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ABSTRACT  

Document forgery is a growing concern in 

financial institutions, legal frameworks, and 

government organizations, where fraudulent 

modifications can lead to severe economic 

and security implications. Traditional 

document verification methods rely on 

manual inspection and rule-based systems, 

which are prone to human error, 

inefficiency, and limited scalability. With 

advancements in artificial intelligence, 

particularly machine learning and computer 

vision, automated forgery detection has 

become a viable solution for ensuring 

document authenticity and integrity. This 

project introduces an intelligent system that 

leverages deep learning models, image 

processing techniques, and natural language 

processing (NLP) for detecting forged 

documents, tampered signatures, and 

digitally altered images. By integrating 

multiple AI-driven approaches, the system 

can authenticate documents and identify 

anomalies across various forms of media, 

including printed and handwritten 

documents, digital records, and official 

certificates. Convolutional Neural Networks 

(CNNs) and Vision Transformers (ViT) play 

a key role in detecting visual inconsistencies 

in images and signatures, while Recurrent 

Neural Networks (RNNs) and transformer-

based models such as BERT are utilized for 

textual content verification. Additionally, 

autoencoders and anomaly detection 

algorithms enable the identification of subtle 

manipulations that may escape traditional 

detection methods. The system employs 

advanced computer vision techniques using 

OpenCV and TensorFlow for feature 

extraction and pattern recognition. Edge 

detection, texture analysis, and GAN-based 

forgery detection allow the model to 

differentiate between genuine and AI-

generated modifications. Optical Character 

Recognition (OCR) technologies, including 

Tesseract OCR and Google Vision API, 

facilitate the extraction and verification of 
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textual content, ensuring that discrepancies 

in documents are accurately detected. 

Handwriting and signature verification 

mechanisms, powered by Scale-Invariant 

Feature Transform (SIFT), Speeded-Up 

Robust Features (SURF), and Deep Siamese 

Networks, enhance the system’s ability to 

detect forged signatures. To further improve 

security and trustworthiness, blockchain 

technology is integrated into the document 

verification process. By employing 

Ethereum smart contracts and Hyperledger 

Fabric, the system ensures immutable 

record-keeping and secure authentication of 

documents. This decentralized approach 

prevents unauthorized modifications and 

provides a transparent validation framework 

that strengthens document integrity. 

Additionally, big data processing 

capabilities using cloud-based AI services 

like Google Cloud AI, AWS Rekognition, 

and Microsoft Azure AI enable scalable 

deployment for handling large volumes of 

documents in real time. The proposed 

system addresses the limitations of 

traditional document verification methods 

by providing an automated, highly accurate, 

and scalable solution. By combining deep 

learning, computer vision, NLP, and 

blockchain technologies, the project aims to 

reduce fraud, streamline authentication 

processes, and enhance security across 

industries. This innovative approach ensures 

that financial transactions, legal agreements, 

and official records remain protected from 

fraudulent alterations, contributing to the 

overall integrity and reliability of document-

based operations. 

1.INTRODUCTION 

In today’s increasingly digital world, 

ensuring the authenticity of handwritten 

signatures remains a critical aspect of 

document validation and identity 

verification. Despite the proliferation of 

electronic verification systems, handwritten 

signatures continue to serve as an essential 

element in formal agreements, financial 

transactions, and legal documentation. 

However, with the evolution of forgery 

techniques and tools, the threat posed by 

signature forgeries has become more 

prominent and harder to detect using 

conventional means. As a result, researchers 

and practitioners alike have turned their 

attention to emerging technologies, 

particularly in the realms of deep learning 

and computer vision, to bolster the 

effectiveness of forgery detection systems. 

Forgery detection in the context of 

handwritten signatures presents a unique set 

of challenges. Unlike typed text or biometric 

markers such as fingerprints or facial 

recognition, handwritten signatures exhibit a 

high degree of intra-class variation. This 

means that even genuine signatures from the 

same individual can vary slightly due to 

mood, time pressure, or writing conditions. 

On the other hand, skilled forgeries can 

closely mimic these genuine patterns, 

making the distinction between authentic 

and fraudulent signatures a complex task. 

Traditional approaches to signature 

verification, which typically rely on 

handcrafted features and statistical models, 
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often fall short when confronted with such 

intricacies. 

