

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 182

RESOURCEFUL AND EMPLOYABLE CLICK FRAUD IDENTIFICATION FOR

HANDHELD APPLICATIONS

Mrs.B.Rajitha, Assistant Professor CSE, Vaagdevi College of Engineering(Autonomous), India

G.Raju, UG Student,CSE, Vaagdevi College of Engineering(Autonomous), India

P.Saikeerthi, UG Student,CSE, Vaagdevi College of Engineering(Autonomous), India

K.Chandra Shekar, UG Student,CSE, Vaagdevi College of Engineering(Autonomous), India

B.Karthik, UG Student,CSE, Vaagdevi College of Engineering(Autonomous), India

Abstract:

Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability

of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot problems.

Existing click fraud detection approaches focus on analyzing the ad requests at the server side.

However, such approaches may suffer from high false negatives since the detection can be easily

circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we present

AdSherlock, an efficient and deployable click fraud detection approach at the client side (inside the

application) for mobile apps. AdSherlock splits the computation-intensive operations of click request

identification into an offline procedure and an online procedure. In the offline procedure, AdSherlock

generates both exact patterns and probabilistic patterns based on URL (Uniform Resource Locator)

tokenization. These patterns are used in the online procedure for click request identification and further

used for click fraud detection together with an ad request tree model. We implement a prototype of

AdSherlock and evaluate its performance using real apps. The online detector is injected into the app

executable archive through binary instrumentation. Results show that AdSherlock achieves higher

click fraud detection accuracy compared with state of the art, with negligible runtime overhead

1. INTRODUCTION

Mobile advertising plays a vital role in the mobile app ecosystem. A recent report shows that mobile

advertising expenditure worldwide is projected to reach $247.4 billion in 2020 [1]. To embed ads in

an app, the app developer typically includes ad libraries provided by a third-party mobile ad provider

such as AdMob [2]. When a mobile user is using the app, the embedded ad library fetches ad content

from the network and displays ads to the user. The most common charging model is PPC (Pay-Per-

Click) [3], where the developer and the ad provider get paid from the advertiser when a user clicks on

the ad. A major threat to the sustainability of this ecosystem is click fraud [4], i.e., clicks (i.e., touch

events on mobile devices) on ads which are usually performed by malicious code programmatically or

by automatic bot problems. There are many different click fraud tactics which can typically be

characterized into two types: in-app frauds insert malicious code into the app to generate forged ad

clicks; bots-driven frauds employ bot programs (e.g., a fraudulent application) to click on

advertisements automatically. To quantify the inapp ad fraud in real apps, a recent work MAdFraud

[5] conducts a large scale measurement about ad fraud in realworld apps.

 In a dataset including about 130K Android apps, MAdFraud reports that about 30% of apps make ad

requests while running in the background. Focusing on bots-driven click fraud, another recent work

uses an automated click generation tool ClickDroid [4] to empirically evaluate eight popular

advertising networks by performing real click fraud attacks on them. Results [4] show that six

advertising networks out of eight are vulnerable to these attacks. Aiming at detecting click frauds in

mobile apps, a straightforward approach is a threshold-based detection at the serverside. If an ad server

is receiving a high number of clicks with the same device identifier (e.g., IP address) in a short period,

these clicks can be considered as fraud. This straightforward approach, however, may suffer from high

false negatives since the detection can be easily circumvented when the clicks are behind proxies or

globally distributed. In the literature, there are also more sophisticated approaches [6], [7] focusing on

detecting click frauds at the server-side.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 183

 The precisions of these server-side approaches, however, are not sufficient enough for the click fraud

problem. For example, in a recent mobile ad fraud competition [6], the best three approaches achieve

only a precision of 46.15% to 51.55% using various machine learning techniques. Given the

insufficient precision of server-side approaches, a natural question comes up: how about client-side

approaches? In fact, compared with the server-side approaches, it is easier to tell whether there is an

actual user input at the client side. However, the attacker of the click fraud could be the app developers

themselves, since the developers will get paid for those fraudulent ad clicks[20]. Due to this conflict-

of-interest problem, we cannot assume the existence of coordination from developers in designing a

client-side approach for click fraud detection, e.g., a click fraud detection SDK. Therefore, in this

paper, we focus on designing a client-side approach to detect click frauds in mobile apps, without

coordination from developers.

There are two major challenges in designing such a system. First [21],[22],[23] for a mobile

client, its resources are constrained in terms of computation, memory, and energy. Therefore, the

proposed approach must perform the complete fraud detection process. See efficiently, without causing

significant overhead. This means that we need to design new algorithms to detect click frauds since

existing machine-learning algorithms used by server-side approaches are not suitable for the client

side. Second, the click fraud detection should be able to execute under practical user scenarios, instead

of a controlled environment dedicated to fraud detection. In MAdFraud [5], a controlled environment

(i.e., only one app is running and the HTTP requests are collected for offline analysis) is used to

measure the ad fraud behavior of a vast number of apps. However, in our case, the click fraud detection

should happen inside the mobile client without outside support, i.e., be deployable in real-world

scenarios.

