

Volume : 52, Issue 3, March : 2023 THE UPPER TOTAL MONOPHONIC NUMBER OF A GRAPH

V.K. Kalai Vani, Assistant Professor, Department of Mathematics, St.Alphonsa College of Arts and Science, Karungal – 629 159, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012. <u>kalaivanisaji@gmail.com</u>

R.Umamaheswari, Assistant Professor, Department of Mathematics, Rani Anna Government college for Women, Tirunelveli- 627008 Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012. umaprofessor1@gmail.com

ABSTRACT

A set *M* of vertices of a connected graph *G* is a monophonic set if every vertex of *G* lies on an *x*y monophonic path for some elements *x* and *y* in *M*. The minimum cardinality of a monophonic set of *G* is the monophonic number of *G*, and is denoted by m(G). A monophonic set of cardinality m(G). is called a *m*-set of *G*. Any monophonic set of order m(G) is a minimum monophonic set of *G*. A monophonic set *M* in a connected graph *G* is called a minimal monophonic set if no proper subset of *M* is a monophonic set of *G*. The total monophonic set *M* of a graph *G* is a monophonic set *M* such that the subgraph induced by *M* has no isolated vertices, and is denoted by $m_t(G)$. The upper total monophonic set of a graph *G* is a minimal total monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total monophonic number is the maximum cardinality of a minimal total monophonic set of *G*, and is denoted by $m_t^+(G)$. The upper monophonic numbers of some connected graphs are realized. It is proved that for any integers, *a*, *b* and *c* such that $2\le a\le b < c$, there exists a connected graph *G* with m(G)=a, $m_t(G)=b$ and $m_t^+(G)=c$.

Keywords: Monophonic set, monophonic number, total monophonic number, upper total monophonic number.

1. Introduction

By a graph G = (V, E) we mean a simple graph of order at least two. The order and size of *G* are denoted by *p* and *q*, respectively. For basic graph theoretic terminology, we refer to Harary [5]. The neighborhood of a vertex *v* is the set N(v) consisting of all vertices *u* which are adjacent with *v*. The closed neighborhood of a vertex *v* is the set $N[v] = N(v) \cup \{v\}$. A vertex *v* is an extreme vertex if the sub graph induced by its neighbors is complete. A vertex *v* is a semi-extreme vertex of *G* if the sub graph induced by its neighbors has a full degree vertex in N(v). In particular, every extreme vertex is a semi - extreme vertex need not be an extreme vertex.

For any two vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest x-y path in G. An x-y path of length d(x, y) is called an x-y geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x and y. UGC CARE Group-1 685

Volume : 52, Issue 3, March : 2023

The closed interval I[x, y] consists of all vertices lying on some x-y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup I[x, y]$. A set S of vertices is a geodetic set if I[S] = V, and the minimum cardinality of a

geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called *a g*-set. The geodetic number of a graph was introduced in [1, 6] and further studied in [2, 3, 4, 5]. A set *S* of vertices of a graph *G* is an edge geodetic set if every edge of *G* lies on an *x*-*y* geodesic for some elements *x* and *y* in *S*. The minimum cardinality of an edge geodetic set of *G* is the edge geodetic number of *G* denoted by eg (*G*). The edge geodetic number was introduced and studied in [8]. The total edge of geodetic set of a graph *G* is an edge geodetic set *S* such that the subgraph induced by *S* has no isolated vertices. The minimum cardinality of a total edge geodetic set of *G* is the total edge geodetic number of *G* and is denoted by $eg_t(G)$.

A chord of a path $u_1, u_2, ..., u_k$ in *G* is an edge $u_i u_j$ with $j \ge i + 2$. A *u-v* path *P* is called a monophonic path of it is a chordless path. A set *M* of vertices is a monophonic set if every vertex of *G* lies on a monophonic path joining some pair of vertices in *M*, and the minimum cardinality of a monophonic set of *G* is the monophonic number of *G*, and is denoted by m(G). A monophonic set of cardinality m(G) is called a *m*-set of *G*. Any monophonic set of order m(G) is a minimum monophonic set of *G*. A monophonic set of *G*. The monophonic number of a graph *G* was studied in [9]. A monophonic set *M* in a connected graph *G* is called a minimal monophonic set if no proper subset of *M* is a monophonic set of *G*. The monophonic number of a graph *G* was studied in [9]. A monophonic set of *G*. The upper monophonic number $m^+(G)$ of *G* is the maximum cardinality of a minimal set of *G*. The upper monophonic set *M* such that the subgraph induced by *M* has no isolated vertices, and is denoted by $m_t(G)$. The upper total monophonic set of a graph *G* is a minimal total monophonic set of a standard by $m_t^+(G)$.

