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ABSTRACT 

A metaheuristic strategy based on the Non-dominated Sorting-based Multi-objective Artificial Bee 

Colony (NS-MOABC) algorithm optimizes multi-criteria power flow in this work. This work uses the 

Artificial Bee Colony (ABC) algorithm, a non-dominated sorting approach, an external archive, 

adaptive learning, greedy selection, crowding distance, and elite search tactics. The elements maintain 

diversity and guide the quest with exceptional insights. A novel method is used in the bee phase to 

achieve convergence and diversity, achieving multi-objective optimization. ABC's core mechanics are 

preserved in the observer bee phase, which uses a modified fitness calculation to explore potential 

solutions. The scout bee phase always removes inefficient solutions and promotes variety through 

random solutions. To maintain an optimum and varied solution set in the swarm, non-dominated 

sorting and crowding distance approaches from the NSGA-II algorithm are used. A repository with a 

set capacity stores non-dominated solutions.  The NS-MOABC algorithm is compared to state-of-the-

art algorithms like NSGA-II and MOPSO. MOABC and the comparison NS-MOABC outperformed 

NSGA-II, MOPSO, and MOABC on six benchmark test issues. The 30-bus IEEE test system shows 

the algorithm's actual use, including cost, loss, and economic aspects for techno-economic 

sustainability. If compared to NSGA-II, MOPSO, and MOABC, the simulation results show that the 

suggested technique is effective and resilient. NS-MOABC is a simple, efficient, and resilient 

algorithm for MOOPF problems. 

 

Keywords: Non-dominated Sorting-based Multi-objective Artificial Bee Colony (NS-MOABC),Non-

dominated Sorting Genetic Algorithm(NSGA-II), Multi-objective Optimal Power Flow(MOOPF). 

 

I. Introduction 

Multi-objective optimisation problems (MOPs) are difficult because they have competing goals. [1] In 

Multi-Objective Problems (MOPs), there is no one solution that meets all objectives. The solver finds 

the Pareto-optimal set of trade-off solutions, where no alternative is inferior. Real-world Pareto-

optimal sets might be enormous or infinite, growing exponentially with issue size. [3] Optimisation 

and decision-making are usually needed to solve multi-objective situations. System operators must 

balance numerous goals when operating and designing real-world power systems.[5] In power system 

control, optimum power flow (OPF) determines the best control variable modifications to minimize 

specified goal functions while meeting equipment and network restrictions. Numerous practical 

engineering and domain-specific challenges demand concurrent optimisation of numerous objective 

functions.[2] Multi-objective optimisation problems (MOPs) are difficult owing to conflicting 

objectives.  A single solution that meets all objectives in Multi-Objective Problems (MOPs) is 

impracticable.[4] The solver finds the Pareto-optimal collection of trade-off solutions, where no 

alternative is inferior. Real-world issues' Pareto-optimal set may be large or infinite, expanding 

exponentially with size.[6]Real-world power system operators must weigh many goals when planning 

and operating. Power system management relies on optimum power flow (OPF) to find the best control 

variable changes to reduce objective functions while meeting equipment and network restrictions. 

The literature presents many multi-objective artificial bee colony (MOABC) methods.[9] Despite 

extensive research on evolutionary and swarm intelligence algorithms like the non-dominated sorting 
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genetic algorithm II (NSGA-II), and multi-objective particle swarm optimisation (MOPSO), MOABC 

researchers still struggle to improve swarm diversity and address local convergence issues.[7] A 

MOABC approach by Akbari et al. incorporates a weight into the search equations throughout the 

employed bee and observer bee phases to manage the mutation relevance of the food supply. An 

adaptive grid-based system manages an external archive of search history, which bees use to adjust 

their search motions.[11] ABC solves real-world issues, however its sluggish convergence rate and 

premature convergence to local optima restrict it. [10] The employed and observer bee stages focus 

exploitation, whereas the scout bee phase emphasises exploration, but only one bee each generation. 

Similar to MOABC algorithms, restricted exploration may cause premature convergence to local 

optimum solutions.  

No strategy is used to prevent premature convergence in the MOABC algorithm. Optimising 

approaches require a fitness assignment mechanism to guide the population towards non-dominated 

solutions. [12] Pareto-dominance is used to assess fitness at MOABC, limiting diversity. To maintain 

variety, MOABC enhances archive solutions with dominance. This diversity-achieving approach 

works only when the number of non-dominated possible solutions rises exponentially with issue size, 

according to Horoba et al. [14], MOOPF with three main objectives: total fuel cost, total emissions, 

and total real power loss. This paper applies the non-dominated sorting-based multi-objective artificial 

bee colony (NS-MOABC) algorithm. The ideal compromise solution is found via fuzzy logic. 

