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ABSTRACT 

Deep learning models have significantly advanced brain tumor diagnosis using MRI scans, yet 

centralized training approaches pose data privacy and regulatory challenges. This paper presents a 

comprehensive implementation-based study integrating Federated Learning (FL) with deep 

convolutional neural networks (CNNs) to address these limitations. Utilizing the BraTS dataset, we 

explore VGG16, EfficientNet-B0, and U-Net architectures in a federated setup across multiple 

simulated hospital nodes. Using the Flower framework, we simulate real-world multi-institutional 

settings where only encrypted model updates are exchanged via the FedAvg strategy. The system 

achieves high accuracy (97.3%) with precision and recall over 96%, validating the effectiveness of FL. 

The proposed system employs secure aggregation techniques including homomorphic encryption and 

differential privacy to ensure confidentiality. Visual metrics tracking and comparative evaluation with 

centralized models confirm the robustness and scalability of our approach. This work sets a benchmark 

for privacy-preserving collaborative diagnosis systems and outlines future enhancements including 

blockchain-integrated federated setups and lightweight personalized models for real-time clinical use. 
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I. Introduction 

Brain tumors are among the most critical neurological disorders, responsible for high mortality and 

morbidity worldwide. Gliomas, in particular, are known for their aggressive nature and poor prognosis. 

MRI-based early diagnosis plays a pivotal role in enhancing patient survival [4]. Magnetic Resonance 

Imaging (MRI) is the preferred modality for non-invasive brain imaging due to its ability to capture 

detailed soft tissue contrast without radiation exposure. 

The integration of Artificial Intelligence (AI), particularly Deep Learning (DL), into radiological 

analysis has significantly improved the accuracy and speed of tumor detection and classification. 

Convolutional Neural Networks (CNNs), including VGG16, ResNet, and EfficientNet, have 

demonstrated state-of-the-art performance in medical image analysis [11][12]. However, most AI-

based models rely on centralized data aggregation, which raises serious concerns about patient 

confidentiality, data misuse, and regulatory compliance [5][22]. 

In light of data sensitivity and stringent legal regulations such as the General Data Protection 

Regulation (GDPR) in Europe and the Health Insurance Portability and Accountability Act (HIPAA) 

in the United States, there is an urgent need for privacy-preserving machine learning frameworks 

[1][9]. Federated Learning (FL) emerges as a viable solution to these challenges by decentralizing 

model training across multiple institutions without transferring raw data [3][6]. 

FL is particularly effective for healthcare because it allows models to benefit from diverse, institution-

specific datasets while maintaining data sovereignty. This collaborative approach promotes 

generalization across demographic and device variability, which is crucial in real-world clinical 

deployments [5][8]. Furthermore, recent studies have demonstrated FL's capability to resist common 

privacy threats such as gradient inversion and membership inference attacks through integration of 

differential privacy and secure aggregation mechanisms [7][10][18]. 
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This paper presents a novel implementation of federated deep learning models for MRI-based brain 

tumor classification and segmentation. We demonstrate how a federated environment, simulated using 

the Flower framework, effectively leverages CNN architectures such as VGG16 and U-Net while 

preserving institutional data privacy. The study simulates non-IID client distributions, integrates 

advanced security layers including differential privacy and homomorphic encryption, and analyzes 

performance metrics across both centralized and federated baselines. In doing so, it contributes to the 

growing body of research advocating for secure, scalable AI systems in healthcare [13][24][29]. 

 

II. Background and Related Work 

The adoption of artificial intelligence in healthcare has led to significant advancements in medical 

imaging, particularly for brain tumor diagnosis. Early efforts focused on traditional machine learning 

algorithms using handcrafted features, but their limitations in generalization led to the adoption of deep 

learning techniques. Convolutional Neural Networks (CNNs) such as VGG16, ResNet, and 

EfficientNet have shown excellent performance in classification and segmentation tasks involving 

complex medical data [11][12]. 

However, the reliance on centralized data collection poses risks of data breaches, non-compliance with 

data protection laws, and limited scalability in heterogeneous environments. Federated Learning (FL) 

addresses these challenges by enabling collaborative training across decentralized nodes while 

retaining data locally [3][6][8]. It has emerged as a transformative paradigm in privacy-preserving 

machine learning, particularly suitable for sensitive domains like healthcare. 

Sheller et al. [2] demonstrated the feasibility of FL in multi-institutional settings using brain tumor 

MRI scans. Their work showed how FL can preserve model performance without data sharing. Jiang 

et al. [1] extended this idea by introducing a privacy-preserving federated CNN framework that 

leveraged data heterogeneity to enhance robustness. Kaissis et al. [7] implemented end-to-end 

encryption mechanisms to bolster privacy in FL pipelines. Similarly, Yahiaoui et al. [10] emphasized 

the importance of integrating differential privacy in multi-dimensional brain tumor segmentation. 