The following Theorems will be used in the sequel.

Theorem 1.1 [9] : Each extreme vertex of a connected graph G belongs to every monophonic set of G.

Theorem 1.2 [10] : Let *G* be a connected graph with diameter *d*. Then $m(G) \le p - d + 1$. Throughout this paper *G* denotes a connected graph with atleast two vertices

2.UPPER TOTAL MONOPHOIC NUMBER OF A GRAPH

Definition 2.1: The total monoponic set *M* in a connected graph *G* is called a minimal total monophonic set of *G* if no proper subset of *M* is the total monophonic set of *G*. The upper total monophonic number $m_t^+(G)$ of *G* is the maximum cardinality of a minimal total monophonic set of *G*.

Example 2.2: For the graph *G* given in Figure 2.1, $M_1 = \{v_2, v_4\}$, $M_2 = \{v_4, v_6\}$, $M_3 = \{v_2, v_5\}$ are the only three minimum monophonic sets of *G*, so that m(G)=3. The set $M_4 = \{v_1, v_3, v_5\}$ and $M_5 = \{v_1, v_3, v_6\}$ are minimalmonophonic sets of *G*. The set $M_6 = \{v_1, v_3, v_4, v_5\}$, $M_7 = \{v_1, v_2, v_3, v_6\}$ are the minimal total monophonic sets of *G*, so that $m_t^+(G) \ge 4$. It is easily verified that no five elements of *G* is minimal total monophonic set of *G* and so $m_t^+(G) = 4$.

Volume : 52, Issue 3, March : 2023

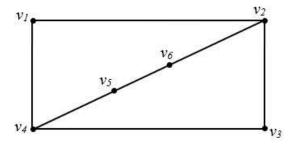


Figure 2.1 : G

Remark 2.3: Every minimum total monophonic set of *G* is a minimal total monophonic set of *G* and the converse is not true. For the graph *G* given in figure 2.1, $M_6 = \{v_1, v_3, v_4, v_5\}$ is a minimal total monophonic set of *G* but not a minimum total monophonic set of *G*.

Theorem 2.4 : For any connected graph $G, 2 \le m(G) \le m^+_t(G) \le p$.

Proof: Any monophonic set needs atleast 2 vertices and so $m(G) \ge 2$. Since every minimal total monophonic set is a monophonic set $m(G) \le m_t^+(G)$. Also since V(G) is a monophonic set of G, it is clear that $m_t^+(G) \le p$. Thus $2 \le m(G) \le m_t^+(G) \le p$.

Theorem 2.5 : For the complete graph K_P ($p \ge 2$), $m_t^+(K_p) = m^+(K_p) = p$.

Proof : Since every vertx of the complete graph Kp ($p \ge 2$) is an extreme vertex, the vertex set of Kp is the unique monoponic set. Thus $m^+(Kp) = m_t^+(Kp)$.

Theorem 2.6 : For a connected graph G of order p, the following are equivalent:

- i. $m_t^+(G) = p$
- ii. m(G) = p
- iii. $G = K_p$

Proof : (i)=>(ii). Let $m^+_t(G) = p$. Then M = V(G) is the unique minimal total monophonic set of *G*. Since no proper subset of *M* is a monophonic set, it is clear that *M* is the unique minimum total monophic set of *G* and so m(G) = p.

(ii)=>(iii). Let m(G) = p. If $G \neq K_p$, then by theorem 1.3, $m(G) \leq p-1$, which is a condradiction. Therfore $G = K_p$. (iii) \Rightarrow (i). Let $G = K_p$. Then by Theorem 2.5, $m_t^+(G) = p$.

Theorem 2.6 : Let *G* be a connected graph with cut vertices and *M* be a minimal monoponic set of *G*. If *v* is a cut vertex of *G*, Then every component of G-*v* contains an element of *M*.

