
 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 3,  March : 2023 
 

UGC CARE Group-1                                                                                                                       607 

IOT AND ITS SIMULATION TECHNIQUES 
 

Satyaprakash Swain, Prangyaseni Pradhan Assistant Professor, 'Computer Science Department, 

IMIT, Cuttack, India 

Abstract:  

This paper presents important ideas and issues related with the Internet of Things (IoT) and its 

Simulation Techniques. The heterogeneity of possible scenarios, arising from the massive deployment 

of an enormous number of sensors and devices, imposes the use of sophisticated modeling and 

simulation techniques. In fact, the simulation of IoT introduces several issues from both quantitative 

and qualitative aspects. We discuss novel simulation techniques to enhance scalability and to permit 

the real-time execution of massively populated IoT environments (e.g., large- scale smart cities). In 

particular, we claim that agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches 

are needed, together with multi-level simulation, which provide means to perform highly detailed 

simulations, on demand. We present a use case concerned with the simulation of smart territories. 

IndexTerms - Internet of Things, Terminal, Simulation, Wireless, Parallel and Distributed 

Simulation, Smart Cities 

I. INTRODUCTION 

An unexpected number of connected devices will soon be added to the Internet. A multitude 

of sensors and mobile user's terminals are designed to interact in order to offer novel services in smart 

cities and territories in general. These devices, in the so- called Internet of Things (IoT), have very 

specific characteristics both in terms of hardware (in many cases, these devices are equipped with a 

very little amount of memory and computational power), software (specific OSes) and management 

(little or no administration utilities, few system updates). Being able to understand and to simulate the 

IoT will soon become essential. The complex networks obtained by the interaction of IoT devices are 

hard to design and to manage. In real deployment scenarios, many possible configurations of IoT 

networks are possible. Device's connectivity is influenced by their geographical location, 

communication and network capabilities, device distribution. 

The designing of a general IoT environment to build effective and smart services can be quite 

difficult, due to the heterogeneous possible scenarios. Thus, IoT simulation is necessary for both 

quantitative and qualitative aspects. To name a few issues: capacity planning, what-if simulation and 

analysis, proactive management and support for many specific security-related evaluations. The scale 

of the IoT is the main problem in the usage of existing simulation tools. Traditional approaches (that 

are single CPU-based) are often unable to scale to the number of nodes (and level of detail) required 

by the IoT. 

The main goal of this paper is to introduce the main aspects of the simulation of IoT, discussing 

a new combination of techniques to enhance scalability and to permit the real-time execution of 

massively populated IoT environments (e.g., large-scale smart cities). For example: parallel and 

distributed simulation, adaptive computational and communication load- balancing, self- clustering, 

multi-level modeling and simulation. 

To demonstrate the validity of the proposed approach, an application scenario of "smart shires" 

is analyzed [18], [19]. This is a novel view of devising smart, cheap and sustainable services in 

decentralized geographical spaces, without the need of costly (communication) infrastructures. Such 
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services would make good use of a deployment of cheap sensors in these areas, together with ad-hoc 

configurations of mobile devices. We show that the design and configuration of smart services in 

(decentralized) territories impose the simulation of wide area networks; however, in certain cases a 

highly detailed simulation is required. This need for scalability and high level of detail can be reached 

only through properly configured multi-level simulation techniques. An advantage of this approach is 

that the detailed (and thus, more costly) simulation can be performed only when needed, in a limited 

simulated area, only for the needed time interval of the simulation. 

This paper is containing the following sections. Section II describes the background and 

literature review about IoT/Smart- Territories and the Simulation Techniques. In Section III the state 

of the art related to IoT simulation is discussed. The proposed approach, based on adaptive 

parallel/distributed simulation and multi- level simulation, is introduced in Section IV. In Section V, 

provides some concluding remarks. 

 

II. BACKGROUND 

A. Internet of Things and Smart Territories 

As already mentioned, there is an important trend towards the design of novel services, built 

by interconnecting various heterogeneous devices deployed in geographical areas [43]. Data sensed 

by the sensor's devices can be disseminated and collected by some information processing system, 

treated as open data and managed through a context-aware data distribution service, to be used by 

applications [6]. 

