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ABSTRACT 

            A set M of vertices of a connected graph G is a monophonic set if every vertex of G lies on an x-

y monophonic path for some elements x and  y in M.  The minimum cardinality of a monophonic set of 

G is the monophonic number of G,and  is  denoted  by m(G). A monophonic set of cardinality m(G). is 

called a m-set of G. Any monophonic set of order m(G)is a minimum monophonic set of G.   A 

monophonic set M  in a connected graph G is called a minimal monophonic set if no proper subset of M 

is a monophonic set of G.  The total monophonic set M of a graph G is a monophonic set M such that 

the subgraph induced by M  has no isolated vertices, and is denoted by mt(G).  The upper total 

monophonic set of a graph G is a minimal total monophonic set M such that the subgraph induced by M 

has no isolated vertices. The upper total monophonic number is the maximum cardinality of a minimal 

total monophonic set of G, and is denoted by mt
+(G). The upper monophonic numbers of some connected 

graphs are realized.   It is proved that for any integers, a, b and c such that 2≤a≤b<c, there exists a 

connected graph G with m(G)=a ,mt(G)=b and mt
+(G)=c. 

Keywords: Monophonic set, monophonic number, total monophonic number, upper total monophonic 

number. 

 

1. Introduction 

 By a graph G = (V, E) we mean a simple graph of order at least two.  The order and size of G are 

denoted by p and q, respectively.  For basic graph theoretic terminology, we refer to Harary [5]. The 

neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v.  The 

closed neighborhood of a vertex v is the set N[v] = N(v) U{v }.  A vertex v is an extreme vertex if the 

sub graph induced by its neighbors is complete.  A vertex v is a semi-extreme vertex of G if the sub 

graph induced by its neighbors has a full degree vertex in N(v).  In particular, every extreme vertex is a 

semi - extreme vertex and a semi - extreme vertex need not be an extreme vertex.   

 For any two vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest 

x-y path in G.  An x-y path of length d(x, y) is called an x-y geodesic.  A vertex v is said to lie on an x-y 

geodesic P if v is a vertex of P including the vertices x and y. 
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 The closed interval I [x, y] consists of all vertices lying on some x-y geodesic of G, while for S  

V, I [S] =
s∈y,x

∪ I[x, y].  A set S of vertices is a geodetic set if I[S] = V, and the minimum cardinality of a 

geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic 

number of a graph was introduced in [1, 6] and further studied in [2, 3, 4, 5].  A set S of vertices of a 

graph G is an edge geodetic set if every edge of G lies on an x-y geodesic for some elements x and y in 

S.  The minimum cardinality of an edge geodetic set of G is the edge geodetic number of  G denoted by 

eg (G).  The edge geodetic number was introduced and studied in [8].     The total edge of geodetic set 

of a graph G is an edge geodetic set S such that the subgraph induced by S has no isolated vertices.  The 

minimum cardinality of a total edge geodetic set of G is the total edge geodetic number of G and is 

denoted by egt(G). 

 A chord of a path u1, u2, …, uk in G is an edge ui uj with  j  i + 2.  A u-v path P is called a 

monophonic path of it is a chordless path.  A set M of vertices is a monophonic set if every vertex of G 

lies on a monophonic path joining some pair of vertices in M, and the minimum cardinality of a 

monophonic set of G is the monophonic number of G, and is denoted by m(G).  A monophonic set of 

cardinality m(G) is called a m-set of G.  Any monophonic set of order m(G) is a minimum monophonic 

set of G.  A monophonic set M in a connected graph G is called a minimal monophonic set if no proper 

subset of M is a monophonic set of G. The monophonic number of a graph G was studied in [9]. A 

monophonic set M in a connected graph G is called a minimal monophonic set if no proper subset of M 

is a monophonic set of G. The upper monophonic number m+(G) of G is the maximum cardinality of a 

minimal set of G. The upper monophonic number of a graph G was studied in [10].  The total 

monophonic set M of a graph G is a monophonic set M such that the subgraph induced by M has no 

isolated vertices, and is denoted by mt(G).  The upper total monophonic set of a graph G is a minimal 

total monophonic set M such that the subgraph induced by M has no isolated vertices.  The upper total 

monophonic number is the maximum cardinality of a minimal total monophonic set of G, and is denoted 

by mt
+(G). 

          The following Theorems will be used in the sequel.  

