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ABSTRACT 

      UAVs are becoming more useful and common in agriculture as well as the daily life applications. Path 

planning is intended to control the motion of the Unmanned Aerial Vehicles in a specific trajectory smoothly and 

quickly. In UAV-to-UAV communication obstacle consideration plays an important role. In obstacle avoidance 

path planning capabilities of UAV that would go over safe zones most of the time. To avoid obstacles existing 

approaches for path planning are necessary to frequently detect whether two objects estimate the shortest between 

source and destination. Moreover, collision checking and minimum distance estimating themselves are complex 

and time-consuming tasks. To deal with the above-mentioned problems for path planning with obstacle avoidance 

we use Gradient Descent Algorithm. 
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I. INTRODUCTION 

      Unmanned Aerial Vehicles (UAVs) are capable of flying autonomously or through different control 

modalities such as joysticks, smartphones, voice and gestures. Until the early 2000s, UAVs were mainly used in 

the military area, with the development in hardware and software technologies UAVs got smaller, easier to 

control, and less costly. Now, UAVs can perform a wide range of civilian activities. Among these activities, 

UAVs are firstly used for entertainment, such as for photography during extreme sports activities. Then it becomes 

possible for UAVs to help people to finish work in many different ways. In some situations, tasks might be hard 

or harmful for humans. UAVs are useful in these situations and can improve efficiency. With an overhead view 

of working sites, UAVs can be used for surveillance and reporting progress. In such scenarios, moving objects 

can exist together with UAVs. This brings challenges to the operation of UAVs. 

To operate UAVs automatically in dynamic environments, it is crucial for UAVs to avoid static obstacles and 

dynamic obstacles in a safe way while executing tasks. When UAVs are working, the requirements are to be 

aware of working environments, to be able to predict obstacle movement in particular situations, and to be able 

to avoid colliding with static and moving obstacles. The challenge is to achieve real-time navigation in dynamic 

environments which change unpredictably. This challenge relates to the area of motion planning. Therefore, to 

solve this challenge, a hybrid method which integrates benefits of both motion planner and trajectory optimizer 

is required. Furthermore, to develop and test motion planning algorithms in a safe and inexpensive manner, UAV 

simulators and UAV controllers are required for running simulations.  The challenges in this area are designing 

realistic scenarios, simulating UAV behaviours and visualizing generated trajectories. 
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II. RELATED WORK 

      This section gives a review of relevant literature. The optimized motion planning framework consists of 

optimized motion planner and dynamic scene generator. When designing an optimized motion planner, the related 

areas are motion planning algorithms and trajectory optimization. So, the first part is an introduction to motion 

planning algorithms in static and dynamic environments, and the second part describes related work in trajectory 

optimization. Dynamic scene generator module utilized UAV simulator. The third part describes related work in 

UAV simulation. 

Motion Planning 

      In the UAV motion planning area, large numbers of state-of-the-art algorithms have been proposed in the 

last few decades. Research in this area was initially focused on planning in static environments, and from there 

expanded towards dynamic environments, which take into consideration uncontrollable agents as well as moving 

obstacles. More algorithms are proposed to optimize the planned trajectories, reduce the computation cost and 

be more robust to model uncertainty or disturbances. 

Static Environments 

      In static environments, obstacles are stationary. With a map known a priori, the configuration space consists 

of free space. When the size and complexity of the map increase, the number of grids will increase, so the time 

cost and the memory usage will increase severely. Then the random sampling methods are proposed. In 1996, 

probabilistic roadmaps (PRM) were proposed. PRM is a graph of possible paths in a space which has free and 

occupied parts. It can be used to find the path with a relatively small number of samples nodes, but cannot make 

sure to find the optimal path. When exploring a larger space or in high dimensional space, the time and 

computation cost will be high. But when obstacles are moving, the planned path is required to be updated as 

well. To solve this problem, many algorithms are developed for motion planning in dynamic environments.  

Dynamic environments 

      Daily common environments are complicated and dynamic. To navigate in the dynamic environment, UAV 

need to consider the movement of the obstacles, then plan a feasible and optimal trajectory. To achieve real-time 

UAV navigation in a large space, motion planning algorithms need to be improved with high efficiency and 

relatively low storage requirement. In 2006, Ferguson proposed Dynamic RRT (DRRT) algorithm will remove 

invalid nodes, reconnect and regrow to repair the solution path. During this procedure, the obstacles are still 

considered stationary. To increase the efficiency and make use of more information of previous planned path in 

the replanning procedure. Zhu et al proposed an algorithm which uses the depth camera to get the positions and 

velocities of the moving obstacles to generate a cost map and integrate it into the planning procedure. The cost 

map will be used to determine potential collision. The limitation of this method is that it assumes all obstacles 

are moving at a constant speed.  

Trajectory Optimization 

      Besides collision avoidance, another objective of the motion planning framework is achieving smooth and 

efficient trajectories. To improve the quality of the trajectory, trajectory optimization techniques can be utilized. 

Trajectory optimization algorithms can be used to smooth and shorten trajectories generated by other methods. 

