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Abstract: Over last decade the cloud workload have been growing exponentially and are also 

unpredictable due to the migration of several vendors to cloud based applications. This lead to 

the need for advanced predictive models in order to ensure effective resource allocation and 

management. While traditional models are likely to result in very accurate predictions, they 

usually come at the cost of explainbility, which limits real applicability and diminishes the trust 

of users. It is in view of these limitations that this paper proposes a new hybrid deep learning 

model for workload prediction by incorporating explainable Long Short-Term Memory 

Recurrent Neural Networks with Convolutional Neural Networks and named as LRC-XAI 

model. Most traditional workload prediction models focus on enhancing the model's accuracy at 

the expense of model explainability. Having found their applications in critical domains with a 

requirement of interpretability in predictions, these models are barred due to the lack of 

transparency in their internal working. In this paper a hybrid model is developed by 

incorporating the explainability techniques SHAP and LRP for explaining the decisions of the 

LSTM-RNN and CNN models. The explainable LSTM-RNN uses sequential time series 

workload data to make predictions while SHAP values explain the feature importance in the 

prediction. The explainable CNN, on the other hand, extracts intricate patterns from historical 

workload data while LRP resolves the contribution of each layer in reaching the final output. 

Besides prediction accuracy, the hybrid approach makes a combination of both models available, 

thus providing a comprehensive interpretability framework that enhances user trust and explains 

the operation. Empirical evaluations demonstrate that this hybrid model reduces MAE from 0.42 

to 0.37, thus significantly improving prediction accuracy. In addition, it improves user trust by 

10%, since users can see more transparently how predictions are formulated. This work 

significantly contributes to workload prediction by balancing two important objectives i.e. 

accuracy and interpretability, hence encouraging practical field deployment of predictive models 

for both reliability and understandability levels. 

Keywords: Workload Prediction, Explainable AI, LSTM-RNN, CNN, Hybrid Models, SHAP, 

LRP 

1. Introduction 

It is expected that digital services and applications are going to increase manifold, resulting in an 

unpredictable rise of data production and computational workloads. Efficient workload prediction, 

thus, is one of the critical issues for optimizing resource allocation, ensuring system stability, and 

improving user experience in domains like cloud computing, network management, and IT 

infrastructure. While traditional predictive models are very good at predicting workloads, they 

typically act as black boxes, providing very little, if any, insight into their reasoning and 

processes[4]. Their opacity reduces user trust and limits the applicability of such models to general 

practical scenarios, especially in critical applications where the interpretation of the reasons behind a 

prediction is indispensable in different scenarios[16]. Recent years have seen the rise of rather 

sophisticated models in the field of deep learning, such as Long Short-Term Memory Recurrent 

Neural Networks and Convolutional Neural Networks, which have enormous potential for processing 
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time-series data and extracting complex patterns [3][17]. Although these techniques have a high 

predictive accuracy, such models are inherently non-transparent and correspondingly hard to 

interpret and trust for stakeholders. This has created a need for explainable AI as part and parcel of 

model development, seeking to close the gap between model performance and levels of 

interpretability. In this paper, the authors have proposed a hybrid deep learning model synergizing 

the strengths of LSTM-RNN and CNN with integrated explainability techniques for better prediction 

accuracy and interpretability in different scenarios. The Explainable LSTM-RNN component will 

make use of SHapley Additive eXplanations (SHAP) to quantify each feature's contribution to time 

series workload data[14][9]. This gives overall very clear insight into how the model is making its 

decisions. On the other hand, the Explainable CNN component will make use of Layer-wise 

Relevance Propagation(LRP) to explain the hierarchical importance of features extracted from 

historical workload data samples and LRP used to check which input features contributed to 

prediction. Such a hybrid approach can then integrate these models to improve the accuracy of 

workload predictions and provide comprehensive coverage of factors driving such workload 

predictions.. This work offers a great deal toward workload prediction by solving both challenges of 

accuracy and interpretability, hence opening the way for the implementations of predictive models 

that are reliable and understandable within real-world scenarios. 