According to the 30-bus IEEE test system, the NS-MOABC model is efficient. Compared to three 

existing multi-objective algorithms NSGA-II, MOPSO, and MOABC—the simulation results show 

the proposed method's efficacy and resilience.[16] Novelty and Goal are as below  

The artificial bee colony (ABC) algorithm is enhanced to provide a novel multi-objective optimisation 

method. Several crucial aspects are novel.:1. Integration of Non-Dominated Sorting and Crowding 

Distance: Enhancing the artificial bee colony (ABC) algorithm creates a novel multi-objective 

optimisation method. There are numerous major breakthroughs.[13]2 Enhanced Employed Bee 

Phase: A new bee phase method guides solutions towards convergence while maintaining variety. 

This fixes MOABC algorithms' premature convergence and sluggish advancement in high-

dimensional situations.[15]3. Use of an External Archive: An external archive is utilized to reserve 

the elite population, storing search history using non-dominated sorting and crowding distance 

procedures. This helps in maintaining an optimal and diverse set of solutions.4. Application to OPF 

Problems: The research addresses the optimum power flow (OPF) problem as a multi-objective 

optimisation model that considers fuel cost, emissions, and real power loss[17]. 

This project aims to create NS-MOABC, a robust and efficient multi-objective optimisation algorithm 

that can tackle complicated optimisation problems with many competing objectives. The study seeks 

to:1. Improve Diversity and Convergence: Improve diversity maintenance and avoid premature 

convergence in MOABC algorithms by using new fitness assignment and bee phase tactics.2.Validate 

the Effectiveness of NS-MOABC: Compare the suggested method against multi-objective optimisers 

like NSGA-II, MOPSO, and MOABC to prove its usefulness.3.Apply to Real-World Problems: Use 

the 30-bus IEEE test system to demonstrate the NS-MOABC algorithm's practicality in power system 

operation and planning. By addressing these objectives, the research aims to contribute a powerful tool 

for solving multi-objective optimization problems, particularly in the context of optimal power flow, 

ensuring both techno-economic and environmental sustainability 

Section 2: Multiobjective Optimal Power Flow Problem Formulation’ gives the multi-objective OPF 

problem's mathematical formulation. Section 3: The 'Non-dominated Sorting Multi-objective Artificial 

Bee Algorithm' describes the proposed NS-MOABC in detail. The 'Benchmark Test' section shows 

that NS-MOABC outperforms the other three MO optimizers on six typical benchmark functions. The 

study implements NS-MOABC to MOOPF, Simulation findings. Validation of NS-MOABC with help 

of statistical analysis. Finally, 'Conclusions' outlines the findings. 

 

II. Multi-objective Optimal power Flow Problem Formulations 
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Real-world multi-objective optimisation problems (MOPs) include competing and incommensurable 

objectives, making a single optimum solution unattainable. [19] Instead, these challenges provide 

trade-offs between objectives, with no solution dominating another. These solutions are non-

dominated, non-inferior, or Pareto-optimal. Pareto-optimal or non-dominated solutions exist in the 

decision space, while their counterparts in the objective space form the Pareto front (PF), also known 

as the real or global Pareto-front. [18] multi-objective optimisation has two objectives: Convergence: 

The obtained Pareto-front's closeness to the genuine one. Diversity: Pareto-front solution distribution. 

An effective optimiser should accomplish convergence and variety to give the Decision Maker (DM) 

a wide range of optimal alternatives. Understanding multi-objective optimisation terminology and 

concepts helps you understand the issue and solution areas.[20] Problem formulation for MOOPF 

problem finds the best control variables to minimise multiple objective functions under equality and 

inequality constraints. Formulate the MOOPF issue as: 

 
where fi is the ith objective function, Nobj is the number of objective functions, g is a set of constrain 

equations, and h is a set of formulated constrain in equations. x is the vector of dependent variables 

such as the slack bus power PG1, the load bus voltage VL, generator reactive power outputs QG, and the 

apparent power flow Sk. x can be expressed as: 

 
where NPQ, NG and NL are the number of load buses, the number of generator buses, and the number 

of transmission lines, respectively. Here u is a set of the control variables such as the generator real 

power output PG expect at the slack bus PG2, the generator voltages VG, the transformer tap setting T, 

and the reactive power generations of var source QC. Therefore, u can be expressed as: 

 
where NT and NC are the number of regulating transformers and the number of var compensators, 

respectively. Problem formulation for optimal power flow The MOOPF problem finds the best control 

variables to minimise multiple objective functions under equality and inequality constraints. Formulate 

the MOOPF issue Objective functions as mentioned here, 

1.Minimization of fuel cost: Quadratic functions with sine components depict generating cost curves. 

