graph layouts of &7 with vertex color proportional to (p) provide
geometric insight into fuzzy density and homological connectivity. These can be rendered using
TikZ/NetworkX.
Summary of Section 6
We have lifted the theory to computational practice: enumerating finite ternary ['—semirings,
computing their spectra, radicals, and cohomological invariants, and encoding fuzzy weights into
algorithmic pipelines. This computational geometry connects the ideal-theoretic, geometric, and
homological layers of the theory and forms the experimental backbone for future categorical and
probabilistic generalizations.
Applications and Outlook
The unified framework developed in this paper combines ideal theory, geometry, homological
algebra, and fuzzy computation for ternary I'-semirings. This final section sketches theoretical and
practical applications, situates the framework within broader mathematical contexts, and outlines
future research directions in algebraic geometry, logic, and computation.
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Algebraic and geometric applications

Theorem 7.1 (Ternary—geometric correspondence). Let 7" be a commutative ternary I'-semiring.
Then the assignment

/=== V(/) = {p € Specr(7) | /€ p}

establishes an inclusion-reversing correspondence between radical ideals of 7" and fuzzy closed
subsets of Specr(7). Moreover, the structure sheaf Or makes (Specr(7), O7) a fuzzy-ringed space
whose global sections recover 7~

I'(Specr(7), O7) 7.

Sketch. Combine the geometric construction of Section 3 with the fuzzy topological formalism of
Section 4. Radical closure corresponds to intersection of weighted open complements. The last
isomorphism follows from the subcanonical property of the canonical weighted topology (Theorem
4.5).0

Remark 7.2(Analogywithalgebraicgeometry). ThecorrespondenceinTheorem?7.1 is a ternary analogue
of the classical Nullstellensatz for commutative rings. Here the presence of I encodes parameterised
non-binary interactions, while the fuzzy layer encodes quantitative openness.

Proposition 7.3 (Ternary-scheme prototype). Let TGScheme denote the category of pairs (X, Ovx)
where X is a fuzzy-topological space and Ox a sheaf of ternary I'=semirings locally isomorphic to
spectra of finitely generated 1'-semirings. Then TGScheme is complete, cocomplete, and admits
fiber products.

This provides a geometric environment for studying morphisms, gluing, and local properties of
ternary ['—semirings, paving the way for a genuine ternary algebraic geometry.

Homological and categorical extensions

Definition 7.4 (Derived category). Let D(7° -'Mod) denote the derived category of the exact
category 77 — I'Mod from Section ??. Objects are complexes of 7-I'-modules modulo quasi-
isomorphisms.

Theorem 7.5 (Triangulated structure). D(7"—I'Mod) is a triangulated category whose distinguished
triangles arise from short exact sequences in 77—I'Mod. The shift and cone functors exist and satisfy
the octahedral axiom.

Idea. The construction follows Verdier’s localization applied to the Quillen-exact structure (Theorem
5.2). O Remark 7.6 (Homological dualities). In D(7"—I'Mod) one may define dualizing complexes
and extend the fuzzy cohomology functors /Z,/to derived functors on D(7"—I'Mod). This connects
the geometric and categorical strata through derived equivalences.

Corollary 7.7 (Spectral and homological compatibility). Cohomological supports

Supp(H) coincide with the derived supports Suppp(M) = {p | My # 0} inside D(7"—I'Mod). Hence
homological localization and fuzzy localization commute.

Proposition 7.8 (Functorial bridge). The assignment

(7, T) »—— (D(7—-T'Mod), Specr(7), zw)

is functorial with respect to morphisms of ternary U'—semirings. This realizes a 2-functor from the
category TGSR of commutative ternary T'—semirings to the 2-category of weighted ringed
derivators.

Remark 7.9 (Categorical perspective). This functorial lifting opens the possibility of a homotopy
theory of ternary structures, where morphisms are tracked by derived and fuzzy transformations.
Such a setting aligns with modern categorical geometry and non-commutative motives.

Connections to fuzzy logic, coding theory, and data science

Theorem 7.10 (Interpretation in fuzzy logic). Let (Specr(7), zw) be a fuzzy site. Assign to each p €
Specr(7) a truth degree W(p) € [0, 1]. Then Oz interprets a graded logic whose connectives
correspond to ternary I'—operations, and whose semantics coincide with weighted localization.

UGC CARE Group-1 189



Industrial Engineering Journal
ISSN: 0970-2555
Volume : 54, Issue 11, No.1, November : 2025

Idea. 1dentify {@ 4, ¢} with a ternary connective (@ Ay &) = ¢. Weights act as fuzzy truth degrees,
and the sheaf axioms translate to compositional soundness conditions. i

Remark 7.11 (Computational semantics). Under this interpretation, cohomology groups /Z»” measure
logical dependencies of fuzzy propositions, so that /! represents weighted consistency conditions
and /. captures higher-order entailments.

Proposition7.12(Coding-theoreticinterpretation). Let7" beafiniteternaryl —semiring and M €
7-T'Mod a finite module. Then the set of morphisms Homz7 (M,) forms a ternary linear code. The
minimum distance of this code equals the minimal rank of non-vanishing Tor”| (M,).

Remark 7.13 (Information-theoretic meaning). Cohomology classes correspond to correction
constraints, while fuzzy weights encode reliability or confidence of transmission channels. This links
ternary '-semirings to the theory of probabilistic error-correcting codes.

Proposition 7.14 (Data-analytic and Al relevance). For finite 7, the computational spectrum Gr
(Definition 6.18) serves as a knowledge graph, whose fuzzy edges correspond to ternary interactions.
Homological invariants then quantify higherorder correlations in multi-relational data.

Remark 7.15. Weighted cohomology /4w acts as a topological feature extractor for heterogeneous
data, offering an algebraic framework for explainable fuzzy inference systems.

Future directions
(A) Derived tensor categories. Develop a monoidal structure on D(7-I'Mod) to define derived
tensor products and spectral functors between ternary I'-semirings. (B) Non-commutative and
graded variants. Extend to non-commutative or Z—graded ternary I'-semirings, exploring possible
links with quantum and tropical geometry.
(C) Topos-theoretic generalization. Investigate fuzzy sites as internal sites in an
enriched topos, allowing interpretation of 77—I'Mod as an internal abelian-like category.
(D) Computational complexity. Analyze algorithmic hardness of the classification
problem for increasing 7z, and develop parallel algorithms for large-scale ternary structures.
(E) Applied integrations. Apply the fuzzy-homological formalism to:
e uncertainty quantification in fuzzy algebraic systems;
e knowledge-graph embeddings in Al;
e higher-order tensor codes in communication theory.

Concluding synthesis
The unified programme developed across Papers A (Gokavarapu, 2025a)-D establishes a coherent
hierarchy:
Ideal theory «—— Prime/semiprime radicals (Paper A (Gokavarapu, 2025a). ),
Computational enumeration «—— Finite classification algorithms (Paper B
(Gokavarapu, 2025b
Homological layer «— Modules, Ext, Tor and Schur—density (Paper C, (Gokavarapu,
Geometric—fuzzy synthesis «<— Spectra, sheaves, and weighted cohomology (Paper D,
This pa
This synthesis opens a path toward a computable ternary algebraic geometry, in which categorical,
homological, and computational methods coexist seamlessly. Beyond pure algebra, these concepts
offer new algebraic infrastructures for modeling uncertainty, interactivity, and higher-order relations
across mathematics, logic, and data science.
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