The objective of this paper is prediction of cloud workload through deep learning methods and to 

conduct a detailed analysis on the empirical results evaluated using classification metrics. The key 

contributions are summarized as follows: 

1) To address the problems regarding the exponential growth and unpredictability of cloud 

workloads for effective resource allocation and management through robust workload 

prediction by using the deep learning methods. To achieve this objective a hybrid deep 

learning model, LRC-XAI is proposed. 

2) To compare and evaluate the LRC-XAI model with the methodologies presented by other 

contemporary researchers on similar type of works in the literature. 

3) Empirically evaluate the hybrid model and demonstrate its effectiveness by showing 

significant improvements in prediction accuracy. 

4) To incorporate explainability techniques such as SHAP and LRP to explain the decisions of 

LSTM-RNN and CNN models. 

5) Enhancing model interpretability by explaining feature importance using SHAP for LSTM-

RNN and resolving the contribution of each CNN layer using LRP.  

 

The paper is organized as follows: The current cloud workload prediction models using both ML and 

DL methods are discussed in Section 2, whereas Section 3 explains the proposed hybrid method, 

LRC-XAI that integrates LSTM-RNN and CNN along with explainable AI techniques. In section 4, 

the experimental results are given as per the empirical evaluation and are also compared with other 

three contemporary methods. Finally the conclusions and future scope of this work is discussed in 

section 5. 

2. Literature Review 

Workload prediction in cloud computing has attracted immense interest given its pivotal role in 

optimizing resource allocation and assuring system efficiency. This literature review looks into some 

of the methodologies and advancements in this realm, highlighting how the evolution and current 

trends in predictive modeling for cloud environments come about. Sus and Nawrocki [1] developed a 

machine learning and anomaly detection-driven signature-based adaptive cloud resource usage 

prediction model. Their approach recognized resource usage patterns and anomalies to increase the 
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accuracy of predictions, though model interpretability remained limited—a quite common case 

across most complex applications of machine learning. Yang et al. [2] proposed HMM-CPM, a 

method of cloud instance resource prediction through hidden Markov models. It traced the workload 

trends and gave a probabilistic framework for prediction. Although HMM-CPM could estimate 

workload trends, the inherent complexity of HMM reduced its scalability and interpretability with 

larger datasets & samples. Maiyza et al. [3] proposed VTGAN: a hybrid generative adversarial 

network for cloud workload prediction. The model combined variational auto-encoders with GANs 

in order to generate synthetic workload data that increased the accuracy of the prediction. Although 

this approach was rather novel, the reliance of VTGAN on synthetic data raised questions about 

practical applications in real situations—very different from real data—inevitable. Kashyap and 

Singh [4] presented a systematic review of prediction-based scheduling techniques in cloud data 

centers. Their paper provided general overview of the available methodologies and their approaches 

with respective strengths and limitations. The review, however, indicated that very few models 

balance between prediction accuracy and interpretability. Karimunnisa et al.  presented another 

workload forecasting model engrafting adaptive learning with deep belief networks under the 

ALAA-DBN algorithm. Their model was highly accurate in workload prediction but suffered from 

problems with model transparency and user trust due to the inherent complexity of deep belief 

networks. Dogani et al. [6] designed a multivariate workload and resource prediction model using 

CNN and GRU using the attention mechanism. This approach captured temporal and spatial 

dependencies existent in this data effectively and improved the accuracy of prediction. A major 

concern raised, however, was that of interpretability with this combined architecture of CNN and 

GRU. 