And they can be used to plan from scratch, which initializes with a trajectory that contains collision and perhaps 

violates constraints and then converges to a high-quality trajectory satisfying constraints. Obstacles are considered 

directly in the workspace of the UAV, where the notions of distance and inner product are more natural. 
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UAV Simulator 

      In the study of UAV motion planning, simulator is important. It allows evaluating algorithms in a safe and 

inexpensive manner, without worrying about dealing with real-world hardware. The ideal simulator needs to be 

fast, physically accurate and photo-realistic. UAV simulator consists of UAV control system and UAV 

simulation. UAV simulator module contains four nodes, which are: start quadrotor, autopilot, unity scene and 

path visualization. UAV control system and UAV simulation are both constructed based on existing software. 

 

III. PROPOSED METHODOLOGY 

      While a lot of attention was given to motion planning algorithms development and simulation separately, 

there is little work focusing on integrating motion planner and realistic simulator. The challenge is to find the 

shortest path i.e., path planning. In this thesis, Gradient Descent Algorithm is designed and developed. The work 

is motivated based on the need for searching a hybrid method which integrates motion planner and trajectory 

optimizer. The framework enables a UAV to navigate autonomously and safely in dynamic environments. Safety 

is demonstrated by ensuring that the UAV does not collide with any obstacles during the entire navigation. The 

framework consists of three parameters. After finding a trajectory from the current position of the UAV to the 

goal, an optimizer is applied to optimize the trajectory. This module aims to generate a collision-free trajectory 

and be able to modify it to avoid collisions when environment changes. Dynamic scene generator, which contains 

obstacle information messenger and UAV simulator. This module is to generate Unity scene with static and 

dynamic obstacles, then UAV, obstacles and trajectories generated by optimized motion planner will be visualized 

in the same scene. UAV simulator utilizes Frightmare, which is a flexible modular quadrotor simulator that 

contains rendering engine built on Unity and physics engine for dynamics simulation. Within UAV simulator, 

UAV control system utilizes RPG quadrotor control library which contains a position controller and a state 

machine. The framework is an open-source project which is released under the MIT license. 

      In the proposed system we use Improved Gradient Descent Algorithm , to make the path planning 

asymptotically optimal. This algorithm can set pheromones on the path obtained by Gradient Descent Algorithm 

and select the next extension point according to the pheromone concentration. Through a certain number of 

iterations, it converges into an ideal path scheme. Specifically, this algorithm is formulated to minimize the 

energy, time and distance. Simulation results show that the Gradient Descent Algorithm is more efficient 

compared with a data transmission based gradient algorithm. Therefore by using this proposed algorithm we can 

minimize the path length from one position to another position that is from source to destination. 
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Fig 1. Block Diagram 

Proposed Algorithm – Gradient Descent Algorithm 

      Gradient descent (GD) is an iterative first-order optimisation algorithm used to find a local 

minimum/maximum of a given function. This method is commonly used in machine learning (ML) and deep 

learning (DL) to minimise a cost/loss function (e.g. in a linear regression). Due to its importance and ease of 

implementation, this algorithm is usually taught at the beginning of almost all machine learning courses. 

However, its use is not limited to ML/DL only, it’s being widely used also in areas like: 

 control engineering (robotics, chemical, etc.) 

 computer games 

 mechanical engineering 

      That’s why today we will get a deep dive into the math, implementation and behaviour of first-order gradient 

descent algorithm. We will navigate the custom (cost) function directly to find its minimum, so there will be no 

underlying data like in typical ML tutorials — we will be more flexible in terms of a function’s shape. 

      This method was proposed before the era of modern computers and there was an intensive development 

meantime which led to numerous improved versions of it but in this article, we’re going to use a basic/vanilla 

gradient descent implemented in Python 

Function requirements 

      Gradient descent algorithm does not work for all functions. There are two specific requirements. A function 

has to be: 

 differentiable 

 convex 

       

3.3 Gradient 

      Before jumping into code one more thing has to be explained — what is a gradient. Intuitively it is a slope of 

a curve at a given point in a specified direction. 

      In the case of a univariate function, it is simply the first derivative at a selected point. In the case of a 

multivariate function, it is a vector of derivatives in each main direction (along variable axes). Because we are 
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interested only in a slope along one axis and we don’t care about others these derivatives are called partial 

derivatives. 

      A gradient for an n-dimensional function f(x) at a given point p is defined as follows: 

 

 
 

      The upside-down triangle is a so-called nabla symbol and you read it “del”. To better understand how to 

calculate it let’s do a hand calculation for an exemplary 2-dimensional function below. 

 

 
Figure 3.3: 3D plot of Gradient 

Let’s assume we are interested in a gradient at point p(10,10): 

 
so consequently: 

 

 
By looking at these values we conclude that the slope is twice steeper along the y axis. 