Moreover, blockchain has been considered as a solution to improve trust and auditability in FL setups. 

Nguyen et al. [20] proposed a decentralized FL system that utilizes blockchain for transparent model 

updates and access control. Smith et al. [25] further confirmed that blockchain-enhanced FL can 

support secure federated CNNs for medical segmentation tasks. 

Transfer learning has also been explored in the FL domain to reduce training times and improve 

accuracy on smaller datasets. Albalawi et al. [12] and Khan et al. [13] incorporated pretrained CNNs 

such as VGG16 into federated workflows, achieving high accuracy in brain tumor classification tasks. 

Zhou et al. [11] introduced a distributed FL model based on EfficientNet-B0, confirming the scalability 

of FL across diverse datasets. 

Personalization strategies such as Personalized Federated Learning (PFL) have been developed to 

improve model performance on non-IID client data. Huang et al. [19] integrated attention mechanisms 

to customize global models per institution, significantly improving local accuracy. Nasr et al. [17] 

highlighted the threat of white-box attacks in FL and recommended adversarial training and gradient 

obfuscation for defense. 

Comprehensive surveys by Lyu et al. [18], Kairouz et al. [15], and Yang et al. [16] have outlined FL’s 

open challenges including client drift, statistical heterogeneity, and communication bottlenecks. These 

works advocate for scalable, secure, and energy-efficient FL implementations, which are crucial for 

successful real-world deployments. 

The convergence of FL with deep learning, secure computation, and distributed systems has led to the 

evolution of robust privacy-preserving diagnostic frameworks. These developments provide the 

foundation for our proposed federated system, which is uniquely tailored for MRI-based brain tumor 

diagnosis using secure, scalable architectures. 

Extensive research highlights the effectiveness of CNNs like VGG16, ResNet, and EfficientNet for 

medical image classification and segmentation tasks [4][11][12]. Nonetheless, the limitations of data 
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centralization and associated privacy concerns led to the adoption of FL for medical AI. Sheller et al. 

[2] first demonstrated FL’s efficacy in a multi-institutional brain tumor classification task without 

requiring data sharing. Kaissis et al. [7] advanced this by applying secure aggregation and differential 

privacy to FL settings. 

Yahiaoui et al. [10] proposed privacy-preserving 3D brain tumor segmentation using FL, while Jiang 

et al. [1] optimized diagnostic performance through a hybrid FL and CNN strategy. Studies by Khan 

et al. [13] and Albalawi et al. [12] further explored transfer learning integration into FL, yielding 

improved performance in low-resource environments. Blockchain-enabled FL by Nguyen et al. [20] 

and auditability mechanisms proposed by Smith et al. [25] offer secure and transparent collaboration. 

Personalized FL (PFL) using attention mechanisms [19], adaptive optimization [8], and robustness 

against adversarial attacks [17] are actively researched to tackle non-IID data heterogeneity, which is 

common in clinical data. Furthermore, systematic surveys [15][18] affirm the viability of FL in real-

world deployments, outlining challenges in scalability, heterogeneity, and trust management.  

 

III. Materials and Methods 

The design of a federated deep learning system for MRI-based brain tumor classification requires 

careful attention to the dataset characteristics, preprocessing techniques, choice of deep learning 

architectures, secure orchestration frameworks, and evaluation methodologies. In this section, we 

elaborate on the systematic approach taken to ensure accurate, scalable, and privacy-preserving model 

development that adheres to real-world medical constraints. 

We adopted a multi-stage pipeline comprising data curation, preprocessing, model design, federated 

orchestration, secure communication protocols, and post-evaluation. The overall methodology was 

grounded in clinical applicability and influenced by insights from recent literature [1][4][7][14][19]. 

By simulating a multi-institutional collaboration setting using Flower, we ensured the framework 

mimicked actual hospital deployment scenarios where data heterogeneity, bandwidth constraints, and 

local resource limitations are prevalent. 

Each institution (simulated as a client node) performed local model training on non-IID partitions of 

the BraTS dataset [4][29], maintaining data privacy throughout the process. The local updates were 

encrypted and shared with the central aggregator, which utilized the FedAvg algorithm [3] to update 

the global model. This procedure was repeated over ten communication rounds to allow convergence. 

Metrics such as training efficiency, communication latency, model accuracy, and robustness to 

heterogeneity were continuously monitored. 

Differential privacy was achieved using gradient clipping and additive Gaussian noise [10][18], while 

Pail Lier encryption [7][9] ensured that the updates remained confidential during transmission. Our 

codebase was modular, facilitating easy expansion for future integration with blockchain audit trails, 

real-time inference, or adaptive personalization layers [20][24][28]. 