Devi and Valli [7] proposed a statistical hybrid model that enables time series-based workload 

prediction in a cloud environment. This model provides an excellent balance between simplicity and 

accuracy using a fusion of statistical techniques with machine learning. While the hybrid model was 

found to be very promising, its applicability remained narrow in scope for extremely dynamic and 

complex workloads. Ali and Kecskemeti [8] proposed SeQual—an unsupervised method for feature 

selection in cloud workload traces. SeQual focused on improving the quality of workload prediction 

through the selection of the most relevant features. It improved workload prediction performance, 

but the unsupervised nature of feature selection led to doubt its adaptability to changes in workload 

patterns. Liu and Jiang [9] have used a three-way decision-based approach for workload prediction in 

cloud datacenters. Their model was oriented toward balanced decisions under uncertainty to enhance 

the robustness of prediction. Quite effective, three-way decisions regained the trend due to their 

complexity. Pachipala et al.  proposed a hybrid optimization algorithm for workload prioritization 

and task scheduling in a cloud environment. The core idea of this algorithm is to optimize resource 

utilization by prioritizing tasks with respect to the predicted workload. However, this model was an 

optimization technique dependent and require a large amount of computational resources. Lakhan et 

al. [11] investigate workload offloading of IoT workload in Intelligent Transport Systems using 

Federated ACNN integrated with cooperated Edge-Cloud Networks. They found that edge and cloud 

resources have enormous potential if integrated for workload prediction. Although this model was 

powerful in IoT applications, the scalability of the same to the wider cloud environment warranted an 

investigation process. Kirchoff et al. [12] surveyed some machine-learning prediction techniques 

together with their impact on proactive resource provisioning in cloud environments. Their study 

presented a tradeoff between the prediction accuracy and resource provisioning efficiency, 

underlining that models should consider optimization at both ends. In another related work, Soumplis 

et al. [13] proposed a multi-agent rollout approach for workload placement across the edge-cloud 

continuum. The model was to ensure optimality with respect to performance due to dynamic 

workload placement based on predictions. Although the proposed multi-agent system is very 

promising, it is inherently complex for real-time applications. Shamsa et al. [14] proposed a 
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prediction-based decentralized workflow load balancing architecture in a cloud/fog/IoT environment. 

Their model operated based on the principle of decentralized workload balancing predictions at the 

different layers of the cloud-fog-IoT continuum. While this was very innovative, more validation 

was still needed in proof that a model could scale up and interoperate in all environments. Nguyen et 

al. [15] proposed an improved Sea Lion Optimization algorithm using Neural Networks for workload 

elasticity prediction. This methodology improved the accuracy of predictions and results 

adaptability, while at the same time, problems in the process optimization interpretability and neural 

network prediction interpretabilities remained open. This review gives proof that methodologies have 

further evolved to handle workload prediction models dealing with certain limitations over accuracy, 

scalability, and levels of interpretability. The proposed model surmounts these limitations focuses on 

how to achieve high prediction accuracy with model interpretability to advance workload prediction 

in cloud computing environments. 

3. Proposed LRC-XAI Model 

In the proposed design of a hybrid deep learning model, there will be an incorporation of  

Explainable LSTM-RNN and CNN for high accuracy and interpretability in workload prediction. 

Two key building blocks are the Explainable LSTM-RNN for sequential data processing and the 

Explainable CNN for feature extraction. Each building block is devised on top of advanced 

explainability techniques i.e. SHAP and LRP to shed light on the inner decision process and gain 

trust from the user. SHAP provides feature-level importance scores, indicating how much each 

feature influences the output, whereas LRP gives relevance scores for each input feature for a 

specific prediction. The explainable LSTM-RNN component will be designed for time-series 

workload data to capture temporal dependencies and trends. The LSTM units shall be defined with a 

cell state Ct, input gate It, forget gate Ft, and output gate Ot working via the following equations: 

𝐼𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖) … (1) 

𝐹𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓) … (2) 

𝑂𝑡 = 𝜎( 𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜) … (3) 

 𝐶𝑡 =  𝐹𝑡 ∗ 𝐶(𝑡 − 1) + 𝐼𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝐶) … (4) 

 𝐻𝑡 =  𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) … (5) 

Input Gate (𝑰𝒕):Decides how much new information should be added to the memory (cell 

state). It looks at the current input and previous output to make this decision. 

Forget Gate (𝑭𝒕):Decides what part of the old memory (cell state) should be forgotten or 

kept. 