These sine components show the steam admission valve openings' rippling effects [23]. Given valve 

loading effects, producing units' $/h fuel cost may be modelled as: 

 
where ai, bi, ci, di, and ei are the cost coefficients of the ith generator, and PGi is the real power output 

of thermal unit i. 

2.Minimization of emission: The total ton/h emission of the atmospheric pollutants such as SOx and 

NOx caused by fossil-fueled thermal units can be expressed as [23]: 

 
where αi, βi, and ϒi are emission coefficients of the ith generating unit. 

3.Minimization of transmission loss: The power flow solution gives all bus voltage magnitudes and 

angles. Then, the total MW active power loss in a transmission network can be described as follows: 
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where gk is the conductance of kth branch, Vi, Vj, δi and δj are the voltage magnitudes and phase angles 

of terminal buses of branch k 

4. Equality constraints: The equality constraints are the nonlinear power flow equations  which are 

formulated as below: 

 
where PGi is the injected active power at bus i, PD is the demanded active power at bus i, QGi is the 

injected reactive power at bus i, QDi is the demanded reactive power at bus i, Gij is the transfer 

conductance between bus i and j, Bij is the transfer susceptance between bus i and j, θij is the voltage 

angle difference between bus i and j and NB is the total number of buses.  

5. Inequality constraints: These constraints are the set of continuous and discrete constraints that 

represent the system operational and security limits as follows: 

 
The penalty factor approach is used to handle inequality restrictions in this study. Each constraint-

violating control vector will be fined by these factors. Thus, this control vector will be automatically 

erased next. 

 

2.2 Multi-objective Artificial Bee Colony Algorithm 

The MOABC takes honey bee foraging behaviour as inspiration. This colony has employed, onlooker, 

and scout bees. This algorithm optimises food sources. Each food supply solves the problem. The hired 

bees located these food sources for the dance area. Onlooker bees choose food by quality at the dance 

area. The MOABC has equal numbers of Employed and Onlooker bees. A Scout bee will randomly 

search the problem space for a new food source if it cannot be optimised in a few cycles. An external 

archive stores non-dominated solutions in the Pareto-based MOABC algorithm. [22] In a minimisation 

issue, two solutions are nondominated if neither has less value in all objectives than the other. We need 

an updating technique to add the latest archive solutions and assess if they dominate other solutions or 

archive members. 

2.2.1. Initialization: To count food sources, a new variable called Food Number will be created during 

initialisation. The Food Number can be adjusted to half the population because each hired bee is a food 

source and the number of onlookers is equal. If a food supply cannot be optimised in several cycles, 

its employed bee will become a scout bee and then return to an employed bee after a random search. 

This is why scout bee populations have not been considered. This can be formulated as LBd < xd < 

UBd, in which d is the index of that parameter, xd is the parameter and LBd and UBd are lower and upper 

bounds respectively. Each of these parameters can be considered as a dimension which will lead us to 

a search space. Hence, for a problem with D parameters or dimensions, a search space S through 

algorithm will associate a position vector x = (x1, x2, . . ., xD) with each food source. Next, each food 

source will initialize through a function named init(i, S), in which i is the index of the food source and 
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S is the search space that we have defined before. In this way, a D dimensional vector xi = (x1, x2, . . . 

, xD) will be assigned randomly to each food source i through the following equation: xid = LBd + 

rand[0, 1]∗ (UBd − LBd) , ……(11) where d ∈ {1, 2, . . . , D} , rand[0, 1] is a random number selected 

from a normal distribution in the range of zero and one, and LBd and UBd are lower and upper bounds 

along the d dimension respectively. Finally a Triali variable will be assigned to each food source i in 

order to find food sources to be abandoned in the next iterations. 

2.2.2 Send employed bees: To optimize food sources by their employed bees, the algorithm uses the 

archive since it contains the best solutions found so far. For this reason, each employed bee i would 

select an archive member randomly to calculate a temporary position called vid. The position vid is a 

copy of the position vector of the food source and one of its dimensions will be updated through the 

following equation: vid = xid + w1rand[0, 1] (xid − xkd) ………….(12)  where i represents the food 

sources which is going to be optimized, k ∈ {1, 2, . . . , FoodNumber} and d ∈ {1, 2, . . . , D} are 

randomly chosen indexes. Although k is determined randomly, it has to be different from i. The random 

number rid is a real number chosen randomly in −1 to 1 span. It controls the production of neighbour 

food sources around xid and represents the comparison of two food positions visually by a bee. The 

coefficient w1 controls the importance of the food source k in the production of the new food source. 