Proof : Suppose that there is a component G_1 of G-v such that G_1 contains no vertex of M. By Theorem 1.2, G_1 does not contain any end vertex of G. Thus G_1 contains at least one vertex, say u. Since M is a minimal monophonic set, there exists vertices $x, y \in M$ such that u lies on the x-y monophonic path P: $x = u_0, u_1, u_2, \ldots, u_t = y$ in G. Let P_1 be a x-u sub path of P and P_2 be a u-y subpath of P. Since v is a cut vertex of G, both P_1 and P_2 contain v so that P is not a path, which is a contradiction. Thus every component of G-v contains an element of M.

Theorem 2.7: For any connected graph G, no cut vertex of G belongs to any minimal total monophonic set of G.

UGC CARE Group-1

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

Proof: Let *M* be a minimal total monophonic set of *G* and $v \in M$ be any vertex. We claim that *v* is not a cut vertex of *G*. Suppose that *v* is a cut vertex of *G*. Let $G_1, G_2, ..., G_r (r \ge 2)$ be the components of *G*-v. By theorem 2.6, each component $Gi_{i}(1 \le i \le r)$ contains an element of *M*. We claim that $M_1 = M - \{v\}$ is also a monophonic set of G. Let x be a vertex of G. Since M is a minimal monophonic set of G, x lies on a monophonic path P joining a pair of vertices u and v of M. Assume without loss of generality that $u \in G_1$. Since v is adjacent to atleast one vertex of each $G_i(1 \le i \le r)$, z lies on a monophonic assume that v is adjacent to z in G_k , $k \neq 1$. Since M is a monophonic set, path Q joining v and a vertex w of M such that w must necessarily belongs to G_k . Thus $w \neq v$. Now, since v is a cut vertex of G, $P \cup Q$ is a path joining u and w in M and thus the vertex x lies on this monophonic path joining two vertices of M_1 . Hence it follows that M_1 is a monophonic set of G. Since $M_1 \subsetneq M$, this contradicts the fact that M is a minimal total monophonic set of G. Hence $v \notin M$ so that no cut vertex of G belongs to any minimal total monophonic set of G.

Theorem 2.8 : For any Tree *T* with *k* end vertices, $m_t^+(T) = m^+(T) = m(T) = k$.

Proof: By Theorem 1.1, any monophonic set contains all the end vertices of *T*. By Theorem 2.7, no cut vertices of *T* belongs to a minimal total monophonic set of G. Hence it follows that, the set of all end vertices of *T* is the unique minimal total monophoni set of *T* so that $m^+(T) = m^+(T) = m(T) = k$.

Theorem 2.9: For a cycle $G = C_p(p \ge 4), m^+_t(G) = 3$.

Proof : First suppose that $G = C_3$. It is a complete graph, by Theorem 2.5, we have $m^+_t(G) = 3$. For any cycle suppose that $m^+_t(G) > 3$, then there exist a minimal total monophonic set M_1 such that $|M_1| \ge 3$. Now it is clear that monophonic set $M \subsetneq M_1$, which is a contradiction to M_1 is a minimal total monophonic set of *G*. Therfore $m^+_t(G) = 3$.

Theorem 2.9: For the complete bipartite graph $G = K_{m,n}$.

- (i) $m_t^+(G) = 2$ if m = n = 1
- (ii) $m^+_t(G) = n+1$ if $m = 1, n \ge 2$
- (iii) $m_t^+(G) = min\{m,n\}+1$, if $m,n \ge 2$.

Proof: (i) and (ii) follows from Theorem 2.7. (iii) Let $m, n \ge 2$. Assume without loss of generality that $m \le n$. First assume that m < n. Let $X = \{x_1, x_2, \dots, x_m\}$ and ..., y_n be a bipartion of G. Let M = Y. We prove that M is a minimal total monophonic set of G. Any vertex y_i $(1 \le i \le n)$ lies on a monophonic path $y_i y_k$ for $k \ne 1$ so that M is a monophonic set of G. Let $M' \subseteq M$. Then there exists a vertex $y_i \in M$ such that $y_i \notin M'$. Then the vertex y_i $(1 \le j \le m)$ does not lie on a monophonic path joining a pair of vertices of M'. Thus M' is not an monophonic set of G. This shows that *M* is a minimal total monophonic set of *G*. Hence $m_t^+(G) \ge n$. Let M_1 be a minimal total monophonic set of G such that $|M_1| \ge n+1$. Since the vertex x_i $(1 \le i \le m$ and $1 \le j \le n)$ lies on a monophonic path $x_i x_k$ for any $k \neq i$, it follows that X is monophonic set of G. Hence M_1 cannot contain X. Similarly since Y is a minimal monophonic set of G, M1 cannot contain Y also. Hence $M_1 \subsetneq X' \cup Y'$ where $X' \subsetneq X$ and $Y' \subsetneq$ *Y*. Hence there exist a vertex $x_i \in X(1 \le i \le m)$ and a vertex $y_i \in Y(1 \le i \le n)$ such that $x_i y_i \notin M_1$. Hence the edge $x_i y_i$ does not lie on a monophonic path joining a pair of vertices of M_1 . It follows that M_1 is not a monophonic set of G, which is a contradiction. Thus M is a minimal total monophonic set of G. Hence $m_t^+(G) = \min\{m, n\} + 1.$

