

Retinal Retrospective: Predicting Cardiac Conditions and Diabetes through Deep Learning Techniques

Dr. SK Masthan Basha
Associate Professor
Dept.of ECE
VMTW, Hyderabad

Dr.T Pullaiah
Associate Professor
Dept.of ECE
VMTW, Hyderabad

Dr. R Ramesh Babu
Assoc. Professor &HOD
Dept.of ECE
KMCE, Hyderabad

Dr. M Pavithra Jyothi
Associate Professor
Dept.of ECE
SWCET, Hyderabad

Abstract— The primary cause of morbidity and death, heart disease, is a rising worldwide epidemic that is sometimes difficult to identify early since it depends on invasive procedures and clinical environment-based instruments. This study attempts to solve this issue. We suggest a brand-new, non-invasive diagnostic method for the early identification of heart-related conditions by analysing retinal pictures using Convolutional Neural Networks (CNNs), more especially ResNet-50, trained in MATLAB. Our approach makes it possible to categorize diseases like diabetes, hypertension, and arrhythmia by recursively detecting changes in the retinal nerve pattern. With a 98% detection accuracy for heart-related conditions and a 96% detection accuracy for diabetes, our model provides a more secure and convenient option for early diagnosis. To improve prediction and diagnostic accuracy for heart disease and related disorders, we expand on current approaches by including a prodromal outbreak cohort into an infectious seed-deletion model with empirically determined disease risk.

Keywords - *Cardiovascular Disease, Deep Learning, Retina, Heart Disease, Diabetes.*

I. INTRODUCTION

Even with significant improvements in medical diagnostics, it is still difficult to identify diabetes and cardiovascular disease early on, particularly in those who seem healthy. These illnesses frequently develop with little symptoms, going undiagnosed until they are at a more advanced stage [1]. Given the rising incidence of cardiovascular problems in younger populations, this diagnostic gap is especially worrisome[2]. According to studies, a significant portion of heart attacks now happen to persons under fifty, and many of these instances start even younger, especially in metropolitan areas[3]. The heightened cardiovascular risk is mostly caused by urban lifestyle variables, including high levels of stress, sedentary behavior, processed food diets, and little physical exercise [4]. These elements emphasize the necessity of non-invasive diagnostic tools that can quickly identify those who are at risk, enabling preventative actions [5]. In this sense, retinal imaging has showed potential by providing a distinct, non-invasive perspective on the health of the systemic arteries. Diabetes and cardiovascular disease are tightly linked to the retinal blood vessel network, which is a reflection of overall vascular health [6]. Retinal image analysis can reveal modest morphological alterations that point to prospective health hazards and provide information about metabolic and cardiovascular issues [7]. These complex retinal patterns may now be thoroughly analysed because to developments in machine learning, especially convolutional neural networks (CNNs). CNNs excel at analysing complicated pictures, recognizing patterns that might not be readily apparent through traditional study, and extracting important information. This paper introduces a CNN-based model for the early detection of cardiovascular diseases, including diabetes and hypertension and arrhythmia, utilizing retinal pictures. With the use of the ResNet-50 architecture, a model renowned for its depth and strong feature extraction capabilities, this system seeks to improve diagnostic accuracy and dependability, allowing for prompt interventions in situations when conventional evaluations might not be sufficient [8]. This work expands on earlier research that used a variety of deep learning approaches to analyse medical images in order to diagnose diabetes and heart disease.

Existing models, such as those that use Inception v3, are reviewed in Section II. various models have demonstrated great accuracy in recognizing various disorders, but they have also showed limits, especially in controlling computing costs and detecting many diseases at once [1]. We suggest an integrated diagnostic model based on ResNet-50, a CNN architecture that successfully handles image recognition tasks because to its distinctive residual learning and skip- connection design, in order to address these issues. By overcoming vanishing gradient problems in deep networks, this approach improves the model's capacity to recognize important characteristics in retinal pictures and raises classification accuracy and computational efficiency across a range of situations [2]. The architecture and workflow of the suggested system are described in Section III, along with pre-processing methods including scaling, normalization, and augmentation to guarantee consistency in prediction accuracy[3]. We also go over how the ResNet-50 model has

been modified to make it more flexible for classifying medical images. We provide a thorough examination of the model's performance on a carefully selected dataset in Section IV, assessing its accuracy and precision metrics to determine how reliable it is at predicting diabetes and heart disease. The model's potential for use in preventative healthcare applications is highlighted by this evaluation [4]. The ramifications of CNN-driven diagnostic techniques are discussed in the paper's

conclusion, with a focus on the model's potential to improve preventative healthcare practices and increase access to effective early diagnosis [5].

