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Abstract: 

Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability 

of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot problems. 

Existing click fraud detection approaches focus on analyzing the ad requests at the server side. 

However, such approaches may suffer from high false negatives since the detection can be easily 

circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we present 

AdSherlock, an efficient and deployable click fraud detection approach at the client side (inside the 

application) for mobile apps. AdSherlock splits the computation-intensive operations of click request 

identification into an offline procedure and an online procedure. In the offline procedure, AdSherlock 

generates both exact patterns and probabilistic patterns based on URL (Uniform Resource Locator) 

tokenization. These patterns are used in the online procedure for click request identification and further 

used for click fraud detection together with an ad request tree model. We implement a prototype of 

AdSherlock and evaluate its performance using real apps. The online detector is injected into the app 

executable archive through binary instrumentation. Results show that AdSherlock achieves higher 

click fraud detection accuracy compared with state of the art, with negligible runtime overhead 

1. INTRODUCTION 

Mobile advertising plays a vital role in the mobile app ecosystem. A recent report shows that mobile 

advertising expenditure worldwide is projected to reach $247.4 billion in 2020 [1]. To embed ads in 

an app, the app developer typically includes ad libraries provided by a third-party mobile ad provider 

such as AdMob [2]. When a mobile user is using the app, the embedded ad library fetches ad content 

from the network and displays ads to the user. The most common charging model is PPC (Pay-Per-

Click) [3], where the developer and the ad provider get paid from the advertiser when a user clicks on 

the ad. A major threat to the sustainability of this ecosystem is click fraud [4], i.e., clicks (i.e., touch 

events on mobile devices) on ads which are usually performed by malicious code programmatically or 

by automatic bot problems. There are many different click fraud tactics which can typically be 

characterized into two types: in-app frauds insert malicious code into the app to generate forged ad 

clicks; bots-driven frauds employ bot programs (e.g., a fraudulent application) to click on 

advertisements automatically. To quantify the inapp ad fraud in real apps, a recent work MAdFraud 

[5] conducts a large scale measurement about ad fraud in realworld apps. 

 In a dataset including about 130K Android apps, MAdFraud reports that about 30% of apps make ad 

requests while running in the background. Focusing on bots-driven click fraud, another recent work 

uses an automated click generation tool ClickDroid [4] to empirically evaluate eight popular 

advertising networks by performing real click fraud attacks on them. Results [4] show that six 

advertising networks out of eight are vulnerable to these attacks. Aiming at detecting click frauds in 

mobile apps, a straightforward approach is a threshold-based detection at the serverside. If an ad server 

is receiving a high number of clicks with the same device identifier (e.g., IP address) in a short period, 

these clicks can be considered as fraud. This straightforward approach, however, may suffer from high 

false negatives since the detection can be easily circumvented when the clicks are behind proxies or 

globally distributed. In the literature, there are also more sophisticated approaches [6], [7] focusing on 

detecting click frauds at the server-side. 
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 The precisions of these server-side approaches, however, are not sufficient enough for the click fraud 

problem. For example, in a recent mobile ad fraud competition [6], the best three approaches achieve 

only a precision of 46.15% to 51.55% using various machine learning techniques. Given the 

insufficient precision of server-side approaches, a natural question comes up: how about client-side 

approaches? In fact, compared with the server-side approaches, it is easier to tell whether there is an 

actual user input at the client side. However, the attacker of the click fraud could be the app developers 

themselves, since the developers will get paid for those fraudulent ad clicks[20]. Due to this conflict-

of-interest problem, we cannot assume the existence of coordination from developers in designing a 

client-side approach for click fraud detection, e.g., a click fraud detection SDK. Therefore, in this 

paper, we focus on designing a client-side approach to detect click frauds in mobile apps, without 

coordination from developers. 

There are two major challenges in designing such a system. First [21],[22],[23] for a mobile 

client, its resources are constrained in terms of computation, memory, and energy. Therefore, the 

proposed approach must perform the complete fraud detection process. See efficiently, without causing 

significant overhead. This means that we need to design new algorithms to detect click frauds since 

existing machine-learning algorithms used by server-side approaches are not suitable for the client 

side. Second, the click fraud detection should be able to execute under practical user scenarios, instead 

of a controlled environment dedicated to fraud detection. In MAdFraud [5], a controlled environment 

(i.e., only one app is running and the HTTP requests are collected for offline analysis) is used to 

measure the ad fraud behavior of a vast number of apps. However, in our case, the click fraud detection 

should happen inside the mobile client without outside support, i.e., be deployable in real-world 

scenarios.  

In this paper, we propose AdSherlock, an efficient and deployable click fraud detection 

approach for mobile apps at the client side. Note that as a client-side approach, AdSherlock is 

orthogonal to existing server-side approaches. AdSherlock is designed to be used by app stores to 

ensure a healthy mobile app ecosystem. [24],[25] AdSherlock’s high accuracy helps market operators 

to fight both in-app frauds and bots-driven frauds. Note that, AdSherlock can also be used by any third 

parties to detect in-app frauds. For example, ad providers can employ AdSherlock to check whether 

apps embedding their libraries have in-app fraudulent behaviors. To achieve these goals, AdSherlock 

relies on an accurate offline pattern extractor and a lightweight online fraud detector. AdSherlock 

works in two stages. At the first stage, the offline pattern extractor automatically executes each app 

and generates a set of traffic patterns for efficient ad request identification, i.e., extracts common token 

patterns across different ad requests.  