This has paved the way for the adoption of 

deep learning-based models, which are 

capable of automatically learning and 

extracting discriminative features from raw 

data. Unlike conventional methods that 

depend on pre-defined rules or specific 

feature extraction algorithms, deep learning 

models—especially Convolutional Neural 

Networks (CNNs)—are data-driven and can 

adapt to the subtle nuances that distinguish 

one signature from another. Moreover, these 

models can be trained to understand both 

spatial and temporal aspects of signatures, 

making them suitable for both offline (static 

images) and online (dynamic, time-based 

input) signature verification systems. 

Computer vision techniques, particularly 

when integrated with deep learning models, 

add another layer of sophistication to 

forgery detection systems. These techniques 

can enhance the model’s ability to analyze 

and interpret visual features such as pen 

pressure, stroke direction, and writing speed, 

which are often difficult to quantify through 

traditional means. The synergy between 

computer vision and deep learning allows 

for a more holistic understanding of 

signature patterns and anomalies, 

significantly increasing the likelihood of 

correctly identifying forgeries. 

One of the key advantages of using deep 

learning for signature verification lies in its 

ability to handle large-scale data with 

complex patterns. With the availability of 

extensive signature datasets and advances in 

computational power, it is now feasible to 

train deep models that generalize well across 

different writers and signature styles. 

Models such as Siamese networks, which 

learn similarity metrics between signature 

pairs, and triplet networks, which aim to 

minimize the distance between genuine 

signatures and maximize the distance to 

forged ones, have shown remarkable 

performance in signature verification tasks. 

Another important development in this area 

is the use of transfer learning. Transfer 

learning involves using a pre-trained model, 

typically trained on a large and diverse 

dataset, and fine-tuning it for the specific 

task of signature verification. This not only 

reduces the need for large annotated 

signature datasets—which are often difficult 

and expensive to acquire—but also 

significantly shortens training times while 

improving accuracy. Transfer learning has 

enabled the adaptation of powerful 

architectures like ResNet, VGG, and 

Inception for the purpose of detecting subtle 

differences in handwriting that are indicative 

of forgery. 

The effectiveness of these deep learning 

models is often evaluated using metrics such 

as accuracy, precision, recall, and Equal 

Error Rate (EER). These metrics provide 

insight into how well a model distinguishes 

between genuine and forged signatures. 

While achieving high accuracy is important, 

a low EER is often considered more critical 

in real-world applications, as it reflects the 

model's ability to minimize both false 

acceptances and false rejections—two errors 
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that can have serious consequences in 

security-sensitive environments. 

Despite these advancements, challenges still 

remain. For instance, collecting large 

datasets of forged signatures for training 

purposes is difficult, as it requires multiple 

skilled forgers and controlled conditions. 

Furthermore, the performance of deep 

learning models can degrade when applied 

to signature styles or formats not 

encountered during training. This raises the 

need for models that can generalize well 

across cultures, writing instruments, and 

document formats. Solutions such as data 

augmentation, synthetic forgery generation, 

and domain adaptation are being actively 

explored to address these limitations. 

The use of online signature data, which 

includes temporal information such as the 

sequence and speed of strokes, opens up 

new possibilities for improving verification 

accuracy. Online signatures provide a richer 

dataset compared to static images, allowing 

models to incorporate dynamic aspects of 

handwriting into their learning processes. 

Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory Networks 

(LSTMs) are particularly well-suited for this 

task, as they can capture time-dependent 

variations in signature data. Combining 

CNNs and RNNs in hybrid models has 

become a promising direction in recent 

research, enabling the simultaneous analysis 

of spatial and temporal features. 

Ethical and legal considerations also play a 

significant role in the deployment of 

signature verification systems. Ensuring data 

privacy, preventing misuse of signature data, 

and maintaining transparency in decision-

making processes are crucial for user trust 

and regulatory compliance. As such, it is 

imperative that the development and 

implementation of these systems are guided 

by robust ethical frameworks and standards. 

2.LITERATURE SURVEY 

The field of signature verification and 

forgery detection has seen rapid evolution 

over the past decade, driven by 

advancements in deep learning and 

computer vision. Traditional handcrafted 

methods have been largely replaced or 

supplemented by automatic feature 

extraction using neural networks. The 

literature in this domain reveals a variety of 

techniques applied to both offline (static 

images) and online (dynamic trajectory-

based) signature datasets. In this literature 

survey, we explore significant contributions 

by various researchers, highlighting the 

methodologies, datasets used, and outcomes 

achieved. 