Theorem 1.1 [9] : Each extreme vertex of a connected graph G belongs to every                               

monophonic set of G.  

Theorem 1.2 [10] : Let G be a connected graph with diameter d.  Then m(G) ≤ p-d+1. Throughout this 

paper G denotes a connected graph with atleast two vertices 

2.UPPER  TOTAL  MONOPHOIC   NUMBER OF A  GRAPH  

Definition 2.1: The total monoponic set M in a connected graph G is called a minimal total monophonic 

set of G if no proper subset of M is the total monophonic set of G. The upper total monophonic number 

mt
+(G) of G is the maximum cardinality of a minimal total monophonic set of G. 

Example 2.2: For the graph G given in Figure2.1, M1 = {v2,v4},  M2 = {v4,v6},                       M3 = {v2,v5}  

are the only three minimum monophonic sets of G , so that m(G)=3. The set M4 = {v1, v3, v5} and 

M5={v1,v3,v6}are minimalmonophonic sets of G. The set M6={v1, v3, v4, v5}, M7 = {v1,v2,v3,v6} are the 

minimal total monophonic sets of G, so that mt
+(G) ≥ 4. It is easily verified that no five elements of G is 

minimal total monophonic set of G and so mt
+(G) = 4. 
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Figure 2.1 : G 

Remark 2.3: Every minimum total monophonic set of G is a minimal total monophonic set of G and the 

converse is not true. For the graph G given in figure 2.1,                               M6 = {v1, v3, v4, v5} is a 

minimal total monophonic set of G but not a minimum total monophonic set of G.  

Theorem 2.4 : For any connected graph G, 2 ≤ m(G) ≤ m+
t(G) ≤ p.  

Proof : Any monophonic set needs atleast 2 vertices and so m(G) ≥2. Since every minimal total 

monophonic set is a monophonic set m(G) ≤ mt
+ (G).  Also since V(G) is a monophonic set of G,  it is 

clear that mt
+ (G) ≤  p.  Thus 2 ≤ m(G) ≤ mt

+(G) ≤ p. 

Theorem 2.5 : For the complete graph KP (p ≥ 2), mt
+(Kp) = m+(Kp) = p. 

Proof : Since every vertx of the complete graph Kp (p ≥ 2) is an extreme vertex, the vertex set of Kp is 

the unique monoponic set. Thus m+(Kp) = mt
+(Kp). 

  

Theorem 2.6 :  For a connected graph G of order p, the following are  equivalent: 

i. mt
+(G) = p 

ii. m(G)   = p 

iii. G  = Kp 

Proof : (i)=>(ii). Let m+
t(G) = p. Then M = V(G) is the unique minimal total monophonic set of G. Since 

no proper subset of M is a monophonic set, it is clear that M is the unique minimum total monopnic set 

of G and so m(G) = p.  

(ii)=>(iii). Let m(G) = p. If G ≠ Kp, then by theorem 1.3, m(G) ≤ p-1, which is a condradiction. Therfore 

G =Kp. (iii)  (i).  Let G = Kp. Then by Theorem 2.5,                    mt
+(G) =p. 

Theorem 2.6 : Let G be a connected graph with cut vertices and M  be a minimal monoponic set of G.  

If v is a cut vertex of G, Then every component of G-v contains an element of M. 

Proof :  Suppose that there is a component G1 of G-v such that G1 contains no vertex of M. By Theorem 

1.2, G1 does not contain any end vertex of G.  Thus G1 contains atleast one vertex, say u.  Since M is a 

minimal monophonic set , there exists vertices x, y   M such that u lies on the x-y monophonic path P : 

x = u0, u1, u2, . . . ,u, . . . , ut = y in G.  Let P1 be a x-u sub path of P and P2 be a u-y subpath of P.  Since 

v is a cut vertex of G, both P1 and P2 contain v so that P is not a path, which is a contradiction.  Thus 

every component of G-v contains an element of M.   