Volume : 52, Issue 3, March : 2023

3. Realization Results :

Theorem 3.1 : For positive integers *r*, *d* and $k \ge d + 2$ with $r \le d \le 2r$, there exists a connected graph *G* with rad G = r, diam G = d and $m_t^+(G) = k$.

Proof : If r = 1, then d = 1 or 2. For d = 1, let $G = K_k$. Then by theorem 2.9 $m_t^+(G) = k$. Now, let $r \ge 2$. We construct a graph *G* with the desired properties as follows:

Case 1. r = d. Let $C_{2r}: u_1, u_2, ..., u_{2r}, u_1$ be a cycle of order 2r. Let *G* be the graph obtained by adding the new vertices $v_1, v_2, ..., v_{k-r-2}$ and joining each $v_i(1 \le i \le k-r-2)$ with u_1 and u_2 of c_{2r} . The graph *G* is as shown in Figure 3.1

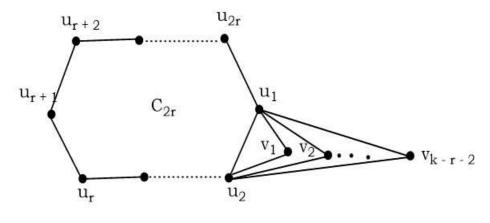


Figure 3.1 : G

It is easily verified that the eccentricity of each vertex of *G* is *r* so that rad $G = \text{diam } G = \text{dia$

If k > r + 2, then $M = \{v_1, v_2, ..., v_{k-r-2}\}$ is the set of all extreme vertices of *G*. It is clear that *M* is not a monophonic set of *G*. Let $M_1 = M \cup \{u_1, u_2, ..., u_r, u_{r+1}, u_{r+2}\}$. It is clear that M_1 is a minimum connected monophonic set of *G* ,also M_1 is also a minimal connected monophonic set of *G* so that $m^+(G) \ge |M_1| = k$.

It is clear that $M_1 = M \cup \{u_1, u_2, \dots, u_r, u_{r+1}, u_{r+2}\}$ is a upper total monophonic set of G so that, $m_t^+(G) = k$.

Case 2 : r< d.

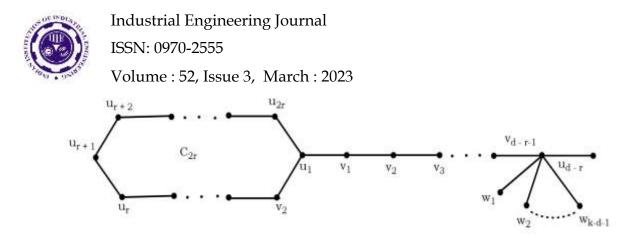


Figure 3.2 : G

Let $c_{2r} : u_1, u_2, ..., u_{2r}, u_1$ be a cycle of order 2r and let $P_{d-r+1} : v_0, v_1, ..., v_{d-r}$ be a path of order d-r+1. Let H be a graph obtained from c_{2r} and P_{d-r+1} by identifying u_1 in C_{2r} and v_0 in P_{d-r+1} . Now, we add k-d-1 new vertices $w_1, w_2, ..., w_{k-d-1}$ to the graph H and join each vertex w_i $(1 \le i \le k - d - 1)$ to the vertex v_{d-r-1} and also join u_r with u_{r+2} , to obtain the graph G in Figure 3.2. Then rad G = r and diam G = d.