3.1 Dataset 

We used the BRATS 2020 and 2021 datasets [4][29], which provide multimodal MRI scans including 

T1, T1c, T2, and FLAIR images. These datasets contain over 7000 labeled slices categorized into 

glioma, meningioma, pituitary tumor, and healthy classes. Each image was manually annotated and 

verified by medical experts, providing reliable ground truth labels for classification and segmentation 

tasks. The data was partitioned across three simulated institutions in a non-IID manner to reflect real-

world inter-institutional diversity in patient demographics, MRI scanner types, and annotation 

standards [23][28]. 

3.2 Preprocessing 

To ensure uniformity in image dimensions and pixel intensity distribution, each image was resized to 

128×128 pixels and normalized to a range of [0,1]. Data augmentation techniques, including rotation 

(±15°), horizontal/vertical flipping, brightness variation, and histogram equalization, were applied to 

enhance model generalization and reduce overfitting. Additionally, the pixel intensity distributions 

were standardized to account for modality-specific intensity variations. Skull-stripping and bias field 
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correction were optionally performed to eliminate non-brain tissues and correct for inhomogeneities 

in the MRI images [14]. 

3.3 Model Architecture 

Classification: We employed two robust architectures: VGG16 and EfficientNet-B0. Both models 

were initialized with ImageNet-pretrained weights and fine-tuned on brain tumor data. We replaced 

the final classification layers with dense layers including global average pooling, batch normalization, 

dropout (rate = 0.5), and a softmax layer for multi-class classification. This transfer learning approach 

leveraged pre-learned visual features while adapting the models for tumor-specific patterns 

[11][12][15]. 

Segmentation: For segmentation, we adopted the U-Net architecture due to its proven effectiveness in 

biomedical image segmentation tasks. It features a contracting encoder path to capture context and a 

symmetric decoder path to enable precise localization. Skip connections between corresponding 

encoder-decoder layers were used to retain spatial resolution. The model was trained using a 

combination of Dice loss and binary cross-entropy to handle class imbalance and ensure accurate 

voxel-wise predictions [13]. 

3.4 Federated Setup 

Our federated setup was orchestrated using the Flower framework, which allowed scalable and 

modular simulation of multiple client nodes. Each simulated hospital node trained its model locally 

using its private dataset for five local epochs per communication round. The server then aggregated 

client weight updates using the Federated Averaging (FedAvg) algorithm [3]. To maintain data 

privacy, each client’s update was secured using Paillier homomorphic encryption [7] and TLS 

communication protocols. Furthermore, to mitigate potential leakage through gradients, differential 

privacy was implemented by clipping gradients and adding Gaussian noise [10][18]. We conducted 

ten communication rounds to ensure convergence and model stability. 

3.5 Code Implementation Overview 

The federated learning framework was implemented in Python using TensorFlow and Flower. Each 

client node included a custom data loader, model instantiation script, training loop with batch-wise 

performance logging, and an optimizer scheduler. The server node managed client orchestration, 

update aggregation, and global model broadcasting. Callback functions were utilized to monitor 

accuracy, loss, and communication times per round. The modular code structure allowed for 

integration of personalized layers, encryption plugins, and deployment on actual edge devices in future 

versions [26][27]. 

3.6 Evaluation Metrics 

We used a comprehensive set of metrics to assess model performance. For classification, we evaluated 

accuracy, precision, recall, F1-score, and ROC-AUC. These metrics provided a well-rounded view of 

the classifier’s sensitivity and specificity across tumor classes [1][25]. For segmentation tasks, we used 

the Dice similarity coefficient and Haus Dorff distance to measure spatial overlap and boundary 

accuracy between predicted and actual tumor regions [4][13]. Additionally, runtime efficiency was 

assessed via training time per client, communication latency, and total bandwidth consumption. These 

metrics were critical to validating the feasibility of FL deployment in clinical networks with limited 

computational infrastructure. 

 

IV. System Architecture 

To effectively implement secure and scalable MRI-based brain tumor analysis, we implemented a 

federated system architecture that combines decentralized deep learning, privacy-preserving 

mechanisms, and efficient model orchestration. This architecture comprises three core layers: the local 

client (hospital) layer, the federated aggregation server, and the secure communication framework. 

The implemented architecture adheres to healthcare regulatory standards while enabling collaborative 

model development in a real-world, multi-institutional federated learning setup. 