Specifically, after tokenization of the network requests, AdSherlock generates both exact patterns and 

probabilistic patterns for robust matching. Using the offline pattern extractor, AdSherlock can perform 

the computation and I/O intensive pattern generation operations in an offline manner, without 

degrading the online fraud detection operations. At the second stage, the online fraud detector as well 

as the generated patterns are instrumented into the app and run with the app in actual user scenarios. 

Inside the app,[8] AdSherlock uses an ad request tree model to identify click requests accurately and 

efficiently. Since the online fraud detector runs inside the app, it can obtain the fine-grained user input 

events which are further employed for click fraud detection. 

We implement AdSherlock and evaluate its performance using real apps. Results show that 

AdSherlock achieves higher click fraud detection accuracy compared with state of the art, with 

negligible runtime overhead.  

The contributions of this paper are summarized as follows:  

We present the design and implementation of AdSherlock[25], the first system which can achieve 

efficient and deployable click fraud detection at the client side.  We propose a pattern generation 

mechanism that generates patterns for ad requests and non-ad requests with high accuracy. We also 

propose an efficient method for online click fraud detection based on an ad request tree model. We 
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implement AdSherlock and compare its performance with the state-of-art approach. Results show that 

Ad- Sherlock achieves higher detection accuracy with lower overhead. 

2. PROBLEM STATEMENT 

since existing machine-learning algorithms used by server-side approaches are not suitable for the 

client side. Second,[12]-[17] the click fraud detection should be able to execute under practical user 

scenarios, instead of a controlled environment dedicated to fraud detection. In MAdFraud [5], a 

controlled environment (i.e., only one app is running and the HTTP requests are collected for offline 

analysis) is used to measure the ad fraud behavior of a vast number of apps. However, in our case, the 

click fraud detection should happen inside the mobile client without outside support, i.e., be deployable 

in real-world scenarios. In this paper, we propose AdSherlock, an efficient and deployable click fraud 

detection approach for mobile apps at the client side. Note that as a client-side approach, AdSherlock 

[9] is orthogonal to existing server-side approaches. AdSherlock is designed to be used by app stores 

to ensure a healthy mobile app ecosystem. AdSherlock’s high accuracy helps market operators to fight 

both in-app frauds and bots-driven frauds. Note that, AdSherlock can also be used by any third parties 

to detect in-app frauds. For example, ad providers can employ AdSherlock to check whether apps 

embedding their libraries have in-app fraudulent behaviors.. 

3. ADSHERLOCK 

we propose two pattern classes: exact patterns and probabilistic patterns. Both of them are built from 

invariant substrings in the HTTP [10] header. We refer to these substrings as tokens. Exact patterns 

consist of a set of sequential tokens and match an HTTP request if and only if the request contains all 

tokens in the set with the same ordering. Probabilistic patterns consist of a set of tokens, each of which 

is associated with an ad score, and a non-ad score[18],[19]. We describe the details of pattern 

generation in the following sections. 

4. SYSTEM ARCHITECTURE 

 
Fig 7.1 Home page 

 

EXCEPTED OUTCOMES 
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Fig 7.2 User Login page 

 

 

 
 

Fig 7.3 Owner Home page 

 

 
Fig 7.4 Post Adds by owner 
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Fig 7.5 Post Adds viewed by admin 

 

 
Fig 7.6 Adds View by User 
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Fig 7.7 Customer login page 

 
Fig 7.8 Home page of customer 

 

5. CONCLUSION 

AdSherlock is an efficient and deployable click fraud detection approach for mobile apps at the client 

side. As a client-side approach, AdSherlock is orthogonal to existing server-side approaches. It splits 

the computation intensive operations of click request identification into an offline process and an 

online process. In the offline process, AdSherlock generates both exact patterns and probabilistic 

patterns based on url tokenization. These patterns are used in the online process for click request 

identification, and further used for click fraud detection together with an ad request tree model. 

Evaluation shows that AdSherlock achieves high click fraud detection accuracy with a negligible 

runtime overhead. In the future, we plan to combine static analysis with the traffic analysis to improve 

the accuracy of ad request identification and explore attacks designed to evade AdSherlock. 

 

FUTURE SCOPE 

The future scope for a resourceful and employable click fraud identification system for handheld 

applications is promising. It entails leveraging advanced algorithms, real-time detection capabilities, 

and seamless integration with ad networks to provide advertisers with user-friendly interfaces and 

actionable insights. Cross-platform compatibility, customization options, and robust data privacy 

measures are crucial for scalability and global reach. By addressing these aspects, such a system can 

effectively combat click fraud in the evolving landscape of mobile advertising, safeguarding 

advertisers' investments and enhancing the integrity of digital advertising ecosystems. 
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