Let $M' = \{v_0, v_1, ..., v_{d-r-1}, v_{d-r}, w_1, w_2, ..., w_{k-d-1}, u_{r+1}\}$. It is clear that M' is not a monophonic set of G. Let $M_1' = M' \cup \{u_2, u_3, ..., u_r\}$. It is clear that M_1' is a minimum connected monophonic set of G and so M_1' is also a minimal connected monophonic set of G. $m^+(G) = k$. It is clear that $M_1' = M'' \cup \{u_2, u_3, ..., u_r\}$ is a upper total monophonic set of G so that $m_t^+(G) = k$.

Theorem 3.2 : For any positive integers $2 \le a \le b < c$, there exists a connected graph G such that $m(G) = a, m^+(G) = b, m_t^+(G) = c$.

Proof : Take a copy of star $K_{1,a}$ with leaves x_1, x_2, \dots, x_a and the support vertex x. Subdivide the edge xx_i , where $1 \le i \le c - b - 1$, calling the new vertices $y_1, y_2, \dots, y_{c-b-1}$ where x_i is adjacent to y_i and y_i is adjacent to x for all $i \in \{1, 2, \dots, c-b-1\}$. Let G be the graph obtained by adding b - a new vertices w_1, w_2, \dots, w_{b-a} and joining each $w_i (1 \le i \le b - a)$ with x, x_1 . The graph G is shown in figure 3.3.

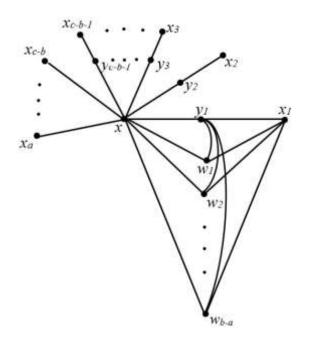


Figure 3.3 : G

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

Let first we show that m(G) = a. Let M be a monophonic set of G and let $W = \{x_2, x_3 \dots x_a\}$ be the set of all extreme vertices of G. It is clear that W is not a monophonic set of G. By theorem 1.1, every monophonic set of G contains W. Clearly $M = W \cup \{x_1\}$ is a monophonic set of G, so that m(G) = a.

Let $M_1 = M \cup \{w_1, w_2 \dots w_{b-a}\}$. Then M_1 is a minimal monophonic set of G. If M_1 is not a minimal monophonic set of G, then there is a proper subset T of M_1 such that T is a monophonic set of G. Then there exists $w \in M_1$ such that $w \notin T$. By theorem 1.1 $w \neq x_i$ ($1 \le i \le a$). Therefore $w = w_i$ for some $i(1 \le i \le b - a)$. Since $w_i w_j$ ($1 \le i, j \le b - a$), $i \ne j$ is a chord, w_i does not lie on a monophonic path joining some vertices of T and so T is not a monophonic set of G, which is a contradiction. Thus M_1 is a minimal monophonic set of G and so $m^+(G) = b$.

Let $M_2 = M_1 \cup \{y_1, y_2 \dots y_{c-b-1}, x\}$. It is clear that M_2 is a minimal total monophonic set of G, so that $m_t^+(G) = c$.

References

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] F. Buckley, F. Harary, and L. V. *Quintas*, Extremal Results on the Geodetic Number of a Graph, Scientia A2 (1988) 17-26.
- [3] G. Chartrand, F. Harary, and P. Zhang, On the Geodetic Number of a Graph, *Networks*. 39 (2002)
 1-6.
- [4] G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, *ArsCombinatoria* 72 (2004) 3-15.
- [5] F. Harary, *Graph Theory*, Addison- Wesley, 1969.
- [6] F. Harary, E. Loukakis, and C. Tsouros, The Geodetic Number of a Graph, *Math. Comput.Modeling* 17 (11) (1993) 87-95.
- [7] J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26:6 (2012), 1081 - 1089.
- [8] J. John, S. Panchali, The Upper Monophonic Number of a Graph, International J. Math, Combin. Vol. 4 (2010), 46-52.
- [9] A.P. Santhakumaran, Edge Geodetic Number of Graph, *Journal Discrete Mathematics and Cryptography* Vol.10 (2007), No. 3, pp. 415-432.
- [10] A.P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. *Appl. Math. & Informatics* Vol. 32 (2014), No. 1 2, pp. 255 266.