Sensors are relatively cheap in terms of costs. Thus, their massive deployment is feasible both 

in populated centres and in more decentralized areas [18]. Such sensors can be interconnected to form 

a sensor network. In turn, such information gathered through this network can be passed to services 

placed within cloud (or fog) computing architectures. These smart services can integrate such data 

with crowd-sensed and crowd sourced data coming from mobile terminals. The approach of exploiting 

any kind of information coming from the cloud of things available in the territory is now referred as 

Sensing as a Service (SaaS) model [30], [35],[41]. 

The complexity of the possible scenarios coming from this picture suggests that effective 

simulation tools are needed. These simulation tools must take into consideration issues concerned with 

complex networks, aspects typical of pervasive computing, low-level details concerned with wireless 

communications. In the next sections, we will discuss on existing methods and viable strategies to 

ensure scalability of the simulation, without introducing oversimplifications and inaccuracies, due to 

the lack of the level of detail. 

 

B. DISCRETE EVENT SIMULATION 

In a computer simulation, a process models the behavior of some other system over time [21]. 

In some cases, the simulated system is real but more often it has yet to be designed or implemented. 

In practice, simulation is about methodologies and techniques that are needed for the performance 

evaluation of complex systems. 

The motivations behind the use of simulation are many. To name a few: cost reasons, testing 

on the real system is too dangerous, many different solutions must to be evaluated to support the system 
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design (i.e. dimensioning and tuning). Due to the increasing complexity in the systems to be built, 

simulation is used more and more often. 

Discrete Event Simulation (DES) [34] is one of the many simulation paradigms that have been 

proposed. With respect to other approaches, it is has good expressiveness and it is quite easy to use. A 

DES is represented by a simulated model (that is implemented using a set of state variables) and its 

evolution (that is represented by a sequence of events processed in chronological order). Each event 

occurs at a given instant in time and represents a change in the simulated model state. This means that 

the whole evolution of the simulated system is obtained through the execution of an ordered sequence 

of events that are: created, stored and processed. For example, the events in the simulation of Vehicular 

Ad Hoc Networks are the updates of the cars positions and the transmission of data packets. At the 

basics, a DES is a set of state variables (i.e. describing the modeled system), an event list (i.e. the 

pending events that will be processed for evolving the simulated state) and global clock (i.e. the 

simulation time) [34]. Each event is tagged by a timestamp that specifies the simulated time at which 

it has to be processed. 

In a sequential (i.e. monolithic) simulation, a single Physical Execution Unit (PEU), for 

example a CPU core, is in charge of creating new events, updating the pending event list and 

processing the events in timestamp order. In other words, a single CPU core manages the whole 

simulated model and its evolution. This approach is simple and easy to implement but it has some 

drawbacks. Among others, the simulation scalability both in terms of execution time (to complete the 

simulations runs) and size of the system that can be represented [15]. 

 

C. PARALLEL DES AND PADS 

As an alternative, the tasks described above can be parallelized using a set of interconnected 

PEUS (e.g. CPU cores, CPUs or hosts). This approach is called Parallel Discrete Event Simulation 

(PDES) [22]. In this case, very large and complex models can be represented and executed since each 

PEU is only in charge of a part of the simulation model. That is, each PEU manages a local pending 

events list and some events are delivered by means of messages to remote PEUS. In addition, the PEUS 

must run a synchronization algorithm to guarantee the correct simulation execution. In many cases, a 

PDES approach can speed up the simulation execution, at the cost of a more complex implementation 

and setup of the simulator. 

A Parallel and Distributed Simulation (PADS) is a simulation that is run on more than one 

processor [42]. There many good reasons to rely on this approach, among them: execution speed, 

model scalability, and interoperability and composability purposes (e.g. to integrate different off-the-

shelf simulators and to compose many already existing simulation models in a new simulator) [21]. 