In this paper, we propose AdSherlock, an efficient and deployable click fraud detection

approach for mobile apps at the client side. Note that as a client-side approach, AdSherlock is

orthogonal to existing server-side approaches. AdSherlock is designed to be used by app stores to

ensure a healthy mobile app ecosystem. [24],[25] AdSherlock’s high accuracy helps market operators

to fight both in-app frauds and bots-driven frauds. Note that, AdSherlock can also be used by any third

parties to detect in-app frauds. For example, ad providers can employ AdSherlock to check whether

apps embedding their libraries have in-app fraudulent behaviors. To achieve these goals, AdSherlock

relies on an accurate offline pattern extractor and a lightweight online fraud detector. AdSherlock

works in two stages. At the first stage, the offline pattern extractor automatically executes each app

and generates a set of traffic patterns for efficient ad request identification, i.e., extracts common token

patterns across different ad requests.

Specifically, after tokenization of the network requests, AdSherlock generates both exact patterns and

probabilistic patterns for robust matching. Using the offline pattern extractor, AdSherlock can perform

the computation and I/O intensive pattern generation operations in an offline manner, without

degrading the online fraud detection operations. At the second stage, the online fraud detector as well

as the generated patterns are instrumented into the app and run with the app in actual user scenarios.

Inside the app,[8] AdSherlock uses an ad request tree model to identify click requests accurately and

efficiently. Since the online fraud detector runs inside the app, it can obtain the fine-grained user input

events which are further employed for click fraud detection.

We implement AdSherlock and evaluate its performance using real apps. Results show that

AdSherlock achieves higher click fraud detection accuracy compared with state of the art, with

negligible runtime overhead.

The contributions of this paper are summarized as follows:

We present the design and implementation of AdSherlock[25], the first system which can achieve

efficient and deployable click fraud detection at the client side. We propose a pattern generation

mechanism that generates patterns for ad requests and non-ad requests with high accuracy. We also

propose an efficient method for online click fraud detection based on an ad request tree model. We

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 184

implement AdSherlock and compare its performance with the state-of-art approach. Results show that

Ad- Sherlock achieves higher detection accuracy with lower overhead.

2. PROBLEM STATEMENT

since existing machine-learning algorithms used by server-side approaches are not suitable for the

client side. Second,[12]-[17] the click fraud detection should be able to execute under practical user

scenarios, instead of a controlled environment dedicated to fraud detection. In MAdFraud [5], a

controlled environment (i.e., only one app is running and the HTTP requests are collected for offline

analysis) is used to measure the ad fraud behavior of a vast number of apps. However, in our case, the

click fraud detection should happen inside the mobile client without outside support, i.e., be deployable

in real-world scenarios. In this paper, we propose AdSherlock, an efficient and deployable click fraud

detection approach for mobile apps at the client side. Note that as a client-side approach, AdSherlock

[9] is orthogonal to existing server-side approaches. AdSherlock is designed to be used by app stores

to ensure a healthy mobile app ecosystem. AdSherlock’s high accuracy helps market operators to fight

both in-app frauds and bots-driven frauds. Note that, AdSherlock can also be used by any third parties

to detect in-app frauds. For example, ad providers can employ AdSherlock to check whether apps

embedding their libraries have in-app fraudulent behaviors..

3. ADSHERLOCK

we propose two pattern classes: exact patterns and probabilistic patterns. Both of them are built from

invariant substrings in the HTTP [10] header. We refer to these substrings as tokens. Exact patterns

consist of a set of sequential tokens and match an HTTP request if and only if the request contains all

tokens in the set with the same ordering. Probabilistic patterns consist of a set of tokens, each of which

is associated with an ad score, and a non-ad score[18],[19]. We describe the details of pattern

generation in the following sections.

4. SYSTEM ARCHITECTURE

Fig 7.1 Home page

EXCEPTED OUTCOMES

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 185

Fig 7.2 User Login page

Fig 7.3 Owner Home page

Fig 7.4 Post Adds by owner

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 186

Fig 7.5 Post Adds viewed by admin

Fig 7.6 Adds View by User

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 187

Fig 7.7 Customer login page

Fig 7.8 Home page of customer

5. CONCLUSION

AdSherlock is an efficient and deployable click fraud detection approach for mobile apps at the client

side. As a client-side approach, AdSherlock is orthogonal to existing server-side approaches. It splits

the computation intensive operations of click request identification into an offline process and an

online process. In the offline process, AdSherlock generates both exact patterns and probabilistic

patterns based on url tokenization. These patterns are used in the online process for click request

identification, and further used for click fraud detection together with an ad request tree model.