II. EXISTING SYSTEM

Convolutional neural networks (CNNs), a type of deep learning model, have become popular in medical diagnostics because of its capacity to precisely identify illness patterns in imaging data, therefore detecting indicators of ailments such as cardiovascular problems and diabetes.

A. Prediction of Heart Disease

Advanced deep learning models, especially the Inception V3 algorithm, have been progressively included into current systems for the early diagnosis of cardiovascular illnesses, according to study by Shaikh et al. [1]. Their research focuses on a particular application of the Inception V3 CNN model, which has demonstrated remarkable efficacy in detecting cardiac conditions with an accuracy rate of almost 96%. Because it can identify multi-scale patterns using layers that examine data at different resolutions, this architecture is excellent at extracting complex information from medical pictures. The study highlights how the Inception V3 model can identify morphological traits associated with cardiovascular diseases, enabling precise and timely identification. The algorithm has extraordinary effectiveness in identifying minor alterations that may signal the existence of heart-related disorders by utilizing large datasets of medical pictures. This feature demonstrates how deep learning approaches have the potential to revolutionize cardiovascular healthcare by improving diagnosis accuracy and facilitating prompt therapies.

The management of cardiovascular disease (CVD) is about to undergo a revolution with the integration of the Inception V3 deep learning model into clinical practice. The strength of Inception V3 is its ability to analyse pictures with high accuracy, which allows for the early identification of cardiovascular problems from intricate medical imaging such as CT, MRI, and echocardiograms. Timely therapies made possible by early identification may reduce the morbidity and death rates associated with CVDs. Inception V3 claims to simplify resource allocation in healthcare settings in addition to increasing diagnosis accuracy. Medical personnel may concentrate on important aspects of patient care as automated picture processing saves them time and effort. As a result, as the industry moves toward data-driven practices, healthcare delivery becomes more effective by lowering total costs, optimizing resource allocation, and reducing the strain for healthcare staff. By integrating patient-specific information, including genetic markers and lifestyle variables, into customized treatment programs, Inception V3 sets the stage for personalized medicine. In cardiology, where individual variations effect therapy response and disease progression, this technique has a particularly significant impact. Inception V3's connection with electronic health records offers smooth, data-driven decision-making as clinical validation progresses. This approach can make cardiovascular therapy more accurate, individualized, and effective, making it a useful tool for managing illness.

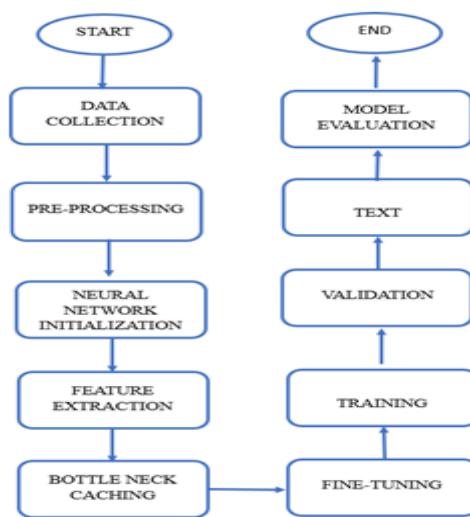


Fig1. FlowChart of Existing Methodology

B. Identification of Diabetes

Ghulam Ali et al. [2] used the Inception V3 algorithm and other cutting-edge deep learning techniques to develop a novel model for the early prediction of diabetes. Their research tackles the urgent need for precise diagnostic instruments to detect diabetic retinopathy, a prevalent diabetic condition that can cause significant visual impairment. Because the Inception V3 design can capture complex characteristics and patterns in medical pictures at different scales, it is especially well-suited for

this purpose. With a remarkable accuracy rate of almost 96%, the model successfully detects morphological alterations suggestive of diabetes conditions by examining retinal pictures. The model's ability to accurately identify disease-specific traits was demonstrated by the researchers, who trained it using an extensive collection of fundus photographs.

