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ABSTRACT

A set M of vertices of a connected graph G is a monophonic set if every vertex of G lies on an x-
y monophonic path for some elements x and y in M. The minimum cardinality of a monophonic set of
G is the monophonic number of G,and is denoted by m(G). A monophonic set of cardinality m(G). is
called a m-set of G. Any monophonic set of order m(G)is a minimum monophonic set of G. A
monophonic set M in a connected graph G is called a minimal monophonic set if no proper subset of M
is @ monophonic set of G. The total monophonic set M of a graph G is a monophonic set M such that
the subgraph induced by M has no isolated vertices, and is denoted by mi(G). The upper total
monophonic set of a graph G is a minimal total monophonic set M such that the subgraph induced by M
has no isolated vertices. The upper total monophonic number is the maximum cardinality of a minimal
total monophonic set of G, and is denoted by m¢"(G). The upper monophonic numbers of some connected
graphs are realized. It is proved that for any integers, a, b and ¢ such that 2<a<b<c, there exists a
connected graph G with m(G)=a ,m«(G)=b and m:*(G)=c.
Keywords: Monophonic set, monophonic number, total monophonic number, upper total monophonic

number.

1. Introduction

By a graph G = (V, E) we mean a simple graph of order at least two. The order and size of G are
denoted by p and q, respectively. For basic graph theoretic terminology, we refer to Harary [5]. The
neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. The
closed neighborhood of a vertex v is the set N[v] = N(v) U{v }. A vertex v is an extreme vertex if the
sub graph induced by its neighbors is complete. A vertex v is a semi-extreme vertex of G if the sub
graph induced by its neighbors has a full degree vertex in N(v). In particular, every extreme vertex is a
semi - extreme vertex and a semi - extreme vertex need not be an extreme vertex.

For any two vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest
x-y path in G. An x-y path of length d(x, y) is called an x-y geodesic. A vertex v is said to lie on an x-y
geodesic P if v is a vertex of P including the vertices x and y.
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The closed interval | [x, y] consists of all vertices lying on some x-y geodesic of G, while for S ¢
V, 1[S]= u I[x,y]. AsetS of vertices is a geodetic set if I[S] =V, and the minimum cardinality of a
X,YES

geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic
number of a graph was introduced in [1, 6] and further studied in [2, 3, 4, 5]. A set S of vertices of a
graph G is an edge geodetic set if every edge of G lies on an x-y geodesic for some elements x and y in
S. The minimum cardinality of an edge geodetic set of G is the edge geodetic number of G denoted by
eg (G). The edge geodetic number was introduced and studied in [8].  The total edge of geodetic set
of a graph G is an edge geodetic set S such that the subgraph induced by S has no isolated vertices. The
minimum cardinality of a total edge geodetic set of G is the total edge geodetic number of G and is
denoted by eg:(G).

A chord of a path ug, uy, ..., uk in G is an edge ui uj with j > 1+ 2. A u-v path P is called a
monophonic path of it is a chordless path. A set M of vertices is a monophonic set if every vertex of G
lies on a monophonic path joining some pair of vertices in M, and the minimum cardinality of a
monophonic set of G is the monophonic number of G, and is denoted by m(G). A monophonic set of
cardinality m(G) is called a m-set of G. Any monophonic set of order m(G) is a minimum monophonic
set of G. A monophonic set M in a connected graph G is called a minimal monophonic set if no proper
subset of M is a monophonic set of G. The monophonic number of a graph G was studied in [9]. A
monophonic set M in a connected graph G is called a minimal monophonic set if no proper subset of M
is a monophonic set of G. The upper monophonic number m*(G) of G is the maximum cardinality of a
minimal set of G. The upper monophonic number of a graph G was studied in [10]. The total
monophonic set M of a graph G is a monophonic set M such that the subgraph induced by M has no
isolated vertices, and is denoted by m¢(G). The upper total monophonic set of a graph G is a minimal
total monophonic set M such that the subgraph induced by M has no isolated vertices. The upper total
monophonic number is the maximum cardinality of a minimal total monophonic set of G, and is denoted
by m:*(G).