Dey et al. (2017) made a significant 

contribution with the introduction of SigNet, 

a convolutional Siamese network designed 

for offline signature verification. Their 

model was writer-independent and learned a 

similarity metric to distinguish between 

genuine and forged signatures. The authors 

evaluated SigNet on multiple benchmark 

datasets including CEDAR, GPDS300, and 

BHSig260, achieving a considerable 

improvement in Equal Error Rates (EER) 

over existing methods. The Siamese network 

architecture played a key role by comparing 
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pairs of signatures instead of classifying 

them individually, which allowed the model 

to generalize better across different writers. 

Another important contribution in online 

signature verification was OSVNet by 

Hafemann et al. (2019). They proposed a 

writer-independent approach using a 

Siamese CNN with triplet loss. Their model 

worked on dynamic signature data by 

analyzing pen trajectory, pressure, and 

timing data. It performed well on datasets 

like MCYT-100 and SVC2004. The 

combination of triplet loss and convolutional 

layers enabled the model to learn 

discriminative features robust to inter-

personal and intra-personal variation. 

Tolosana et al. (2020) developed DeepSign, 

an innovative model leveraging Time-

Aligned Recurrent Neural Networks (TA-

RNNs) for online signature verification. The 

unique aspect of this method was its ability 

to align time-series data effectively and 

recognize forgery attempts even when 

performed by skilled forgers. The authors 

evaluated their model using the BiosecurID 

dataset and achieved EER values below 3%. 

The temporal modeling via TA-RNNs 

helped the system understand stroke order 

and pressure variation, which are crucial for 

dynamic signatures. 

Wani et al. (2022) conducted an experiment 

with deep transfer learning for offline 

signature verification. Using VGG16 and 

ResNet50 pre-trained models, they fine-

tuned these CNNs on a local dataset of 

genuine and forged signatures. Their study 

showed that ResNet50 yielded superior 

results in terms of accuracy, precision, and 

recall. They emphasized the practicality of 

transfer learning in scenarios with limited 

labeled data and highlighted its effectiveness 

in forgery detection with minimal 

computational training resources. 

Rani and Sharma (2021) proposed a hybrid 

CNN-LSTM model for capturing both 

spatial and sequential features in offline 

signature images. The CNN layers handled 

spatial patterns such as loops and curves, 

while LSTM layers modeled the sequence of 

strokes inferred from the static image. Their 

model was evaluated on the GPDS Synthetic 

and BHSig260 datasets, achieving an 

accuracy of over 95%. The work 

demonstrated the effectiveness of combining 

convolutional and recurrent layers for 

improving verification performance. 

Chokshi et al. (2023) presented SigScatNet, 

which integrated scattering wavelet 

transforms with a Siamese CNN for 

signature verification. Their innovation lay 

in the wavelet-based preprocessing stage 

that extracted multiscale features before 

feeding data into the neural network. This 

hybrid approach helped in better 

characterizing the geometric and textural 

variations in handwritten signatures. Their 

experiments on GPDS and CEDAR datasets 

yielded EERs significantly lower than 

conventional CNN-based models. 

Khan et al. (2018) explored the use of 

hyperspectral imaging in conjunction with 

deep learning for forgery detection. Unlike 

typical grayscale or RGB inputs, 

hyperspectral data provided rich information 



Industrial Engineering Journal 

ISSN: 0970-2555 

Volume : 54, Issue 3, March : 2025 

164 UGC CARE Group-1 

 

 
 
 
 

 

 
 

on ink and paper properties, which is nearly 

impossible for human observers or standard 

cameras to detect. Their method utilized a 

CNN model trained on spectral features to 

differentiate between original and tampered 

regions in documents. This novel approach 

opened up new dimensions in document 

forensics, especially in high-security 

applications. 

Jain et al. (2020) proposed a shallow 

convolutional neural network (sCNN) for 

efficient and real-time verification of 

handwritten signatures. Their model, despite 

its simplicity, performed comparably to 

deeper architectures on the CEDAR dataset 

due to effective use of dropout layers and 

batch normalization. The authors focused on 

lightweight architectures suitable for mobile 

and embedded systems where computational 

resources are limited. 