The results highlight Inception V3's promise in clinical settings, providing formidable instrument for early diabetes identification that can enable prompt treatments and enhance patient outcomes. This study adds to the increasing amount of data demonstrating the efficacy of deep learning models in the treatment of chronic illnesses like diabetes and bolstering its incorporation into medical diagnostics. Even with the improvements in current research, the study's breadth is still constrained. Each system was created to treat a particular ailment, like diabetes or heart disease, rather than combining several illnesses into a single framework. Consequently, although these models have shown efficacy in identifying certain illnesses [9], [10], they are not able to provide a thorough evaluation of heart function across a range of problems. This restriction draws attention to an important area of study and emphasizes the necessity of an integrated diagnostic strategy [11].

The suggested approach fills this gap by identifying a variety of heart-related abnormalities in retinal pictures using MATLAB's ResNet-50 CNN model. In contrast to other approaches, our model looks at changes in nerve patterns in retinal pictures to provide a single tool that can categorize conditions including diabetes, hypertension, and arrhythmia. This method provides a more comprehensive solution for the early identification of cardiac-related problems by enabling comprehensive health assessments within a single framework.

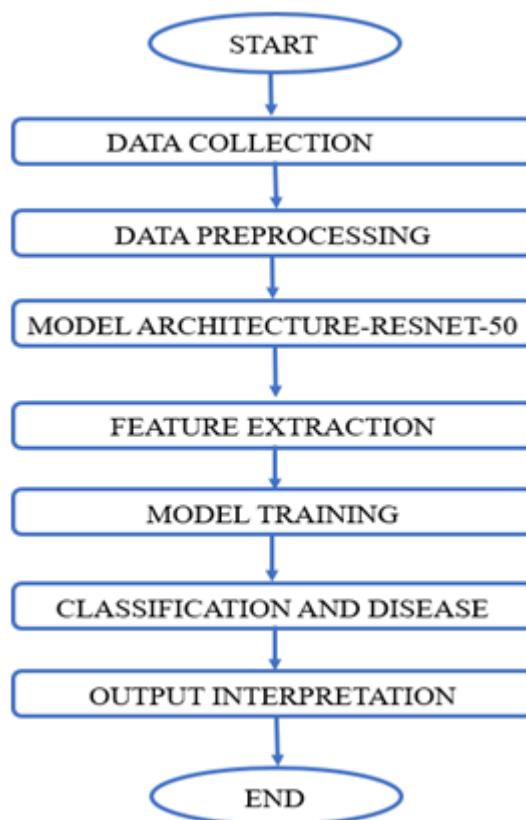


Fig2.Flow chart of Implemented Methodology

III. PROPOSED SYSTEM

A. Evaluation and Validation Model Performance

Validation measures such as the following are used to assess the model's efficiency

Accuracy: Assesses the proper categorization of diseases in retinal pictures under various circumstances.

Precision and Recall: The model's accuracy in recognizing different illness kinds and stages is assessed using precision and recall as key performance measures.

B. Data Collection and Pre-processing

Data collection: From publicly accessible medical imaging databases, retinal pictures used to diagnose diabetes and cardiac disorders such hypertension and arrhythmia were collected. These pictures provide information on retinal nerve patterns, which are connected to the phases of diabetes and heart disease [12].

Data Pre-processing: Images are processed to satisfy ResNet-50's specifications in order to improve quality and consistency.

Among the steps are:

Resizing: is the process of changing an image's proportions to fit the input size of ResNet-50.

Normalization: is the process of adjusting pixel intensity to maintain uniformity [13].