Evaluation shows that AdSherlock achieves high click fraud detection accuracy with a negligible

runtime overhead. In the future, we plan to combine static analysis with the traffic analysis to improve

the accuracy of ad request identification and explore attacks designed to evade AdSherlock.

FUTURE SCOPE

The future scope for a resourceful and employable click fraud identification system for handheld

applications is promising. It entails leveraging advanced algorithms, real-time detection capabilities,

and seamless integration with ad networks to provide advertisers with user-friendly interfaces and

actionable insights. Cross-platform compatibility, customization options, and robust data privacy

measures are crucial for scalability and global reach. By addressing these aspects, such a system can

effectively combat click fraud in the evolving landscape of mobile advertising, safeguarding

advertisers' investments and enhancing the integrity of digital advertising ecosystems.

6. REFERENCES

[1] “Mobile advertising spending worldwide.” [Online]. Available:

https://www.statista.com/statistics/280640/mobile-advertisingspending- worldwide/

[2] “Google admob.” [Online]. Available: https://apps.admob.com/

[3] M. Mahdian and K. Tomak, “Pay-per-action model for online advertising,” in Proc. of ACM

ADKDD, 2007.

[4] G. Cho, J. Cho, Y. Song, and H. Kim, “An empirical study of click fraud in mobile advertising

networks,” in Proc. of ACM ARES, 2015.

 [5] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud in android applications,”

in Proc. of ACM MobySys, 2014.

[6] R. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M.

N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar,

https://apps.admob.com/

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 5, May : 2024

UGC CARE Group-1, 188

“Detecting click fraud in online advertising: A data mining approach,” The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 99–140, 2014.

 [7] B. Kitts, Y. J. Zhang, G. Wu, W. Brandi, J. Beasley, K. Morrill, J. Ettedgui, S. Siddhartha, H.

Yuan, F. Gao, P. Azo, and R. Mahato, Click Fraud Detection: Adversarial Pattern Recognition over 5

Years at Microsoft. Cham: Springer International Publishing, 2015, pp. 181–201.

 [8] A. Metwally, D. Agrawal, and A. El Abbadi, “Detectives: detecting coalition hit inflation attacks

in advertising networks streams,” in Proc. of ACM WWW, 2007.

[9] A. Metwally, D. Agrawal, A. El Abbad, and Q. Zheng, “On hit inflation techniques and detection

in streams of web advertising networks,” in Proc. of IEEE ICDCS, 2007.

[10] F. Yu, Y. Xie, and Q. Ke, “Sbotminer: large scale search bot detection,” in Proc. of ACM WSDM,

2010.

[11] L. Zhang and Y. Guan, “Detecting click fraud in pay-per-click streams of online advertising

networks,” in Proc. of IEEE ICDCS, 2008.

[12] A. Metwally, D. Agrawal, and A. El Abbadi, “Duplicate detection in click streams,” in Proc. of

ACM WWW, 2005.

[13] M. S. Iqbal, M. Zulkernine, F. Jaafar, and Y. Gu, “Fcfraud: Fighting click-fraud from the user

side,” in Proc. of IEEE HASE, 2016.

[14] B. Liu, S. Nath, R. Govindan, and J. Liu, “Decaf: detecting and characterizing ad fraud in mobile

apps,” in Proc. of USENIX NSDI, 2014.

 [15] G. Cho, J. Cho, Y. Song, D. Choi, and H. Kim, “Combating online fraud attacks in mobile-based

advertising,” EURASIP Journal on Information Security, vol. 2016, no. 1, p. 1, 2016.

 [16] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile advertisement attestation

using trustzone,” in Proc. of ACM MobySys, 2015.

[17] “Monkeyrunner.” [Online]. Available:

http://developer.android.com/studio/test/monkeyrunner/index.html

[18] “Zedge.” [Online]. Available: https://play.google.com/store/apps/

[19] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkprofiler: Towards automatic

fingerprinting of android apps,” in Proc. of IEEE INFOCOM, 2013.

[20] “Mopub.” [Online]. Available: https://www.mopub.com/

[21] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating signatures for

polymorphic worms,” in Proc. of IEEE S&P, 2005.

[22] “Android montionevent.” [Online]. Available:

https://developer.android.com/reference/android/view/MotionEvent.html

[23] X. Jin, P. Huang, T. Xu, and Y. Zhou, “Nchecker: saving mobile app developers from network

disruptions,” in Proc. of ACM EuroSys, 2016.

 [24] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in Proc.

of ACM ICML, 2006.

[25] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the roc plot

when evaluating binary classifiers on imbalanced datasets,” PloS one, vol. 10, no. 3, p. e0118432,

2015.

http://developer.android.com/studio/test/monkeyrunner/index.html
https://play.google.com/store/apps/
https://www.mopub.com/
https://developer.android.com/reference/android/view/MotionEvent.html