Pillai et al. (2021) introduced a Generative 

Adversarial Network (GAN)-based data 

augmentation method to synthesize forged 

signatures for model training. This 

addressed a common issue in signature 

verification: the lack of enough forged 

samples. Their GAN successfully generated 

convincing forgeries, and models trained 

with the augmented dataset showed 

improved generalization on unseen users. 

This work highlighted how data synthesis 

can enhance deep learning performance in 

low-resource settings. 

Kao and Wen (2020) developed a DCNN-

based approach that emphasized local patch-

based signature verification. They used a 

sliding window to extract features from 

different regions of a signature, followed by 

aggregation using a voting mechanism. 

Their evaluation on GPDS showed accuracy 

above 98%. By focusing on localized 

analysis, their method was more robust to 

partial forgeries and distortions. 

Navneet Raju (2020) employed triplet 

networks to create a feature space where 

genuine signatures clustered together while 

forgeries were pushed apart. This technique, 

inspired by FaceNet used in facial 

recognition, was adapted for signature 

analysis and tested on Bengali and Hindi 

signatures from the BHSig260 dataset. Their 

model demonstrated state-of-the-art 

accuracy and low false acceptance rates. 

Alonso-Fernandez et al. (2019) compared 

various loss functions (contrastive, triplet, 

cross-entropy) for signature verification 

tasks using deep networks. Their findings 

indicated that triplet loss offered better 

generalization for writer-independent 

scenarios. They also explored the effect of 

data imbalance and proposed strategies for 

loss reweighting to handle such cases. 

Morales et al. (2020) proposed a biometric 

fusion strategy where signature verification 

was combined with fingerprint data using 

multi-stream deep networks. Their fusion 

architecture used shared feature 

representations to jointly learn from both 

modalities, significantly reducing EER on 

multimodal biometric datasets. 

Goyal and Mahajan (2021) focused on 

adversarial robustness in signature 

verification systems. They investigated how 



Industrial Engineering Journal 

ISSN: 0970-2555 

Volume : 54, Issue 3, March : 2025 

165 UGC CARE Group-1 

 

 
 
 
 

 

 
 

deep models can be misled by carefully 

crafted perturbations in input images and 

proposed training models with adversarial 

examples. This led to more robust systems 

capable of resisting attacks that try to fool 

the verification system. 

Iqbal et al. (2018) introduced a temporal 

attention mechanism in an RNN for online 

signature verification. Their model 

dynamically assigned weights to different 

time points during the signature writing 

process, emphasizing key regions that 

contribute more to the authenticity check. 

This helped reduce false positives in 

complex signature patterns. 

Chen et al. (2019) explored ensemble 

methods, combining CNNs, SVMs, and 

decision trees to create a robust signature 

classification system. By leveraging 

different classifiers' strengths, the ensemble 

achieved better average accuracy and 

resilience to noisy data. 

Singh et al. (2022) studied the impact of 

resolution and image compression on the 

accuracy of CNN models. They found that 

even moderate compression could degrade 

model performance, highlighting the need 

for high-quality input data in practical 

deployments. 

Patil and Kulkarni (2021) developed a 

capsule network (CapsNet) model for 

signature verification, which captured spatial 

hierarchies more effectively than CNNs. 

CapsNet preserved the part-whole 

relationship of strokes and yielded 

promising results on the GPDS dataset. 

Zeng and Tian (2020) proposed an 

unsupervised feature learning approach 

using autoencoders for signature 

verification. Their model was trained to 

reconstruct signature inputs and used 

reconstruction error as a metric for 

classification, offering a lightweight 

alternative in data-scarce settings. 

Each of these contributions highlights 

different facets of the signature verification 

problem—whether it be architectural 

innovation, dataset enrichment, robustness, 

or efficiency. Collectively, they demonstrate 

that the integration of deep learning and 

computer vision offers a promising path 

toward reliable and scalable forgery 

detection systems in the real world. 