Output Gate (𝑶𝒕):Decides how much of the memory should be shown as the output for this 

time step. 

Cell State (𝑪𝒕):This is the memory of the LSTM. It gets updated based on what is kept from 

the old memory (forget gate) and what new information is added (input gate). 

Hidden State (𝑯𝒕):This is the output of the LSTM for this time step, based on the updated 

memory (cell state) and the output gate. 
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LSTM decides how much to forget, how much to add, and how much to output. The memory (cell 

state) is updated based on the decisions made by the gates. A new output is produced from the 

updated memory. LSTM does this for every time step to process sequences (like words in a sentence 

or steps in time series data). 

The following are equations explaining the process of how an LSTM cell works, xt is the input at 

time step t, h(t−1) is the hidden state from the previous time step, σ is sigmoid, and W and b are 

weight matrices and bias vectors respectively. Finally, an SHAP method that uses SHapley Additive 

exPlanations provides an explanation of the output from the LSTM-RNN. It gives feature importance 

scores quantifying the contribution of each input feature towards the final prediction. Spatial patterns 

will be extracted from historical workload data samples with the Explainable CNN component. 

Equation 6 gives the working definition for the convolutional layers: 

 𝑍𝑖𝑗 = ∑ ∑ 𝑋(𝑖 + 𝑚 − 1, 𝑗 + 𝑛 − 1) ∗ 𝐾𝑚𝑛 + 𝑏 … (6)

𝑁

𝑛=1

𝑀

𝑚=1
 

CNN is used to learn patterns from the data, especially spatial patterns (e.g., images or grids of 

data).Where Zij represents the output feature map, X the input matrix, K the kernel and b is the bias 

term for this process. This method of Layer-wise Relevance Propagation is employed to explain the 

CNN model in the form of decomposition of the prediction into contributions from each input feature 

via the relevance propagation equations. 

 𝑅𝑗 =
∑  𝑎𝑗 ∗ 𝑤𝑗𝑘 𝑘

∑ 𝑎𝑗′ ∗ 𝑤𝑗′𝑘𝑗′
 𝑅𝑘 … (7) 

LRP is a technique that explains how much each input feature contributes to the CNN's final 

prediction.Where Rj is the relevance score for neuron j, aj is the activation of neuron j, wjk is the 

weight connecting neuron j to neuron k, and Rk is the relevance of neuron k in the process. The 

method provides full description at every step of involvement of each input feature with the model's 

output. The hybrid model Combines the strengths of both LSTM (which captures time-related 

patterns) and CNN (which captures spatial patterns). This is useful for workload data, where both 

time and space matter.The strengths of the two models are integrated with a hybrid approach where 

the final prediction, y, is some kind of weighted combination of the predictions that result from these 

two components: LSTM-RNN and CNN, 

𝑦 = 𝛼 ∗ 𝑦𝐿𝑆𝑇𝑀 + (1 − 𝛼) ∗ 𝑦𝐶𝑁𝑁 … (8) 

Equation 8, shows how the final prediction (y) is a combination of predictions from: 

• LSTM (yLSTM), which captures time-based patterns. 

• CNN (yCNN), which captures spatial patterns. 

Where α is the weighting factor that balances the contributions of the LSTM-RNN and CNN models. 

This hybrid model is chosen because it can learn both temporal and spatial dependencies inherent in 

workload data and offers better prediction accuracy and interpretability of scenarios. It requires 

training for minimizing the MAE loss function defined via equation 9, 
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𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − 𝑦𝑖′ ∣ ⋯ (9)

𝑛

𝑖=1

 

This is used to measure how wrong the model's predictions are. Here, yi is the true workload, yi′ is 

the predicted workload, and n is the total number of predictions. This loss function has robust 

performance and works on reducing the absolute differences between the predicted and true 

workloads. The empirical analysis shows that the hybrid model performs better than the stand-alone 

LSTM-RNN or CNN models with a drop in MAE from 0.42 to 0.37. Furthermore, user trust 

increases by 10% when explainability techniques are added, as users start to understand more of the 

process of prediction. This offers a holistic approach toward workload prediction: it will not only 

improve in accuracy but also guarantees transparency—very suitable for real-world deployments 

where reliability and interpretability are paramount. 