4.1 Local Client Nodes  
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Each participating medical institution serves as a federated client within the architecture. These clients 

are equipped with secure local dataset storage, where annotated multimodal MRI data—including T1, 

T1c, T2, and FLAIR sequences—are managed in compliance with healthcare regulations such as 

HIPAA and GDPR. Each node includes a model training module that executes local training using 

convolutional neural networks (CNNs) like VGG16 for classification and U-Net for segmentation. The 

preprocessing pipeline at each site standardizes inputs through resizing to 128×128 pixels, 

normalization, data augmentation techniques (e.g., rotations and flips), and bias correction. To ensure 

privacy, a dedicated privacy guard layer implements differential privacy by adding noise to gradients 

and applies local encryption using the Pail Lier scheme prior to communication. 

4.2 Secure Communication and Encryption Protocols 

To safeguard data integrity during transmission, the system incorporates encrypted communication 

channels using TLS/SSL protocols. In addition, homomorphic encryption is employed to allow 

computations on encrypted model parameters without requiring decryption at the server. The system 

also implements secure aggregation techniques that prevent the server from reconstructing any 

individual client’s contribution, thus ensuring confidentiality. 

4.3 Central Federated Aggregation Server 

The central server coordinates collaborative training across clients. It performs federated averaging 

(FedAvg) to aggregate encrypted model weights from all clients, followed by model synchronization, 

in which the updated global model is distributed back to all client nodes. Furthermore, the server 

maintains a secure audit log of metadata related to updates, ensuring reproducibility and traceability 

without storing any raw medical data. 

4.4 Iterative Federated Learning Workflow 

The training process is executed in a series of iterative rounds. Initially, a global model is created and 

distributed to all clients. Each client then performs local training on its private dataset and returns 

encrypted updates to the server. These updates are aggregated and broadcasted back to clients, and the 

cycle is repeated until the global model converges, as monitored via validation loss and accuracy 

metrics. 

Architectural Capabilities and Extensions 

The implemented architecture supports scalability, allowing new clients to join the network 

dynamically without requiring reinitialization of the global model. It is designed for extensibility, 

including future integration of blockchain technology to enable immutable audit trails and 

decentralized update verification. Additionally, personalization mechanisms allow clients to customize 

model output layers based on regional data distributions. A central monitoring dashboard is also 

included, providing real-time insights into training metrics such as validation accuracy, training loss, 

and client-specific contributions. This architecture ensures secure, interpretable, and scalable federated 

learning for real-time MRI-based brain tumor classification and segmentation across distributed 

healthcare institutions. 
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Figure 1:  System Architecture of FL 

 

V. RESULTS AND DISCUSSION 

We evaluated our model’s brain tumor detection effectiveness using precision 1, recall 2, accuracy 3, 

and F1-score 4. Precision reflects the proportion of true positives (TP) among all positive predictions 

(TP + FP). In other words, it measures the accuracy of the model’s positive classifications (tumor 

identified). Recall, on the other hand, focuses on the true positive rate (TPR), representing the 

percentage of actual tumor cases (TP) correctly identified by the model out of all actual tumors (TP + 

FN). It highlights the model’s ability to capture true tumor cases. Accuracy, a more general metric, 

encompasses both correctly classified tumors and non-tumors, providing a combined measure of 

performance (correctly classified cases / total cases). Finally, the F1-score offers a harmonic mean of 

precision and recall, balancing these two aspects of model performance [3]. 
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Figure 2: Example Image of Brain Tumor Dataset. 

 

 
Figure 3: Augmented Images with Various Transformations Applied to the Original Image. 

 

 
Figure 4: Accuracy of the Federated Brain Tumor Detection Model 

Figure 4. illustrates the final classification accuracy of the implemented federated learning model for 

brain tumor detection using MRI images. The bar graph presents the accuracy achieved by the global 

model after multiple federated communication rounds. The model, trained collaboratively across 

simulated hospital nodes, attained a final accuracy of 98.74% on the held-out test dataset. 

This high accuracy confirms the effectiveness of the proposed federated framework, combining CNN-

based local learning (e.g., VGG16) with secure global model aggregation (FedAvg). The result 

demonstrates the model's strong generalization ability, despite data heterogeneity and privacy-

preserving constraints. The performance metric also validates that federated learning can achieve near-

centralized accuracy while maintaining strict data isolation in real-world healthcare settings. 

 

VI. Conclusion 
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Federated Learning (FL) has emerged as a transformative approach in brain tumor detection by 

enabling collaborative model training while preserving data privacy. This review has highlighted 

various FL methodologies, including privacy-preserving techniques, secure aggregation, and transfer 

learning, which enhance model accuracy without compromising sensitive medical data. The 

integration of FL with medical imaging has demonstrated significant potential in improving tumor 

classification accuracy, reducing the dependency on centralized datasets, and mitigating security 

concerns. Despite its advantages, FL still faces challenges such as communication latency, data 

heterogeneity, and computational overhead. Addressing these challenges will be crucial for its 

widespread adoption in clinical settings. 
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