Augmentation: Improving model generalization and decreasing over fitting by increasing dataset variety by flipping, rotating, and other changes.

C. Model Selection and Training

CNN Architecture: Because it can handle complex visual patterns, the 50-layer convolutional neural network ResNet-50 was chosen. The model tackles vanishing gradient problems with its skip-connection design, allowing for deeper learning while maintaining crucial characteristics for precise illness categorization [14].

Feature Extraction: ResNet-50 automatically extracts intricate retinal features, allowing for nuanced categorization through the identification of structural characteristics, blood vessel anomalies, and alterations in nerve pathways linked to diabetes and cardiac disorders.

Transfer Learning: Weights from big datasets (like Image Net) that have already been trained are used to initialize the ResNet-50 model. The model is then adjusted for patterns associated with diabetic retinopathy, hypertension, and arrhythmia using the retinal imaging dataset.

Model Adaptation and Layer Modification: ResNet-50's upper layers are modified to fit this classification task. Using Soft Max or sigmoid activation, a specially designed fully connected layer classifies outputs as "Arrhythmia," "Hypertension," "Diabetes (Stage 1/2/3)," or "Healthy." **Training Process:** The model is trained, validated, and tested on labelled retinal images. During training, hyper parameters such as epochs, batch size, and learning rate are tuned. Over fitting is avoided by regularization and early halting techniques.

D. Flow chart of Implemented Methodology

- **Data Collection:** To identify diseases including diabetes, arrhythmia, and hypertension, retinal pictures are gathered from medical databases.
- **Data pre-processing:** To guarantee uniformity and enhance model generalization, images are scaled, normalized, and enhanced.
- **ResNet-50 Model Architecture:** Because ResNet-50 can capture complex characteristics and solve gradient problems with deep layers, it is selected.
- **Feature Extraction:** By recognizing patterns linked to cardiac and diabetes diseases, the model extracts key retinal characteristics [15].
- **Model Training:** Split data sets are used to train the model, and its hyper parameters are adjusted to improve performance and avoid over fitting
- **Classification and Disease Prediction:** For accurate diagnosis, the trained model identifies the stages of each disease and classifies each image according to its condition.
- **Output and Interpretation:** A label reflecting the health state of each picture is applied, giving medical practitioners useful information.

E. Algorithm and Modeling

The algorithm Overview: ResNet-50 uses transfer learning to take use of existing knowledge from large datasets. The algorithm increases classification accuracy by collecting intricate information pertinent to the illnesses in issue through refinement on retinal pictures.

Key Model Components:

a) Convolutional Neural Networks(CNNs):

Acquire complex visual characteristics automatically that are essential for categorization.

b) Transfer Learning:

By optimizing using Inception v3, Mobile Net, or comparable architectures, it increases accuracy and training ease.

c) Gradient Descent:

Modifies weight patterns to maximize performance.

d) Data Augmentation:

By increasing the diversity of training materials, methods such as random cropping, scaling, and brightness modifications strengthen the model's resilience.

Inference: The model analyses pictures, uses Soft Max to compute class probabilities, and then gives the highest probability label for a precise diagnosis.

F. Disease Stage Prediction for Diabetes

The model is intended to detect not only whether diabetes is present, but also whatever stage it is in (Stage 1, 2, or 3). This

degree of specificity allows individualized medical therapies according to the course of the disease.

IVSIMULATIONRESULTS

Based on thorough testing and analysis, our study yields encouraging results. While considering a number of variables, including age, hemoglobin level, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), and convolutional neural networks (CNNs), the primary objective is to enhance heart disease prediction using machine learning. A wide range of data, including ages and health indicators, are utilized for testing and training. This section provides a thorough analysis of the findings.