LSTM-RNN captures time-based patterns and CNN captures spatial patterns. SHAP explains the 

importance of each input in making the prediction. Hybrid model combines LSTM-RNN and CNN 

for better accuracy.MAE measures how well the model is predicting. 

This approach helps improve prediction accuracy and interpretability when analyzing complex data, 

like workload data over time and space 
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Figure 1. Model Architecture of the Proposed Workload Balancing Process 

This hybrid model combines  LSTM-RNN and CNN, along with Explainable AI (XAI) techniques, 

to process both time-series and spatial data. The LSTM-RNN focuses on capturing temporal patterns 

from the time-series data, while the CNN extracts spatial features from the historical data. The 

LSTM learns temporal dependencies, while the CNN passes data through convolutional layers to 

identify spatial features and reduce dimensionality. The outputs of both models are then combined 

using a weighted sum to generate the final prediction. 

To enhance interpretability, Layer-wise Relevance Propagation (LRP) is applied to the CNN, 

explaining the contributions of different input features. SHAP values are used to explain the LSTM's 

output, highlighting the most important features influencing the predictions. This combination makes 

the model not only accurate but also interpretable, providing insights into which input features drive 

the decision-making process. 

4. Comparative Result Analysis 

The proposed hybrid deep learning model for workload prediction is to be evaluated on quite a 

diverse set of contextual datasets and samples. This model uses the SHAP and LRP for expainability 
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where SHAP is computationally expensive for large datasets and complex models. It considers all 

combinations of input features leads to growth exponentially. LRP is less computational expensive 

compared to SHAP since it focuses on back propagation through network layers.  

These include different workload patterns that are cyclic, seasonal, and sporadic in nature and were 

drawn from cloud computing environments, IT infrastructures, and network management systems. In 

the evaluation, the performance of the proposed model will be compared against that of three 

benchmark methods [3], [8], and [14] with respect to the prediction accuracy and interpretability of 

the results in different scenarios. The experimental datasets used for this study are described in Table 

1. Each dataset contains one-year time-series workload data, and the observations are recorded at a 

regular interval for this process. 

Table 1: Datasets collection 

Dataset Source Data Type Time Interval Total Observations 

DS1 Cloud Computing Cyclic Workload 15 minutes 35,040 

DS2 IT Infrastructure Seasonal Workload 30 minutes 17,520 

DS3 Network Management Sporadic Workload 1 hour 8,760 

DS4 Combined Environments Mixed Workload 1 day 365 

Evaluation of all models was done using MAE, RMSE, and R-squared. Results on each dataset are 

presented in Tables 2 to 5. 

Table 2: Results on Dataset DS1 

Model MAE RMSE R² 

Method [3] 0.50 0.65 0.85 

Method [8] 0.47 0.61 0.87 

Method [14] 0.44 0.58 0.89 

LRC-XAI 0.37 0.49 0.93 

 

 

DS1 is the most granular dataset, capturing data every 15 minutes, which is useful for analyzing 

high-frequency cyclic patterns.DS2 collects data every 30 minutes and focuses on seasonal 

variations, likely reflecting broader business or environmental trends.DS3 monitors network 
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behavior with hourly data, suitable for tracking fluctuating or sporadic network workloads.DS4 

provides a high-level summary of combined environments with daily data, offering a general 

overview of mixed workloads across various systems. This table helps differentiate between various 

workload types, collection frequencies, and observation counts, offering insights into how each 

dataset is structured based on its environment and the type of workload it represents. 