As can be seen from Eq. (2), as the difference between the parameters of the xid and xkd decreases, the 

perturbation on the position xid gets decreased, too. Thus, as the search approaches the optimum 

solution in the search space, the step length is adaptively reduced. After vid has been updated, the value 

of objective functions will be calculated. If the result could dominate the related food sources results, 

then it will be replaced by the food source’s vector. If not, the update was unsuccessful and Trial value 

of that food source will be incremented by one. 

2.2.3 Send onlooker bees: The external archive will help all employed bees optimise their food source, 

and they will return to the hive to inform other bees. For this, the probability of each food source k 

advertised by the employed bee will be calculated.: 

  

is the probability of the food source proposed by the employed bee k which is proportional to 

the quality of food source. In the MOABC, the quality of a food source depends on the number of food 

sources dominated by the food source k. This can be formulated using the following equation: 

 
where dom(m) is the function that returns the number of food sources dominated by food source m. 

After that, onlookers can use a roulette wheel to choose a food source advertised by the employed bee 

k based on its probability. The onlooker bee updates its position using the following equation if the 

newly discovered food source dominates the old one: vid = xid + w2rand[0, 1] (xid − xkd) ……….(15) 

where coefficient w2 controls the importance of information provided by an employed bee k. This 

probabilistic approach optimises food sources and makes Archiving them more likely. Thus, each food 

source should be assessed to determine its quality so the viewer can choose. 

2.2.4 Send scout bees: The algorithm will find abandoned food sources to replace them. Each worker 

or observer bee optimising a food source has two outcomes. First, she cannot finish it, increasing Trial 

of that food source by one. Second, it can reset Trial value to zero. Thus, if the Trial reaches Max_Trial, 

its employed bee will become a scout bee and reset it to zero after a random search. The Max_Trial 

parameter is set manually at the value of 60. The scout randomly moves and replaces the abandoned 

food source if it has better nectar. Assume that the abandoned source is xi and j ∈ {1, 2, . . . , D}, then 

the scout discovers a new food source to be replaced with xi. This operation can be defined as follows:  

vid = LBd + rand[0, 1]∗ (UBd − LBd) . …(16) After each candidate source position vij is produced and 
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then evaluated by the artificial bee, its performance is compared with that of its old one. This deficiency 

primarily arises because the solution search equation excels in exploration but lacks in exploitation, so 

prior necessity to work in such domain is for multi-objective optimization. 

2.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II):  

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), developed by Deb et al. in 2002, is a 

pioneering multi-objective optimisation algorithm recognised for its effectiveness in producing a 

varied array of high-quality solutions. This algorithm incorporates multiple innovative mechanisms, 

such as non-dominated sorting, crowding distance, and elitism, to effectively approximate the Pareto 

front. Elitism maintains superior solutions through generations, thereby augmenting the algorithm's 

resilience. Despite its extensive utilisation, NSGA-II faces challenges including computational 

complexity in large-scale problems and potential diversity loss in complex landscapes. These 

constraints have prompted continuous investigation to modify non-dominated sorting and other 

methodologies to tackle the intricacies of multi-objective optimisation. The fast nondominated sorting 

approach identifies two key criteria for solutions in a population: the dominated count ni which are 

number of solutions and Si which are the set of solutions dominated by solution i. Initially, the first 

nondominated front is formed by all solutions with ni=0. For each solution j in Si, its dominated count 

is decreased by one. If j's count reaches zero, it is added to a separate list j (second nondominated 

front). This process is repeated for each member of j to identify subsequent fronts until all solutions 

are sorted into different nondominated fronts. 