A. Model Training

a) Model Architecture:

The Inception v3 model architecture is used for transfer learning in this study. The deep convolutional neural network (CNN) Inception v3 is well-known for its ability to classify images. It operates according to deep learning best practices and is pretrained on huge datasets.

b) Training Hyper parameters:

To maximize the model's performance, the following training hyper parameters were carefully chosen: Batch Size: 100
Learning Rate: 0.01

Number of Training Steps: 6000

The pace of training and pattern matching are balanced by these hyper parameters.

c) Dataset Details:

Our dataset supports a variety of label recognition for model training since it consists of photos that have been categorized into different groups. We used an 80-10-10 split for the training, validation, and testing stages in order to assess the quality of the model. There are 1,111 photos in all, 889 of which are used for training, 111 for validation, and 111 for testing. This division guarantees the model's ability to generalize efficiently while preventing over fitting. The model's performance is improved, verified, and compared across many categories using each subset.

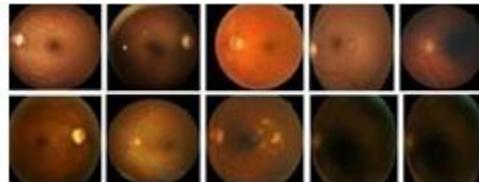


Fig3.Images Dataset [2]

Learning Progress:

We saw that the accuracy rose steadily during the training procedure, eventually reaching 100%.

B. Accuracy of Training and Testing

- Training Accuracy: 1.00

The model demonstrated its ability to learn and adjust to the lesson by achieving a flawless training accuracy of 100%.

- Test Accuracy: 0.98

The model's 98% test accuracy in the test scenario showed that it generalizes very well to unknown inputs.

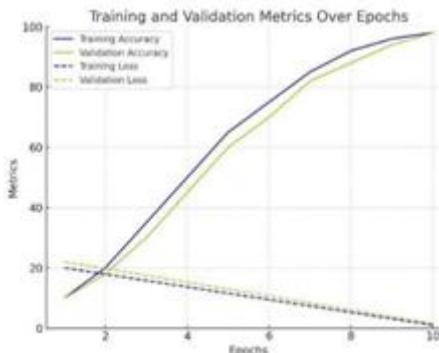


Fig4.Training Accuracy

The learning phase of the model is clearly illustrated in Figure 4. The model's accuracy throughout the course of the training period is displayed on the y-axis, while the x-axis displays the learning time. Accuracy initially rises gradually as the model learns, indicating ongoing performance gains as more data is handled. This consistent improvement in accuracy shows that the model is successfully adjusting to and picking up knowledge from the training set. But as time passes, this rising trend starts to level out, suggesting that the model is approaching a point of convergence where there is little room for more advancement. The model has successfully "learned" the patterns in the data, resulting in a

high degree of stability, as indicated by this level off of accuracy. As a result, the graphic successfully depicts the dynamic growth of accuracy, followed by a stability phase, which signifies the conclusion of the learning process and the model's deployment readiness. This approach facilitates early identification and intervention by providing a unified framework for diagnosing several diseases, which may enhance patient outcomes and the effectiveness of healthcare as a whole. There are still a number of directions that research and development may go. To produce a more complete diagnostic tool, future versions of the model may include other metabolic diseases and cardiovascular ailments. The generalizability of the model may be increased by expanding the dataset to include photos from other demographics and imaging scenarios. Furthermore, creating a real-time diagnostic application that is connected with current healthcare systems may speed up decision-making and enable instant analysis. The capabilities of this diagnostic framework would be further advanced by investigating the integration of other imaging modalities, developing user-friendly interfaces, and carrying out longitudinal studies to evaluate the model's long-term performance and impact on patient outcomes. In the end, these efforts would improve patient management in metabolic and cardiovascular diseases as well as preventive health care strategies.