The following Theorems will be used in the sequel.

Theorem 1.1 [9] : Each extreme vertex of a connected graph G belongs to every
monophonic set of G.

Theorem 1.2 [10] : Let G be a connected graph with diameter d. Then m(G) < p-d+1. Throughout this
paper G denotes a connected graph with atleast two vertices

2.UPPER TOTAL MONOPHOIC NUMBER OF A GRAPH

Definition 2.1: The total monoponic set M in a connected graph G is called a minimal total monophonic
set of G if no proper subset of M is the total monophonic set of G. The upper total monophonic number
m¢*(G) of G is the maximum cardinality of a minimal total monophonic set of G.

Example 2.2: For the graph G given in Figure2.1, M1 = {v2,va}, M2={va,ve}, Mz = {v2,vs}
are the only three minimum monophonic sets of G , so that m(G)=3. The set M4 = {v1, v3, vs} and
Ms={v1,v3,ve }are minimalmonophonic sets of G. The set Me={V1, V3, V4, Vs}, M7 = {v1,v2,v3,v6} are the
minimal total monophonic sets of G, so that m"(G) > 4. It is easily verified that no five elements of G is
minimal total monophonic set of G and so m*(G) = 4.
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Figure2.1: G

Remark 2.3: Every minimum total monophonic set of G is a minimal total monophonic set of G and the
converse is not true. For the graph G given in figure 2.1, Me = {V1, V3, V4, V5} IS a
minimal total monophonic set of G but not a minimum total monophonic set of G.

Theorem 2.4 : For any connected graph G, 2 <m(G) <m™(G) <p.

Proof : Any monophonic set needs atleast 2 vertices and so m(G) >2. Since every minimal total
monophonic set is a monophonic set m(G) < m" (G). Also since V(G) is a monophonic set of G, it is
clear that mi* (G) < p. Thus 2 <m(G) <m¢"(G) <p.

Theorem 2.5 : For the complete graph Kp (p > 2), m¢"(Kp) = m*(Kp) = p.

Proof : Since every vertx of the complete graph Kp (p > 2) is an extreme vertex, the vertex set of Kp is
the unique monoponic set. Thus m*(Kp) = m:"(Kp).

Theorem 2.6 : For a connected graph G of order p, the following are equivalent:

. m’(G)=p
ii. mG) =p
iii. G =Kp

Proof : (i)=>(ii). Let m*y(G) = p. Then M = V(G) is the unique minimal total monophonic set of G. Since
no proper subset of M is a monophonic set, it is clear that M is the uniqgue minimum total monopnic set
of G and so m(G) = p.

(in)=>(iii). Let m(G) = p. If G # Kp, then by theorem 1.3, m(G) < p-1, which is a condradiction. Therfore
G =K. (iii) = (i). Let G = Kp. Then by Theorem 2.5, m¢*(G) =p.

Theorem 2.6 : Let G be a connected graph with cut vertices and M be a minimal monoponic set of G.
If v is a cut vertex of G, Then every component of G-v contains an element of M.

Proof : Suppose that there is a component G of G-v such that G; contains no vertex of M. By Theorem
1.2, G1 does not contain any end vertex of G. Thus Gz contains atleast one vertex, say u. Since M is a
minimal monophonic set , there exists vertices X, y € M such that u lies on the x-y monophonic path P :
X =Uo, Us, U2, ...,U,...,U=Yyin G. Let P1 be ax-u sub path of P and P2 be a u-y subpath of P. Since
v is a cut vertex of G, both P1 and P> contain v so that P is not a path, which is a contradiction. Thus
every component of G-v contains an element of M.

Theorem 2.7: For any connected graph G, no cut vertex of G belongs to any minimal total monophonic
set of G.