Theorem 2.7: For any connected graph G, no cut vertex of G belongs to any minimal total monophonic 

set of G.  
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Proof : Let M be a minimal total monophonic set of G and v  M be any vertex.                We claim that 

v is not a cut vertex of G. Suppose that v is a cut vertex of G.                          Let G1,G2, ..., Gr(r ≥ 2) be 

the components of G-v.  By theorem 2.6, each component Gi,(1 ≤ i ≤ r) contains an element of M. We 

claim that M1 =M - {v} is also a monophonic set of G.  Let x be a vertex of G.  Since M is a minimal 

monophonic set of G, x lies on a monophonic path P joining a pair of vertices u and v of M. Assume 

without loss of generality that u  G1.  Since v is adjacent to atleast one vertex of each Gi(1 ≤ i ≤ r), 

assume that v is adjacent to z in Gk,  k ≠ 1.  Since M is a monophonic set,          z lies on a monophonic 

path Q joining v and a vertex w of M such that w must necessarily belongs to Gk.  Thus w ≠ v.  Now, 

since v is a cut vertex of G, P  Q is a path joining u and w in M and thus the vertex x lies on this 

monophonic path joining two vertices of M1.  Hence it follows that M1 is a monophonic set of G.  Since 

M1⊊ M, this contradicts the fact that M is a minimal total monophonic set of G. Hence                 v M 

so that no cut vertex of G belongs to any minimal total monophonic set of G. 

Theorem 2.8 : For any Tree T with k end vertices, mt
+(T) = m+(T) = m(T) = k. 

Proof: By Theorem 1.1, any monophonic set contains all the end vertices of T. By Theorem 2.7, no cut 

vertices of T belongs to a minimal total monophonic set of G.  Hence it follows that, the set of all end 

vertices of T is the unique minimal total monophoni set of T so that m+ (T) = m+
t(T) = m(T) = k. 

Theorem 2.9:  For a cycle G = Cp (p≥4), m+
t(G)  = 3. 

Proof : First suppose that G = C3. It is a complete graph, by Theorem 2.5, we have               m+
t(G) = 3.  

For any cycle suppose that m+
t(G) > 3, then there exist a minimal total monophonic set M1 such that | 

M1| ≥3.  Now it is clear that monophonic set M ⊊ M1, which is a contradiction to M1 is a minimal total 

monophonic set of G. Therfore                m+
t(G) = 3.  

Theorem 2.9:  For the complete bipartite graph G = Km,n. 

(i) mt
+(G) =2 if  m = n = 1 

(ii) m+
t(G) =  n+1 if m = 1, n ≥2 

(iii) mt
+(G) = min{m,n}+1, if m,n ≥2. 

Proof: (i) and (ii) follows from Theorem 2.7.  (iii) Let m,n ≥ 2.  Assume without                          loss of 

generality that m≤ n.  First assume that m < n.  Let X = {x1, x2,…, xm} and                         Y = {y1, y2, 

..,yn} be a bipartion of G.  Let M = Y.  We prove that M is a minimal total monophonic set of G.  Any 

vertex yi (1≤ i≤ n) lies on a monophonic path yiyk for k ≠ 1 so that M is a monophonic set of G.  Let 

M′′⊊M .  Then there exists a vertex yj ∊ M such that yj ∉ M′′.  Then the vertex yj (1≤ j ≤m) does not lie on 

a monophonic path joining a pair of vertices of M′.  Thus M′ is not an monophonic set of G.  This shows 

that M is a minimal total monophonic set of G.  Hence mt
+(G) ≥ n. Let M1 be a minimal total monophonic 

set of G such that ∣M1∣ ≥ n+1.  Since the vertex xi (1≤i ≤m and 1≤ j ≤n) lies on a monophonic path xixk 

for any k ≠ i, it follows that X is monophonic set of G.  Hence M1 cannot contain X.  Similarly since Y 

is a minimal monophonic set of G, M1 cannot contain Y also.  Hence M1⊊ X' Y′ where X ̍̍ ̍ ⊊X and Y′ ⊊ 

Y.  Hence there exist a vertex xi ∊ X(1≤ i≤ m) and a vertex yj∊Y (1≤i≤n) such that xiyj ∉ M1.  Hence the 

edge xiyj does not lie on a monophonic path joining a pair of vertices of M1.  It follows that M1 is not a 

monophonic set of G, which is a contradiction.  Thus M is a minimal total monophonic set of G. Hence 

mt
+(G) = min{m, n}+1. 
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3. Realization Results : 

Theorem 3.1 : For positive integers r, d and k  d + 2 with r  d  2r, there exists a connected graph G 

with rad G = r, diam G = d and 𝑚𝑡
+ (G) = k. 

Proof : If r = 1, then d = 1 or 2.  For d = 1, let G = Kk.  Then by theorem 2.9                  𝑚𝑡
+(G) = k.  