3.4 Gradient Descent Algorithm 

      Gradient Descent Algorithm iteratively calculates the next point using gradient at the current position, scales it 

(by a learning rate) and subtracts obtained value from the current position (makes a step). It subtracts the value 

because we want to minimise the function (to maximise it would be adding). This process can be written as: 

 
      There’s an important parameter η which scales the gradient and thus controls the step size. In machine learning, 

it is called learning rate and have a strong influence on performance. 
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 The smaller learning rate the longer GD converges, or may reach maximum iteration before reaching 

the optimum point 

 If learning rate is too big the algorithm may not converge to the optimal point (jump around) or even 

to diverge completely. 

In summary, Gradient Descent method’s steps are: 

1. choose a starting point (initialisation) 

2. calculate gradient at this point 

3. make a scaled step in the opposite direction to the gradient (objective: minimise) 

4. repeat points 2 and 3 until one of the criteria is met: 

5.   maximum number of iterations reached 

             6.    step size is smaller than the tolerance (due to scaling or a small gradient). 

Below, there’s an exemplary implementation of the Gradient Descent algorithm (with steps tracking): 

This function takes 5 parameters: 

1. starting point - in our case, we define it manually but in practice, it is often a random initialisation 

2. gradient function - has to be specified before-hand 

3. learning rate - scaling factor for step sizes 

4. maximum number of iterations 

5. tolerance to conditionally stop the algorithm (in this case a default value is 0.01) 

 Example 1 — a quadratic function 

Let’s take a simple quadratic function defined as: 

 
Because it is an univariate function a gradient function is: 

 
Let’s write these functions in Python: 

For this function, by taking a learning rate of 0.1 and starting point at x=9 we can easily calculate each step by 

hand. Let’s do it for the first 3 steps: 

 
The python function is called by: 

      The animation below shows steps taken by the GD algorithm for learning rates of 0.1 and 0.8. As you see, for 

the smaller learning rate, as the algorithm approaches the minimum the steps are getting gradually smaller. For a 

bigger learning rate, it is jumping from one side to another before converging. 
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Figure 3.4: Results for learning rate 

First 10 steps taken by GD for small and big learning rate 

Trajectories, number of iterations and the final converged result (within tolerance) for various learning rates are 

shown below: 

 
Figure 3.4.1: Results for various learning rates 

Example 2 — a function with a saddle point 

Now let’s see how the algorithm will cope with a semi-convex function we investigated mathematically before. 

 
Below results for two learning rates and two different staring points. 

 

 
Figure 3.4.2: GD trying to escape from a saddle point 

Below an animation for a learning rate of 0.4 and a starting point x=-0.5.. 

IV. RESULTS ANALYSIS 

 
Figure 10.3:Result 1 
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           This is the Result 1 it indicates the final shortest final path with obstacle avoidance from source to 

destination.Here the circle indicates the obstacles and the right top curve represents the destination i.e.,the end 

point of UAV. Here in result 1 it consists of path segments.Here the UAV find the shortest path for better results 

and for fast transfer of information. 

 

 
Fig Result 2 

            Result 2 represents the framework that minimizes the Time, Distance paths from initial source node UAV 

to destination node UAV. The velocity is varying from Vmin=10m/s to Vmax=15m/s in between these the 

dynamic obstacles are generated randomly. The red line shows energy line is required because by searching 

multiple numbers of paths and choosing shortest path, the green line shows time line having less amount of time 

is required to transmit the data from initial point to final point. The blue line shows distance line having more 

number of planned path segments are considered to avoid a dangerous obstacles. The multiple numbers of 

planned path segment points can observe on blue line. 

 

V. CONCLUSION & FUTURE ENHANCEMENT 

      The main goal of this work is to create the short path for UAV to UAV Trajectory that would go over safe 

zones most of the time. Path planning is intended to control the motion of the Unmanned Aerial Vehicles in a 

specific trajectory smoothly and quickly. Considered the positions of the UAVs are varied and the Trajectory also 

varied, it is not constant and velocity is also varying from 10msec to 15msec. The displacement of UAVs will 

change the transmission rate and energy consumption. In this article, Gradient Descent Algorithm was 

proposed.Therefore, with the help of proposed path planning optimization algorithm we minimized the path 

length from one position to another destination while avoiding concussion with different obstacles. Specifically, 

the proposed optimization algorithm is formulated to minimize the energy, time and distance and also the delay 

between two nodes. Furthermore, there are also many changes to implement the path planner into a functional 

method.  

      By utilizing this proposed framework, more advanced Gradient Descent algorithms can be evaluated and 

simulated. The best path planning can be improved in more realistic and complex places. The prediction of 

obstacles can be improved to help UAV to navigate in a more complicated environment and avoid obstacles more 

precisely. In the evaluation step, limited scenarios are included. So the interface of obstacle info messenger can 

be improved to simulate a wider variety of obstacles so in future enhancement better version of Gradient Descent 
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Algorithm will be developed for better path planning and obstacle avoidance with more parameters. The Gradient 

Descent algorithm can be improved to consider avoidance of humans and provide a solution for safe human-drone 

interaction in dynamic environments. In this future enhancement more parameters can derive in this path planning. 
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