UGC CARE Group-1 687



Industrial Engineering Journal
ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

Proof : Let M be a minimal total monophonic set of G and v € M be any vertex. We claim that
v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let G1,Gy, ..., Gr(r >2) be
the components of G-v. By theorem 2.6, each component Gi,(1 <i <) contains an element of M. We
claim that M1 =M - {v} is also a monophonic set of G. Let x be a vertex of G. Since M is a minimal
monophonic set of G, x lies on a monophonic path P joining a pair of vertices u and v of M. Assume
without loss of generality that u € Gi1. Since v is adjacent to atleast one vertex of each Gi(1 <i <),
assume that v is adjacent to z in Gk, k# 1. Since M is a monophonic set, z lies on a monophonic
path Q joining v and a vertex w of M such that w must necessarily belongs to Gk. Thus w #v. Now,
since v is a cut vertex of G, P U Q is a path joining u and w in M and thus the vertex x lies on this
monophonic path joining two vertices of M:. Hence it follows that M is a monophonic set of G. Since
M1& M, this contradicts the fact that M is a minimal total monophonic set of G. Hence ve M
so that no cut vertex of G belongs to any minimal total monophonic set of G.

Theorem 2.8 : For any Tree T with k end vertices, m"(T) = m*(T) = m(T) = k.

Proof: By Theorem 1.1, any monophonic set contains all the end vertices of T. By Theorem 2.7, no cut
vertices of T belongs to a minimal total monophonic set of G. Hence it follows that, the set of all end
vertices of T is the unique minimal total monophoni set of T so that m* (T) = m*(T) = m(T) = k.

Theorem 2.9: For a cycle G = Cp (p>4), m"(G) = 3.

Proof : First suppose that G = Cas. It is a complete graph, by Theorem 2.5, we have m*(G) = 3.
For any cycle suppose that m*(G) > 3, then there exist a minimal total monophonic set Mz such that |
Mi| >3. Now it is clear that monophonic set M & My, which is a contradiction to Mz is a minimal total
monophonic set of G. Therfore m*(G) = 3.

Theorem 2.9: For the complete bipartite graph G = Kmp.
(i) mf(G)=2if m=n=1
i)y mYG)=n+lifm=1,n>2
(i)  m(G) = min{m,n}+1, if m,n >2.

Proof: (i) and (ii) follows from Theorem 2.7. (iii) Let m,n > 2. Assume without loss of
generality that m<n. First assume that m <n. Let X = {Xa, X2,..., Xm} and Y = {y1, ¥z,
.,yn} be a bipartion of G. Let M =Y. We prove that M is a minimal total monophonic set of G. Any
vertex yi (1< i< n) lies on a monophonic path yiyk for k # 1 so that M is a monophonic set of G. Let
M'GM- Then there exists a vertex y; € M such that y; € M" Then the vertex y; (1< j <m) does not lie on
a monophonic path joining a pair of vertices of M’. Thus M’ is not an monophonic set of G. This shows
that M is a minimal total monophonic set of G. Hence m¢"(G) > n. Let M1 be a minimal total monophonic
set of G such that IMz1] > n+1. Since the vertex xi (1<i <m and 1<} <n) lies on a monophonic path Xixx
for any k # 1, it follows that X is monophonic set of G. Hence M1 cannot contain X. Similarly since Y
is a minimal monophonic set of G, M1 cannot contain Y also. Hence MiE X' Y where X'€X and Y' &€
Y. Hence there exist a vertex x; € X(1< i< m) and a vertex yjeY (1<i<n) such that xjy; € M1. Hence the
edge xiyj does not lie on a monophonic path joining a pair of vertices of Mi. It follows that My is not a
monophonic set of G, which is a contradiction. Thus M is a minimal total monophonic set of G. Hence
mt"(G) = min{m, n}+1.
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3. Realization Results :

Theorem 3.1 : For positive integers r, d and k >d + 2 with r <d <2r, there exists a connected graph G
with rad G =r, diam G = d and m{ (G) =k.