Now, let r  2.  We construct a graph G with the desired properties as follows: 

Case 1. r = d.  Let C2r : u1, u2, … u2r,  u1 be a cycle of order 2r.  Let G be the graph obtained by adding 

the new vertices v1, v2, …, vk-r-2 and joining each vi(1 i  k–r–2) with u1 and u2 of c2r.  The graph G is 

as shown in Figure 3.1 

 

 

Figure 3.1 : G 

 

 It is easily verified that the eccentricity of each vertex of G is r so that rad             G = diam G = 

r.  If k = r + 2, then G = c2r and so by Theorem 2.7, 𝑚𝑡
+ (G) = r + 2 = k.   

 If k > r + 2, then M = {v1, v2, …, vk-r-2} is the set of all extreme vertices of G.  It is clear that M 

is not a monophonic set of G.  Let M1 = M ∪ {u1, u2, …, ur, ur+1, ur+2).  It is clear that M1 is a minimum 

connected monophonic set of G ,also M1 is also a minimal connected monophonic set of G so that 

m+(G) |M1| = k.  

 It is clear that M1 = M ∪ {u1, u2, …, ur, ur+1, ur+2) is a upper total monophonic set of G so that, 

𝑚𝑡
+ (G) = k. 

Case 2 : r< d. 
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Figure 3.2 : G 

Let c2r : u1, u2, …, u2r, u1 be a cycle of order 2r and let Pd-r+1 : v0, v1, …, vd-r be a path of order d-r+1.  

Let H be a graph obtained from c2r and Pd-r+1 by identifying u1 in C2r and v0 in Pd-r+1.  Now, we add  k-

d-1 new vertices w1, w2, …, wk-d-1 to the graph H and join each vertex wi (1  i  k – d – 1) to the vertex 

vd-r-1 and also join ur with ur+2 ,to obtain the graph G in Figure 3.2.  Then rad G = r and diam G = d.  

 Let M' = {v0, v1, …, vd-r-1, vd-r, w1, w2,…,wk-d-1, ur+1}.  It is clear that M′ is not a monophonic set 

of G. Let M1′ =M′ ∪{u2, u3, …, ur}.  It is clear that M1′ is a minimum connected monophonic set of G 

and so 𝑀1
′  is also a minimal connected monophonic set of G.  m+(G) = k.  It is clear that 𝑀1

′  = M′ ̍′ ∪{u2, 

u3, …, ur} is a upper total monophonic set of G so that 𝑚𝑡
+(G) = k. 

Theorem 3.2 : For any positive integers 2  a  b < c, there exists a connected graph          G such that 

m(G) = a, m+(G) = b, 𝑚𝑡
+(G) = c. 

Proof : Take a copy of star K1,a with leaves x1, x2, ….. xa and the support vertex x.  Subdivide the edge 

xxi, where 1  i  c – b – 1, calling the new vertices y1, y2, …, yc-b-1 where xi is adjacent to yi and yi is 

adjacent to x for all i  {1, 2,…c-b- 1}. Let G be the graph obtained by adding b - a new vertices w1, w2, 

… wb-a and joining each                          wi (1  i  b – a) with x, x1. The graph G is shown in figure 3.3.  

 

Figure 3.3 : G 
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Let first we show that m(G) = a.  Let M be a monophonic set of G and let                   W = {x2, x3 … xa} 

be the set of all extreme vertices of G.  It is clear that W is                   not a monophonic set of G.  By 

theorem 1.1, every monophonic set of G contains W. Clearly M = W U {x1} is a monophonic set of G, 

so that m(G) = a.  

 Let M1 = M U {w1, w2 … wb-a}.  Then M1 is a minimal monophonic set of G.  If M1 is not a 

minimal monophonic set of G, then there is a proper subset T of M1 such that T is a monophonic set of 

G.  Then there exists w  M1 such that w  T. By theorem 1.1 w  xi (1 i a).  Therefore w = wi for 

some i(1  i  b - a). Since wiwj (1  i, j  b – a), i  j is a chord, wi does not lie on a monophonic path 

joining some vertices of T and so T is not a monophonic set of G, which is a contradiction. Thus M1 is a 

minimal monophonic set of G and so m+(G) = b. 

 Let M2 = M1 U {y1, y2 …. yc-b-1, x}. It is clear that M2 is a minimal total monophonic set of G, so 

that 𝑚𝑡
+(G) = c.   
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