Table 3: Results on Dataset DS2 

Model MAE RMSE R² 

Method [3] 0.48 0.62 0.86 

Method [8] 0.45 0.59 0.88 

Method [14] 0.42 0.55 0.90 

Proposed 0.36 0.47 0.94 

 

Dataset DS2 represents a seasonal workload from an IT infrastructure environment, where workloads 

follow periodic patterns. The Proposed Method delivers the best performance across all three 

metrics: MAE: 0.36, the smallest error, showing its predictive accuracy. RMSE: 0.47, indicating its 

superior handling of outliers or larger deviations.R²: 0.94, explaining 94% of the variance, which is 

an excellent fit for the data, capturing the seasonal trends more accurately than the other models. 

The performance of other methods is relatively poor, with Method [3] having the highest errors and 

the lowest R² score (0.86). 

Table 4: Results on Dataset DS3 

Model MAE RMSE R² 

Method [3] 0.52 0.68 0.83 

Method [8] 0.49 0.64 0.85 

Method [14] 0.46 0.60 0.87 

LRC-XAI 0.39 0.51 0.91 
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Dataset DS3 is a sporadic workload from a network management system, which means that 

workload is unpredictable, with irregular fluctuations. The Proposed Method performs significantly 

better than the other methods, MAE: 0.39, showing that the model has the lowest prediction error. 

RMSE: 0.51, highlighting the model's ability to minimize larger deviations.R²: 0.91, indicating the 

model explains 91% of the variance in the sporadic workload, demonstrating robustness even with 

highly unpredictable data. 

Method [3] has the poorest performance with the highest error rates, showing that struggles more 

with sporadic data than other models. 

Table 5: Results on Dataset DS4 

Model MAE RMSE R² 

Method [3] 0.54 0.70 0.81 

Method [8] 0.51 0.67 0.83 

Method [14] 0.48 0.63 0.85 

Proposed 0.40 0.52 0.90 
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Dataset DS4 represents a mixed workload, which integrates data from combined environments that 

contain elements of cyclic, seasonal, and sporadic patterns.The Proposed Method continues to 

outperform the others:MAE: 0.40, the lowest error rate.RMSE: 0.52, showing the smallest overall 

deviations, even in mixed environments.R²: 0.90, explaining 90% of the variance, indicating that it is 

highly effective at predicting mixed workloads. 

For the dataset of cyclic workload DS1, proposed model has returned with a MAE of 0.37, RMSE of 

0.49, and an R² of 0.93, thereby depicting better prediction accuracy than that of Method [14], whose 

MAE was 0.44, its RMSE was 0.58, and its R² was 0.89. For seasonal workload dataset DS2, the 

proposed model gave an MAE of 0.36, an RMSE of 0.47, and an R² of 0.94. Thus, it outperformed 

Method [14] with MAE 0.42, RMSE 0.55, and R² 0.90. This result is rather indicative of its 

robustness in capturing any temporal dependencies or complex patterns that workload data samples 

may portray. On the dataset of sporadic workload, an MAE of 0.39, an RMSE of 0.51, and an R² of 

0.91 have been obtained for the proposed model against an MAE of 0.46, an RMSE of 0.60, and an 

R² of 0.87 for Method.  Results on the mixed workload dataset, DS4, further proved to be in the 

favor of the proposed model: MAE = 0.40, RMSE = 0.52, and R² = 0.90, outperforming Method 

[14], which revealed MAE = 0.48, RMSE = 0.63, and R² = 0.85. The performance of the other 

methods degrades progressively, with Method [3] having the highest error and the lowest R², 

meaning it struggles the most to account for the complex variability in the mixed workload.The 

Proposed Method not only performs better in terms of error reduction and fitness (as shown in the 

previous datasets) but also excels in terms of user trust and model interpretability. 

User Trust: With 88%, the Proposed Method has gained the highest confidence from domain 

experts. This reflects how much users believe the model’s predictions align with their expectations 

and domain knowledge. 

Interpretability: With a score of 4.5 out of 5, the Proposed Method provides the clearest and most 

understandable explanations for its predictions, making it easier for users to comprehend and trust 

the decision-making process. 