Proof : Ifr=1,thend=1o0r2. Ford =1, let G = Kx. Then by theorem 2.9 m; (G) = k.
Now, let r >2. We construct a graph G with the desired properties as follows:

Case 1.r =d. Let Cor:ug, Uz, ... U2r, U be acycle of order 2r. Let G be the graph obtained by adding
the new vertices vi, Vo, ..., vkr2 and joining each vi(1<'i <k-r—2) with u; and uz of car. The graph G is
as shown in Figure 3.1

ur +92 u2r
Llr + 1—11
C?r
Vk-r-2
u, U,
Figure3.1: G
It is easily verified that the eccentricity of each vertex of G is r so that rad G =diam G =

r. Ifk=r+2,then G = cor and so by Theorem 2.7, m} (G) =r +2=k.

Ifk>r+ 2, then M ={vy, v, ..., wr2} is the set of all extreme vertices of G. It is clear that M
is not a monophonic set of G. Let M1 =M U {uy, Uy, ..., ur, Ur+1, Ur+2). It is clear that My is a minimum
connected monophonic set of G ,also My is also a minimal connected monophonic set of G so that
m*(G)>|Mz| = k.

It is clear that M1 = M U {us, Uz, ..., ur, Ur+1, Ur+2) IS @ upper total monophonic set of G so that,
+ —
m{ (G) = k.

Case 2 : r<d.
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Figure 3.2 : G

Let Cor : U1, U, ..., uor, U1 be a cycle of order 2r and let Pg.r+1 : Vo, V1, ..., vdr be a path of order d-r+1.
Let H be a graph obtained from czr and Pg.r+1 by identifying uz in Corand vo in Pg.r+1. Now, we add k-
d-1 new vertices wi, Wo, ..., wkg-1 to the graph H and join each vertex wi (1 <i <k —d — 1) to the vertex
Vd-r-1 and also join ur with ur+2 ,to obtain the graph G in Figure 3.2. Thenrad G =r and diam G =d.

Let M = {Vo, V1, ..., Vd-r-1, Vd-r, W1, W, ..., Wkd-1, Ur+1}. It is clear that M’ is not a monophonic set
of G. Let M;'=M"U{uz, us, ..., ur}. Itis clear that M1’ is a minimum connected monophonic set of G
and so M, is also a minimal connected monophonic set of G. m*(G) = k. Itis clear that M; = M" U{uy,
Us, ..., ur} is a upper total monophonic set of G so that m{ (G) = k.

Theorem 3.2 : For any positive integers 2 < a < b < c, there exists a connected graph G such that
m(G) =a, m*(G) =b, m}(G) =c.

Proof : Take a copy of star Ki,a with leaves xi, X, ..... Xa and the support vertex x. Subdivide the edge
Xxi, where 1 <i <c¢ —b -1, calling the new vertices yi, Y, ..., Ycb-1 Where X; is adjacent to yiand yi is
adjacentto x forall i € {1, 2,...c-b- 1}. Let G be the graph obtained by adding b - a new vertices w1, w,
... Wp-a @and joining each wi (1 <i<b-a)with x, x1. The graph G is shown in figure 3.3.

Figure3.3: G
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Let first we show that m(G) = a. Let M be a monophonic set of G and let W={Xx2, X3 ... Xa}
be the set of all extreme vertices of G. It is clear that W is not a monophonic set of G. By
theorem 1.1, every monophonic set of G contains W. Clearly M = W U {x1} is a monophonic set of G,
so that m(G) = a.

Let M1 = M U {w1, W2 ... Wha}. Then Mz is a minimal monophonic set of G. If Mz is not a
minimal monophonic set of G, then there is a proper subset T of My such that T is a monophonic set of
G. Then there exists w € Mz such that w ¢ T. By theorem 1.1 w = xi (1<'i<’a). Therefore w = w; for
some i(1 <i <b - a). Since wiw;j (1 <i, j <b —a), i #] is a chord, wjdoes not lie on a monophonic path
joining some vertices of T and so T is not a monophonic set of G, which is a contradiction. Thus My is a
minimal monophonic set of G and so m*(G) = b.

Let M2 =M1 U {y1, ¥2 .... Yeb-1, X}. It is clear that M2 is a minimal total monophonic set of G, so
that mf (G) =c.
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