3.EXISTING METHODS 

Existing methods for signature verification 

and forgery detection can be broadly 

categorized into traditional (handcrafted) 

techniques and modern deep learning-based 

methods. Over the years, the limitations of 

rule-based and feature-engineered systems 

in dealing with complex signature variations 

have led to the increasing adoption of data-

driven approaches powered by deep learning 

and computer vision. These existing 

methods cater to two types of signature 

verification tasks: offline (image-based) and 

online (trajectory-based). Below is an 

extensive overview of various signature 

verification techniques, grouped by their 

underlying methodologies, use cases, and 

performance capabilities. 
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One of the earliest approaches in offline 

signature verification involved the use of 

handcrafted features extracted from static 

signature images. These features included 

geometrical properties such as height, width, 

area, aspect ratio, and orientation of the 

signature. Structural features like loops, 

endpoints, pen-lifts, and curvature were also 

extracted and used as input for classifiers 

such as Support Vector Machines (SVM), 

Random Forests, and k-Nearest Neighbors 

(k-NN). However, these methods lacked 

robustness when faced with intra-writer 

variability and were highly sensitive to 

distortions, noise, and inconsistent writing 

patterns. 

To overcome the limitations of handcrafted 

feature engineering, researchers began using 

statistical and transform-domain features. 

Fourier descriptors, wavelet transforms, and 

discrete cosine transforms (DCT) were 

applied to enhance the frequency and shape-

related feature extraction. These features, 

when combined with ensemble learning 

models, slightly improved signature 

classification. However, they still relied on a 

set of fixed rules and lacked the flexibility to 

adapt to novel or complex signature patterns. 

These approaches were computationally 

light but inadequate for large-scale or high-

security applications. 

The transition to deep learning marked a 

paradigm shift in signature verification. 

Convolutional Neural Networks (CNNs) 

became the go-to architecture for extracting 

spatial hierarchies in image data. A 

significant breakthrough was introduced by 

Dey et al. with SigNet, a Siamese CNN 

designed for offline signature verification. 

The network learned a similarity function 

between pairs of signatures, making it ideal 

for one-shot learning and writer-independent 

verification. Instead of treating signature 

verification as a binary classification 

problem, SigNet modeled the problem as a 

similarity matching task, which was 

particularly effective in settings where the 

number of users was large but labeled 

examples were limited. 

In a similar vein, the OSVNet model 

proposed by Hafemann et al. utilized a 

Siamese architecture with triplet loss for 

online signature verification. This model 

was trained to minimize the distance 

between genuine signature pairs while 

maximizing the distance to forgeries. The 

use of triplet loss allowed the model to learn 

a discriminative feature space where subtle 

differences between strokes could be 

detected. Unlike static image analysis, 

OSVNet leveraged temporal characteristics 

such as pen pressure, velocity, and stroke 

order, enabling better performance on 

datasets like SVC2004 and MCYT. 

Hybrid models that combine CNNs and 

Recurrent Neural Networks (RNNs) have 

also been introduced to handle both spatial 

and temporal aspects of signatures. Rani and 

Sharma proposed a CNN-LSTM model for 

offline verification by approximating stroke 

sequences from static images. The CNN 

layers extracted spatial features, and LSTM 

layers modeled the inferred writing 

sequence. Although offline data doesn’t 

inherently contain time-series information, 

these approximations provided significant 
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performance boosts, especially in skilled 

forgery detection. 

Transfer learning emerged as another 

effective method, especially for low-data 

scenarios. Wani et al. demonstrated how 

pre-trained CNNs like ResNet50 and 

VGG16 could be fine-tuned on signature 

datasets to achieve high accuracy. These 

models were originally trained on ImageNet 

and were capable of capturing low-level and 

mid-level visual features that generalized 

well to signature data. Transfer learning 

reduced training time and computational 

requirements, making it suitable for real-

time or edge-based signature verification 

systems. 

To tackle the shortage of forged signature 

data, Pillai et al. proposed the use of 

Generative Adversarial Networks (GANs) 

for forgery generation. These synthetic 

forgeries were used to augment training 

datasets, improving the model’s ability to 

distinguish forgeries during inference. The 

adversarial training process allowed the 

generator to create realistic forgeries while 

the discriminator learned to detect them, 

making the model more robust and resistant 

to unseen forgery styles. 

Chokshi et al. introduced a unique 

combination of scattering wavelet 

transforms and deep neural networks in their 

SigScatNet architecture. This model 

extracted multi-resolution and multi-scale 

features from signature images and then fed 

them into a Siamese CNN. The scattering 

transform improved the feature 

representation by capturing fine-grained 

local patterns, which enhanced the model’s 

ability to detect partial or skilled forgeries. 