 
Figure 1: Process flow of Non-dominated sorting procedure for MOO 

3.  Non-dominated Sorting based Multi-objective Artificial Bee Colony Algorithm:  

The Artificial Bee Colony (ABC) algorithm is effective for single-objective optimisation; however, it 

encounters challenges in multi-objective optimisation, particularly in acquiring and sustaining a 

diverse array of Pareto-optimal solutions. The non-dominated sorting-based multi-objective artificial 

bee colony (NS-MOABC) algorithm is proposed to address this issue.[1] This extension of the ABC 

algorithm addresses multi-objective optimisation problems by guiding solutions towards convergence 

while preserving diversity through an innovative method in the employed bee phase. The NS-MOABC 

algorithm utilises a fitness assignment strategy based on Pareto ranking and crowding distance, 

drawing from NSGA-II,[14] to direct the population towards the optimal Pareto front while 

maintaining both superior and diverse solutions. The algorithm consists of five distinct phases: 

population initialisation, employed bee phase, onlooker bee phase, scout bee phase, and archive 

update. Furthermore, two modifications improve exploitation while maintaining exploration: altered 

solution search equations in the employed and onlooker bee phases, and a revised neighbourhood 

search operator. The crowding distance operator enhances the process by assessing the density of 

solutions surrounding each point, [18] thereby promoting a balanced and efficient optimisation 

procedure. The integration of these features renders the NS-MOABC algorithm an effective solution 

for multi-objective optimisation. below flowchart of NS-MOABC Algorithm. 
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Figure 2: Flow chart of NS-MOABC Algorithm 

 

4. Experimental Studies on Benchmark Test Functions: The NSABC algorithm is compared to 3 

state-of-the-art MO Algorithms and variants of multi-objective artificial bee colony algorithms: S-

MOABC/NS [46], MOABC [45], and 6 benchmark problems of varying nature and complexity [18]. 

To fully evaluate the performance of the NS-MOABC algorithm without a biased conclusion towards 

some chosen problems, we employed four 2-objective and two 3-objective benchmark functions. The 

formulas of these functions are presented below Table 1, Here multi-objective test problems used to 

evaluate the NS-MOABC algorithm. Select test problems include ZDT1 to ZDT6 for 2 objective 

optimal functions and DTLZ2 and DTLZ6 for 3 or more objective optimal solutions to evaluate 

efficacy on complex test problems. 

Performance measures: In order to facilitate the quantitative assessment of the performance of a 

multi-objective optimization algorithm, two performance metrics are taken into consideration: (1) 

convergence metric (γ) (2) diversity metric (Δ) [20]. 

4.1 Convergence metric: This metric measures the extent of convergence to POS 

 
where N is the number of nondominated solutions obtained with an algorithm and di is the Euclidean 

distance between each of the nondominated solutions and the nearest member of the true Pareto 

optimal front. The average of these distances is used as the convergence metric γ. 

4.2 Diversity metric: This metric measures the extent of spread achieved among the obtained 

solutions. Here, a set of solutions that spans the entire Pareto optimal region, it defined as: 

 
where di is the Euclidean distance between consecutive solutions in the obtained nondominated set of 

solutions and N is the number of nondominated solutions obtained by an algorithm. d is the average 

value of these distances. df and dl are the Euclidean distances between the extreme solutions and the 

boundary solutions of the obtained nondominated set. 
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Table 1: Benchmark test functions of ZDT and DTLZ suite 

4.3 Computational complexity of NS-MOABC: Only a minor modification to the ABC algorithm's 

search equation in the bee phase makes the Non-dominated Sorting Artificial Bee Colony (NSABC) 

algorithm easy to implement and rationally computationally complex. The complexity, defined by 

function value comparisons per iteration, includes updating the archive using non-dominated sorting 

and searching in the employed and onlooker bee phases. The complexities include O(M×(NP)²) for 

initial archive updates, O(M×(2NP)) for bee phases, and O(M×(S+NP)²) + O(M×(S+NP))log(S+NP) 

for iterative updates using non-dominated sorting and crowding distance estimation. Thus, the 

complexity is quadratic, matching modern multi-objective optimisation algorithms. M is the number 

of objectives, NP the swarm size, and S the archive size. 

4.4. Simulation Parameters/Experimental setting 

All experiments are run on MATLAB 2022(b) in Windows on a 64-bit 3.40 GHz Intel(R) Core(TM) 

i5-3770 PC with 4GB RAM. Set swarm size to 100. Three successful nature-inspired multi-objective 

optimisation algorithms—NSGA-II [18], MOPSO [19], and MOABC [12]—were used to evaluate the 

proposed NS-MOABC algorithm. This section uses the termination criterion compare algorithms with 

a fair time measure in all experiments. NS-MOABC settings:  NS-MOABC parameter set[1] as swarm 

size is 100 and scout bees are limited to one [4]. The limit is NP×D/2 [6], with decision variables 

having a dimension of 30. Simulations are run 30 times for each test problem. The algorithm terminates 

after 300,000 function evaluations. T is 100,000 [15], and bi-objective problems have 100 archive size 

and three-objective problems 150. For the MOABC proposed in [4], a colony size of 50, archive size 

A = 100 was adopted. For NSGA-II settings: The original NSGA-II algorithm uses Simulated Binary 

Crossover (SBX) and Polynomial mutation. We use a population size of 100. Crossover probability pc 

= 0.9 and mutation probability is pm = 1/ n, where n is the number of decision variables. The 

distribution indices for crossover and mutation operators as ηc μ = 20 and ηm μm = 20 respectively.  