Other methods, especially Method [3], have lower trust and interpretability scores. Method [3] has a 

70% trust rate and a 3.2 interpretability score, showing it is seen as less reliable and harder to 

understand.The scores progressively improve for Method [8] and Method [14], but they still fall 

short of the Proposed Method. Finally, across all datasets, the Proposed Method consistently delivers 

the best performance in terms of predictive accuracy (lowest MAE, RMSE, and highest R²). 

Additionally, it earns the highest levels of user trust and interpretability, making it the most effective 

and preferred model for handling cyclic, seasonal, sporadic and mixed workloads. The ability to 

perform well and be understood by domain experts gives it a significant advantage over the other 

methods. 

User trust and interpretability were assessed through a survey among domain experts, where experts 

rated their model trust, along with the clarity of its explanations. Results are summarized in Table 6, 

Table 6: Interpretability among different datasets 

Model User Trust (%) Interpretability (Score 1-5) 

Method [3] 70 3.2 
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Method [8] 75 3.5 

Method [14] 78 3.7 

LRC-XAI 88 4.5 

Results indicate that, on the whole, the proposed hybrid model outperforms benchmark methods in 

all datasets and samples. A significant reduction in MAE and RMSE values, with higher R² values, 

proves better predictive accuracy. This improvement is most remarkable in the cyclic and mixed 

workload datasets, DS1 and DS4, respectively, since it will be necessary to handle both temporal and 

spatial dependencies. The user trust and interpretability scores indicate that explainability techniques 

included in the proposed model significantly improve user confidence. SHapley Additive 

exPlanations and Layer-wise Relevance Propagation are techniques that give excellent insight into 

the decision-making process of the model, thus making the prediction transparent and more 

interpretable for different scenarios. Thus, in general, the proposed hybrid model is robust to balance 

the needs of accuracy and interpretability in the context of workload prediction and can therefore 

overcome traditional predictive models' limitations toward more reliable and user-friendly workload 

predictive systems. 

5. Conclusion and Future Scopes 

A hybrid deep learning model is proposed for workload prediction, which integrates explainable 

LSTM-RNNs with CNN. This model presents a considerable advancement in workload prediction 

since it accomplishes high accuracy and guarantees interpretability across various scenarios. 

Comprehensive empirical evaluations are performed on diversified context datasets, and the 

proposed model significantly surpasses benchmark methods in terms of prediction accuracy and user 

trust. The model's effectiveness is validated by performance metrics including Mean Absolute Error, 

Root Mean Squared Error, and R-squared values. The empirical evaluation of the proposed model 

significantly improves the accuracy of predictions, reducing the mean absolute error from 0.42 to 

0.37. This has improved the trust of users by 10% since users are now able to know in detail how the 

model is making predictions. For cyclic, seasonal, sporadic, and mixed workloads, the proposed 

model consistently outperformed other benchmark methods, demonstrating its robustness in 

capturing temporal dependencies and complex patterns. This robustness allows it to effectively 

model the various patterns that workload data samples may exhibit.  

These improvements were consistent across different datasets, which reflect the hybrid model's 

versatility and effectiveness. In addition to accuracy, this proposed model greatly improves in 

interpretability, achieving a 10% increase in user trust compare to benchmark methods. By 

integrating SHapley Additive exPlanations and Layer-wise Relevance Propagation techniques, the 

model provides very clear insights regarding the contributions of each feature and layer to enable an 

in-depth understanding of the model's predictions. 

6.Future Scope 

These promising results also open up several avenues for further studies and development. One such 

future direction can be the application of this hybrid model to other domains beyond workload 

prediction, for example, financial forecasting, demand prediction, and healthcare analytics, where 

accurate and interpretable predictions are very important. Besides that, one might delve deeper into 

explainability techniques in terms of making the interpretability insights clearer and finer-grained for 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 11, No.1, November : 2024 
 

UGC CARE Group-1                                                                                                                       212 

various scenarios. Future studies may incorporate other deep learning architectures, such as 

Transformers, for better prediction accuracy and to capture the long-term dependencies more 

effectively.  
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