A notable innovation was seen in temporal 

modeling using Time-Aligned Recurrent 

Neural Networks (TA-RNNs), as proposed 

by Tolosana et al. Their DeepSign model 

used time-aligned sequences of pen strokes 

in online signatures and achieved excellent 

results on biometric datasets. These models 

analyzed writing speed, stroke duration, and 

pressure, providing richer information than 

static images. TA-RNNs allowed for writer-

independent verification and worked well 

with limited training data due to the high 

temporal resolution of input. 

Capsule networks (CapsNet) were also 

experimented with in the context of forgery 

detection. Patil and Kulkarni designed a 

signature verification system based on 

CapsNet that preserved spatial hierarchies 

and pose relationships better than traditional 

CNNs. This helped in maintaining the 

structure of loops, swirls, and curvature of 

strokes, which is important when dealing 

with skilled forgeries that mimic the visual 

layout of genuine signatures. 

Ensemble learning has also been used in 

combination with deep models. Some 

approaches employed multiple CNNs 

trained on different types of input features 

(e.g., grayscale images, wavelet-transformed 

images) and combined their predictions 

using majority voting or softmax fusion. 

Ensemble models were found to outperform 

individual models in terms of generalization 

and robustness, especially when used across 

multiple datasets. 
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Another innovative approach included 

attention mechanisms. Iqbal et al. proposed 

a model that applied temporal attention to 

key segments of an online signature. Instead 

of treating all parts of the signature equally, 

the model learned to focus more on 

discriminative areas, such as the beginning 

and end of the signature. This selective 

focus improved the precision of 

classification, particularly for partially 

forged signatures. 

Some researchers have explored using 

unsupervised learning techniques like 

autoencoders for signature verification. Zeng 

and Tian implemented a model that 

reconstructed input signatures using an 

autoencoder and classified signatures based 

on the reconstruction error. Although not as 

accurate as supervised methods, these 

techniques were lightweight and useful for 

environments with minimal labeled data. 

Hyperspectral imaging combined with 

CNNs has been explored by Khan et al., 

where ink spectral signatures were used to 

detect tampering in signatures and 

documents. Unlike traditional RGB imaging, 

hyperspectral analysis revealed physical 

inconsistencies like ink differences, even 

when forgeries were visually similar. This 

method provided a physical layer of security 

not achievable by typical image-based 

systems. 

In summary, existing methods for signature 

forgery detection now span a wide spectrum 

of deep learning and vision-based 

techniques. From simple CNNs and 

handcrafted feature models to complex 

hybrid networks, GANs, and hyperspectral 

imaging, the state-of-the-art continues to 

evolve. These methods vary in terms of 

computational complexity, accuracy, 

robustness to forgery types, and adaptability 

to writer-independent settings. While many 

models achieve high performance on 

benchmark datasets, real-world application 

demands further improvements in 

generalization, interpretability, and 

resistance to adversarial forgeries. 

PROPOSED METHOD 

The proposed method for forgery detection 

in handwritten signature verification 

integrates advanced deep learning and 

computer vision techniques into a cohesive 

and highly efficient framework. The 

objective is to improve accuracy, 

adaptability, and robustness in 

distinguishing between genuine and forged 

signatures in both offline (static) and online 

(dynamic) signature verification contexts. 

While many existing systems are either 

model-heavy, data-hungry, or limited in 

generalization, the proposed system aims to 

create a writer-independent, lightweight, and 

scalable signature verification model that 

works effectively across diverse user inputs 

and varying forgery techniques. 

The proposed method is a hybrid 

architecture combining Convolutional 

Neural Networks (CNNs) for spatial feature 

extraction and Bidirectional Long Short-

Term Memory (BiLSTM) networks for 

temporal sequence learning. This dual 

capability ensures that both visual features 

(such as stroke patterns, loops, pressure 
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variation seen in static images) and dynamic 

aspects (like speed, acceleration, and 

pressure from digital pen strokes) are 

captured with high precision. This approach 

is applicable to both offline and online 

signature datasets and is designed to 

function in real-time environments with 

limited computational resources. 

The first phase of the proposed method is 

data acquisition and preprocessing. A 

curated dataset containing a wide range of 

genuine and forged signatures in both offline 

and online formats is used. Offline data is 

collected in the form of scanned signature 

images, while online data is collected 

through digitizing tablets that capture 

dynamic features such as pen pressure, x-y 

coordinates, speed, and pen-up/pen-down 

events. For offline images, preprocessing 

steps include grayscale conversion, noise 

removal using Gaussian filtering, resizing to 

a consistent input shape (e.g., 155×220 

pixels), and binarization using adaptive 

thresholding to highlight the stroke 

structures clearly. Online data undergoes 

normalization and interpolation to 

standardize sampling rates across different 

devices and users. 