MOPSO settings: MOPSO used a population of 100 particles, a repository size of 100 particles, a 

mutation rate of 0.5, and 30 divisions for the adaptive grid. The detailed implementation and 

parameters setting for this MOPSO version can be refer to [19]. 

4.5 Simulations Results of Benchmark function Test:  

 Three algorithms' optimal fronts for each two objective functions are shown in Figs. 10–13. 

Continuous lines represent the Pareto optimal front, while mark spots represent algorithm-found 

nondominated solutions. When given 10,000 function evaluations for four algorithms on ZDT1 
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function, Table 3 shows that MOPSO performs one order of magnitude better in convergence metric 

than NSGA-II and MOABC but worse than NS-MOABC. Diversity metric shows that all algorithms 

perform similarly on ZDT1. Fig. 10 shows that NS-MOABC, MOPSO, and MOABC can find a diverse 

and well-distributed solution set. However, NSGA-II only finds a sparse distribution and cannot 

archive ZDT1's true Pareto front. 

Figure 3: Pareto fronts obtained by NS-MABC, MOPSO, MOABC, and NSGA-II on ZDT1. 

The ZDT2 performance measures show that NS-MOABC and MOABC have better convergence and 

diversity than MOPSO and NSGA-II. Table 4 shows that after 10,000 function evaluations, NS-

MOABC and MOABC outperform MOPSO and NSGA-II in convergence and diversity metrics by 

three orders of magnitude. Table 4 shows that NS-MOABC outperforms MOABC in diversity metric 

by an order of magnitude. Fig. 11 shows that MOPSO and NSGA-II fail this test function and cannot 

reach the true Pareto front. On ZDT3 and ZDT6, the algorithms perform similarly to ZDT1 and ZDT2. 

 
Figure 4: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II on ZDT2. 
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Figure 5: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II on ZDT3. 

 
Figure 6: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II on ZDT6. 

Three objective functions: Optimisation results for three objective DTLZ series problems from NS-

MOABC, MOPSO, MOABC, and NSGA-II algorithms are shown in Tables 7 and 8. Figs. 14–17 show 

the true Pareto optimal front and four algorithms' optimal fronts for DTLZ2 and DTLZ6. 

 
Figure 7: (A) The true Pareto-optimal front on DTLZ2 , (B)Pareto fronts obtained by NS-MOABC, 

MOPSO, MOABC, and NSGA-II on DTLZ2. 

Table 7 shows that all convergence metric algorithms performed well on DTLZ2 function. However, 

NSGA-II performs one order of magnitude worse in convergence metric than the other three 

algorithms, while NS-MOABC performs one order of magnitude better in diversity metric. Figure 15 

shows that the NS-MOABC front is uniformly distributed on DTLZ2's true Pareto optimal front. 

Search space for DTLZ6 has 2M - 1 disconnected Pareto-optimal regions. An algorithm must maintain 

subpopulations in different Pareto-optimal regions in this problem. Table 8 shows that NS-MOABC 

outperforms all other algorithms in convergence and diversity. Fig 17 shows that NS-MOABC finds a 

diverse and well-distributed solution set for this problem. The NSGA-II cannot store DTLZ6's true 

Pareto front. shows that the proposed NS-MOABC algorithm generates better spread solutions but 

poor convergence. This shows that the proposed method can predict a few solutions on the two 

disconnected Pareto fronts. 

 
Figure 8:  (A)The true Pareto-optimal front on DTLZ6, (B)Pareto fronts obtained by NS-MOABC, 

MOPSO, MOABC, and NSGA-II on DTLZ6. 
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5. MOOPF case study on IEEE 30 Bus system 

This section details the proposed multi-objective OPF solution. NS-MOABC implementation for 

multi-criteria power flow optimisation. The following steps should be repeated to solve the OPF 

problem with multi-objective algorithms. 

Step 1: Input the parameters of power system, parameters of the NS-MOABC algorithm, and lower 

and upper limits of each variable. 

Step 2: Transfer the constraint multi-objective problem to an unconstraint one as follows: 

 
where Neq and Nueq are the number of equality and inequality constraints, respectively. gj(x) and hj(x) 

are the equality and inequality constraints, respectively, and Z1 and Z2 are the penalty factors. 