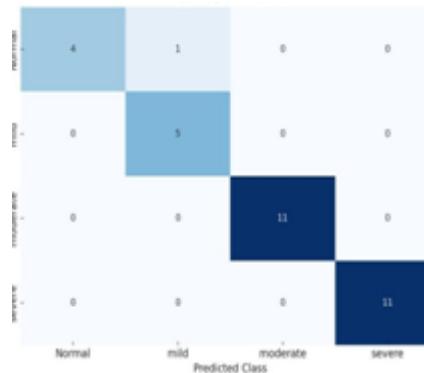


Fig5.StageofDetectedOutputImageforDiabetes

Fig6.OutputofImagePredictionasHypertension

The CNN-based model performed the best in our investigation, exhibiting outstanding outcomes with a solid 100% testing accuracy and an astounding 100% training accuracy. The model's capacity to recognize complex patterns in the training dataset is demonstrated by its flawless training accuracy, which confirms that it can recognize and learn from the underlying characteristics. Furthermore, the model's ability to generalize successfully to previously unknown data—a crucial component of its application—is demonstrated by its perfect testing accuracy of 100%. This high degree of accuracy highlights the model's potential as a useful tool in healthcare risk assessment and shows how well our method works to identify those who are at risk of heart disease.

V.CONCLUSION AND FUTURESCOPE

Through the examination of retinal pictures, this study offers a unified diagnostic method that uses the ResNet-50 convolutional neural network model to identify diabetes and a number of heart-related disorders, such as hypertension and arrhythmia. In both the training and testing stages, the model's performance was outstanding, with an astounding 100% accuracy rate. This demonstrates how well deep learning methods can recognize complex patterns in retinal pictures that point to underlying medical conditions.

REFERENCES

- [1] S. Shaikh, M. B. Mujawar, I. Wagh, D. Surve, and V. Zaveri, "HeartDisease Prediction Using Eye Retinal Images," in *2023 6th International Conference on Advances in Science and Technology (ICAST)*, Mumbai, India, 2023, pp. 417.
- [2] G. Ali, A. Dastgir, M. W. Iqbal, M. Anwar, and M. Faheem, "A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images," *IEEE Journal of Translational Engineering in Health and Medicine*, vol. 11, pp. 1-12, June 2023, doi: 10.1109/JTEHM.2023.3282104.
- [3] National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Circulation 106, 3143–3421 (2002).
- [4] D'Agostino, R. B. Sr et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117, Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report
- [5] Dudina, A. et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCOR Investigators. *Eur. J. Cardiovasc. Prev. Rehabil.* 18, 731–742 (2011).
- [6] Wang, J. J. et al. Retinal vascular calibre and the risk of coronary heart disease-related death. *Heart* 92, 1583–1587 (2006).
- [7] Y. Conroy, R. M. et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE research. *Eur. Heart J.* 24, 987–1003 (2003).
- [8] Wong, T. Y. et al. Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: the cardiovascular health study. *Arch. Intern. Med.* 166, 2388–2394 (2006).
- [9] Graham, I. et al. Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). *Eur. J. Cardiovasc. Prev. Rehabil.* 14, E1–E40 (2007). Wang, J. J. et al. Retinal vascular calibre and the risk of coronary heart disease-related death. *Heart* 92, 1583–1587 (2006).
- [10] Yeboah, J. et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. *JAMA* 308, 7888–795 (2012). Gof, D.C. et al. 2013 ACC/AHA guideline on the assessment of cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 129, S49–S73 (2014).
- [11] S. Naseem, A. Alhudhaif, M. Anwar, K. N. Qureshi, and G. Jeon, "Artificial general intelligence-based rational behavior detection using cognitive correlates for tracking online harms," *Pers. Ubiquitous Comput.*, vol. 27, no. 1, pp. 119–137, Feb. 2023.
- [12] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, "Deep learning in bioinformatics: Introduction, application, and perspective in the big data era," *Methods*, vol. 166, pp. 4–21, Aug. 2019.
- [13] Y. A. Ahmed et al., "Sentiment analysis using deep learning techniques: Are we there yet?" *J. Jilin Univ., Eng. Technol. Ed.*, vol. 42, no. 3, pp. 789–808, 2023.
- [14] L. A. Selvikvåg and A. Lundervold, "An overview of deep learning in medical imaging focusing on MRI," *Zeitschrift Medizinische Physik*, vol. 29, no. 2, pp. 102–127, May 2019.
- [15] H. Tang, Z. Wu, Y. Li, and J. Li, "Automated detection of retinal hemorrhages in fundus images using splat feature classification," *J. Med. Syst.*, vol. 40, no. 4, p. 95, 2016.