With respect to a monolithic simulation, a PADS lacks of a global model state. That is, a single 

representation of the simulated model is missing. In fact, each PEU in the PADS manages only a part 

of the simulated model. Following the PADS terminology, the model components executed on top of 

each PEU are called Logical Processes (LPS) [12]. As shown in Figure 1, a PADS is obtained through 

the interaction among LPs, each one of which, deals with the evolution of a part of the simulated model 

and interacts with the other LPs (for synchronization and data distribution)[21]. 

The performance of the network that interconnects the LPs has a strong effect on the PADS 

design and the simulator execution speed. When the LPs are run on PEUS interconnected by a shared 

memory, then it is called parallel simulation. Conversely, loosely coupled LPs are referred as 

distributed simulation. More often, the execution architecture used to run PADS are a mix of parallel 

and distributed PEUS [14]. 
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In short, the main issues in PADS are: 

 The simulated model is partitioned in a set of LPs [50]. The partitioning is a complex task given 

that it must be done considering both the minimization of the network communication (among 

LPs) and the load balancing in the parallel/distributed execution architecture; the results 

obtained by the PADS are correct only if they are exactly the same given by these quintal 

simulator. This can happen only if there is a synchronization algorithm that properly 

coordinates the LPs evolution; 

 

 

 

 

 

 

 

 

 

Figure.1. Parallel and Distributed Simulation: model partitioning. 

 Each LP generates updates (events) that are possibly relevant for parts of the simulated model 

in other LPs. For performance reasons, broadcasting all events is not feasible. Data distribution 

is about the efficient delivery of state updates and it is often based on a publish- subscribe 

approach [27]. 

Implementing a PDES using PADS is obtained encapsulating the events in messages for their inter-

LP delivery. As defined by Lamport: "two events are in causal order if one of them can have some 

consequences on the other" [33]. Clearly, to get a correct simulation execution, the causal order of 

events must not being violated. This is easy in a monolithic simulation but it is complex in parallel 

and distributed architectures due to the different execution speeds of each PEU and the network 

delays. In a PADS, to guarantee that all events are executed in non-decreasing time stamp order, 

the LPs have to run a synchronization algorithm. The synchronization can be handled in many 

ways but the main approaches are the following: .  

 Time stepped: the simulated time is divided in time steps of fixed-size. The simulation model 

is updated at every time step and the lower bound to the flight time for interactions between 

the model components is the size of the time step. When a LP completes the tasks for the 

current time step, it broadcasts to all the other LPs an End-Of-Step (EOS) message and then 

waits the EOS messages from all other LPs before proceeding to the next time step[47];  

 Conservative: in this approach the causality errors are prevented. That is, before processing 

each event, it is checked if the event is "safe" or not (with respect to the causality constraint). 

If the event is tagged as safe by the synchronization algorithm then it can be processed. 
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Otherwise, the LP must stop processing while waiting for more events (or better algorithm is 

the Chandy-Misra-Briant[40]; information about the safety of events). This safety check can 

be implemented in many different ways, a widely used is 

 Optimistic: in this case the events are processed by the LPs in receiving order. This means 

that, very likely, the causality order will be violated. In fact, when a violation is found by the 

synchronization algorithm, the LP that has found it implements a roll-back to the (most recent) 

previous state that is correct. Furthermore, it propagates the roll-back to all the other LPs that 

have been affected by the violation [26]. In this way, the whole PADS go back to the most 

recent globally correct simulation state and it starts again processing the events. 

D. ADAPTIVE PADS 

As described before, in PADS the partitioning of the simulated model is a complex task. In [14], we 

have proposed an approach in which the simulated model is represented by a multi-agent system. The 

simulated model is partitioned in small model components (also said Simulated Entities, SES) and the 

model evolution is obtained through the exchange of interactions among SES. In this way, the LPs are 

containers of SES and it is possible to move (migrate) a SE from a LP to another. This permits to avoid 

the static partitioning of the simulated model and to adaptively reallocate the SES for better 

computational and communication load balancing. In many cases, this leads to a speed up in the 

simulation execution and enhanced scalability. 