After preprocessing, the system moves to 

feature extraction. Offline signatures are 

processed through a custom CNN module 

designed to extract low-to-high-level spatial 

features. The CNN comprises several 

convolutional layers followed by batch 

normalization, ReLU activation functions, 

and max-pooling layers. These layers 

capture edges, contours, shapes, and other 

structural elements of a signature. The CNN 

ends with a global average pooling layer that 

flattens the feature maps into a dense vector 

representation. 

In parallel, the online signatures are fed into 

a BiLSTM model. This module receives the 

normalized time-series data, which includes 

stroke sequences and dynamic pen behavior. 

The bidirectional nature of the LSTM allows 

the network to capture both forward and 

backward temporal dependencies, thus 

improving the recognition of stroke patterns 

and their transitions. This is particularly 

important for detecting skilled forgeries, 

where the forger mimics the static visual 

structure but fails to replicate the dynamic 

flow of the original writer. 

The CNN and BiLSTM outputs are 

concatenated into a unified feature vector, 

which is then passed through a dense 

embedding layer. This embedding represents 

the complete signature in a multidimensional 

feature space. To train the model effectively, 

a triplet loss function is used. This function 

pulls embeddings of genuine signature pairs 

closer and pushes forgeries further apart. 

The use of triplet loss facilitates the learning 

of discriminative representations even in 

writer-independent settings where the model 

must generalize to unseen users. 

To improve the training efficiency and 

prevent overfitting, several strategies are 

employed. Data augmentation is applied to 

offline signature images using 

transformations like rotation, translation, 

scaling, and elastic distortions to simulate 

natural variations in handwriting. For online 

data, synthetic sequences are generated by 
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simulating slight deviations in timing and 

pressure to replicate natural writing 

variations. Dropout and L2 regularization 

are used throughout the network to mitigate 

overfitting. 

For model evaluation, benchmark datasets 

such as GPDS300, CEDAR, BHSig260, and 

MCYT are used. The performance is 

assessed using metrics like accuracy, 

precision, recall, F1-score, and Equal Error 

Rate (EER). The model is validated using a 

k-fold cross-validation technique to ensure 

robustness and generalizability across 

different subsets of data. During testing, the 

model receives a query signature and 

compares it against a set of reference 

signatures. The verification decision is made 

based on a similarity threshold in the 

embedding space. 

To further improve interpretability, a 

visualization module is introduced using 

Grad-CAM (Gradient-weighted Class 

Activation Mapping), which highlights the 

areas of the signature that contributed most 

to the model’s decision. This feature is 

critical for real-world applications in 

forensic analysis, where human experts may 

need to review or audit the AI model’s 

output. 

In addition, the model is optimized for 

deployment by using quantization and model 

pruning techniques. This reduces the 

memory footprint and computational 

requirements, allowing the model to run 

efficiently on edge devices such as mobile 

phones, biometric scanners, or signature 

pads used in banks or government offices. 

The system also includes an adaptive 

learning module that continues to learn from 

new data in the field. With the user’s 

permission, newly collected signatures (both 

genuine and rejected forgeries) can be used 

to fine-tune the model periodically, making 

it more adaptive to individual writing styles 

and emerging forgery techniques. 

The proposed method is built with 

scalability and security in mind. Signature 

data is encrypted during storage and 

transmission using standard protocols like 

AES-256. The system includes user-specific 

access controls, ensuring that only 

authorized personnel can view or update 

signature data. To address ethical concerns, 

user consent is obtained for any data storage 

or AI training use, and the model is tested 

for fairness across gender, age, and cultural 

background to prevent unintended biases. 

5. OUTPUT SCREENSHOTS 
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6.CONCLUSION 

The integration of deep learning and 

computer vision technologies has 

significantly advanced the field of signature 

forgery detection, offering solutions that are 

both accurate and efficient. While existing 

methods have made substantial progress, 

challenges such as handling intra-personal 

variability and limited data availability 

persist. The proposed method, by 

incorporating multi-modal data, hybrid 

architectures, and advanced learning 

techniques, aims to address these challenges, 

paving the way for more secure and reliable 

signature verification systems in the digital 

age. 
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