Step 3: Produce the initial NS-MOABC population. N × M(N≥ 2, M≥2) individuals based on state 

variables should be randomly generated 

Step 4: Calculate the objective functions value for each bee in each hive, sort them based on 

nondomination, and store nondominated solutions in the external archive EA of each hive. 

Step 5: Update the position of each bee in each hive according to comprehensive learning mechanism. 

If any element of each bee breaks its limit then its position is fixed to the maximum minimum operating 

point. 

Step 6: Update each EA of each hive according to greedy selecting strategy, sort the EA based on 

nondomination, and select the solutions to stay in EA. If the number of nondominated solutions 

exceeds the allocated the size of EA, apply crowding distance to remove the crowded members. 

Step 7: If the current iteration number obtains the preordained maximum iteration number, the 

algorithm is stopped, otherwise go to step 4. 

Sato et al. [71] propose a novel idea that increasing selection pressure towards the Pareto-front scales 

a multi-objective optimisation algorithm for more objectives. Our NS-MOABC uses this idea. We 

modify the employed bee's search equation and introduce a Pareto-dominant augmented population. 

This method reduces dominated solutions in successive iterations, increasing selection pressure. Thus, 

the NS-MOABC outperforms other three-objective optimisation algorithms. 
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5.1 Best compromise solution based on fuzzy decision 

With the Pareto-optimal set of nondominated solutions, the proposed approach presents the power 

system decision maker with the best compromise solution. A fuzzy-based mechanism extracts the best 

compromise solution over the trade-off curve and helps the decision maker efficiently adjust 

generation levels [23]. The decision maker's judgement is imprecise, so each objective function of the 

ith solution is a membership function μi defined as flow: 

 
where min (Fi) and max (Fi) are lower and upper bounds of ith objective function. The higher the 

values of the membership function are, the greater the solution satisfaction is. For each nondominated 

solution, the normalized membership function μk is calculated as: 

 
where M is the number of nondominated solutions, and Nobj is the number of objects. The best 

compromise solution is the one having the maximum of μk. 

5.2 Simulation Results:  The IEEE 30-bus system in Fig. 9 is used to test NS-MOABC, MOPSO, 

MOABC, and NSGA-II to verify the proposed approach. The IEEE 30-bus test case represents a 

Midwestern American Electric Power System segment in December 1961. IEEE stands for Institute of 

Electrical and Electronics Engineers. Six generators, 41 transmission lines, and 4 transformers with 

off-nominal tap ratio in lines 6–9, 6–10, 4–12, and 27–28 comprise the IEEE 30-bus system. System 

data are in [55]. The active power generation limits are in Table 9. Generator buses and load buses 

have limits of 0.95–1.1 and 0.9–1.05 p.u. The transformer tap step size is 0.01 p.u., and the lower and 

upper limits are 0.9 and 1.05 p.u. 
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Figure 9: Network structure of IEEE 30-bus system and it’s parameters 

5.2.1: Case I: two-objective OPF optimization  

As a multi-objective optimisation problem, the OPF model optimises each two objective functions 

simultaneously. Figs. 10–12 show the Pareto fronts obtained by the NS-MOABC, MOPSO, MOABC, 

and NSGA-II algorithms for cost–emission, loss–cost, and loss–emission pairs. Tables 10–15 show 

the two-dimensional Pareto front's Pareto-optimal and best compromise solutions for each objective. 

All results on three two-objective OPF problems show that the proposed NS-MOABC algorithm can 

obtain well distributed Pareto-optimal fronts. The proposed approach achieves the trade-off between 

competing objectives by emphasising non-dominated solutions and a well-distributed set of solutions. 

 
Figure 10: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II for cost and 

emission (f1–f2). 

Table 8 shows that NS-MOABC converges best for fuel cost and emission objective functions. Fig. 10 

shows fuel cost and emission objective functions' Pareto-optimal front. Fig. 11 shows that NS-

MOABC finds a well-distributed and diverse solution set for this problem, while the other three 

algorithms only find sparse distributions. The best compromise fuel cost and emission objective 

functions using different algorithms are shown in Table 9. 



[ 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 11, No.3, November : 2024 
 

UGC CARE Group-1                                                                                                                         66 

 
Figure 12: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II for cost and 

loss (f1–f3). 

The best compromise for NS-MOABC is 616.8721 $/h and 0.2033 ton/h. If the best compromise 

solution's fuel cost and emission values are close to Table 10, then the statement is true in all Pareto 

dimensions. The algorithms rank similarly for cost–loss and emission–loss objective functions as for 

fuel cost–emission objective functions. 

 
Figure 13: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II for emission 

and loss (f2–f3). 

5.2.2: Case II: three-objective OPF optimization: The proposed algorithm optimises three 

competing objectives simultaneously Cost, emission, and loss cannot be improved without 

compromising the other two optimised objectives. Choose the best implementation compromise from 

the Pareto-optimal solutions. Tables 14 show that NS-MOABC outperforms all other algorithms in 

best and compromise fuel cost, emission, and loss solutions. Fig. 14 shows that the NS-MOABC finds 

a well-distributed and diverse solution set for this three-objective problem. The other three algorithms 

cannot archive the three-objective OPF's true Pareto front. The results again show that the proposed 

method provides a well-distributed Pareto-optimal front for three-objective OPF optimisation. The 

results show that the NS-MOABC algorithm solves the real-world multi-objective OPF problem with 

multiple Pareto-optimal solutions in one run.  
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Figure 14: Pareto fronts obtained by NS-MOABC, MOPSO, MOABC, and NSGA-II for fuel cost, 

emission and loss (f1–f2–f3). 

6 Statistical test: To test the efficacy and robustness of the proposed NS-MOABC on the real-world 

OPF problem, the analysis of variance (ANOVA) test was used to determine the statistical significance 

of each of the four algorithms. Visual statistics are analysed using box plots. Box plots are great for 

visualising distribution details. The middle half of the distribution's scores are in the box, which runs 

from the 25th percentile to the 75th percentile. The median line spans the box. Thus, one-fourth of the 

distribution is between this line and the box's top and bottom. 

 
Figure 15: The box plots of best compromise solutions obtained by NS-MOABC, MOABC, MOPSO 

and NSGA-II for 30 runs (A) For fuel cost and emission (f1–f2) pairs (B) for fuel cost and loss (f1–f3) 

pairs (C) for emission and loss (f2–f3) pairs 

Figure 16: The box plots of best compromise solutions obtained by NS-MOABC, MOABC, MOPSO 

and NSGA-II for fuel cost, emission and loss (f1–f2–f3) pairs 
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Figs.15–16 show the ANOVA test results for all algorithms on two and three objectives in 30 runs. 

The distribution's general characteristics can be seen in these box plots. Fig. 23 shows the box plots 

for Table 11's best fuel cost and emission compromise solutions (f1–f2). NS-MOABC has the best 

variance of compromise solutions with fuel costs between 615 and 620, as shown in Fig. 24.  

Computation time analysis: Real-world optimisation problems require high optimisation accuracy, 

computation robustness, and solution speed. Thus, this experiment included computation time analysis 

to verify the NS-MOABC's efficacy. The time spent on each generation varies by algorithm, so 

iterations do not represent time spent. In Fig. 17, we showed the computing times (average in 30 runs) 

of all algorithms on each multi-objective OPF case to easily evaluate algorithmic time response. Fig. 

17 shows that NS-MOABC takes the longest to compute. The other algorithms took less computing 

time to optimise, but NS-MOABC took fewer iterations to achieve more robust and precise OPF 

solutions. Thus, reducing maximum iterations saves NS-MOABC run time. 

 
Figure 17: Computation Time of MOOPF State-of-the-art of Algorithms. 

 

III. Conclusion 

This paper introduces NS-MOABC, a multi-objective optimisation algorithm inspired by bees' 

intelligent foraging. This method uses the Pareto concept, external archive, elite selection, crowding 

distance strategies, and adaptive learning to converge to the true Pareto optimal front while maintaining 

population diversity through non-dominated sorting. A new adaptive search procedure in the bee phase 

guides solutions to the optimal region while preserving diversity, refined by a fitness strategy based 

on Pareto rank and crowding distance. NS-MOABC performed well on numerical benchmark 

problems, so the authors applied it to multi-criteria power flow optimisation, considering cost, loss, 

and emission. The simulation results show that NS-MOABC can solve OPF problems better than 

MOPSO, MOABC, and NSGA-II. The algorithm's simplicity and diversity preservation make it useful 

for complex multi-objective optimisation problems. NS-MOABC outperforms MOPSO, MOABC, and 

NSGA-II in six mathematical benchmark functions for two and three objectives. The proposed multi-

criteria power flow optimisation model's best compromise solution is found using fuzzy membership. 

Compared to MOPSO, MOABC, and NSGA-II, NS-MOABC had better optimisation accuracy and 

convergence robustness in 30-bus IEEE test system simulations. 
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