This adaptive PADS approach is implemented in the GAIA/ART IS simulator [5] and, in the 

current version, it is based on a time-stepped synchronization. That, as described in the follow of this 

paper, is also at the basis of the multi-level modeling that we propose for the simulation of IoT models. 

III. STATE OF THEART 

A. SIMULATION OF THE INTERNET OF THINGS 

The design of complex IoT setups requires the support of large scale test beds or the usage of 

scalable simulation tools. In the case of simulation, the number of nodes in the scenario and the level 

of detail required by the interaction among nodes are key elements for the scalability of the simulator. 

In [24], the authors identify the requirements for the next generation of IoT experimental 

facilities, they discuss some drawbacks of simulation-based approaches and provide a survey of 

existing test beds (some of them also supporting co- simulation). An approach based on the federation 

of test beds is possible but it has many drawbacks. In many cases, an on simulation would be preferred 

but the existing network simulators are inadequate for the scale and level of detail required by IoT 

models. 

SimIoT is a new simulator described in [46] in which the back-end operations are executed in 

a cloud environment for better performance. The use case proposed in the paper is a health monitoring 

system for emergency situations in which short range and wireless communication devices are used to 

monitor the health of patients. The preliminary performance evaluation is based on 160 identical jobs 

submitted by 16 IoT devices. 

In [36] the massive-scale of many IoT deployments is considered. In this case, the authors 

firstly present a survey of large scale simulators and emulators and then they propose MAMMotH, a 

software architecture based on simulation. 
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Bram billa et al. propose to integrate the DEUS general-purpose discrete event simulation with 

the domain specific simulators Cooja and ns-3 for the study of large-scale IoT scenarios in urban 

environments [10]. In this case, the performance evaluation is based on 6 scenarios with up to 200000 

sensors, 400 hubs and 25000 vehicles. The execution time with respect to the number of events shows 

a quite good scalability. On the other hand, to the best of own knowledge, the DEUS simulator has a 

monolithic architecture and it is implemented in Java. 

In [45] the authors propose an IoT based smart home system in which the performance 

evaluation is based on different simulation methods such as Monte Carlo. 

DPWSim is a simulation toolkit that supports the modeling of the OASIS standard "Devices 

Profile for Web Services" (DPWS) [25]. Its main goal of is to provide a cross-platform and easy-to-

use assessment of DPWS devices and protocols. In other words, it is not designed for very large-scale 

setups. The approach followed in [11] is to use a model-driven simulation (based on the standard 

language SDL) to describe the IoT scenario. Starting from this, an automatic code generation 

transforms the description into an executable simulation model for the ns-3 network simulator. 

Finally, an interesting approach is proposed in [31]. The author proposes a hybrid simulation 

environment in which the Cooja- based simulations (i.e. system level) are integrated with a domain 

specific network simulator (i.e. OMNeT++). 

B. INTERNET OF THINGS AND SMART TERRITORIES 

As concerns the use of IoT to build efficient services for making "smarter" territories, from a 

simulation point of view there are many requirements that the simulation tool must provide. Above all, 

the main issue is scalability, both in terms of amount of modeled entities and granularity of events. 

Even a small size smart territory will be composed by thousands of interconnected devices. Many of 

them will be mobile and each with very specific behaviour and technical characteristics [18]. If a 

proactive approach is needed (e.g. simulation in the loop), in order to perform "what-if analysis" during 

the management of the deployed architecture, then the simulator should be able to run in (almost) real-

time, at least with average size model instances. 

We claim that a multi-level simulation is needed in order to simulate a smart territory scenario 

with a reasonable IoT model. In fact, running the whole model at the highest level of detail is 

unfeasible. A better approach is to bind different simulators together, each one running at its 

appropriate level of detail and with specific characteristics of the domain to be simulated (e.g. mobility 

models, wireless/wired communications and so on). We will discuss this approach in the next section. 

Agent-based simulation is a perfect tool to create models that mimic urban systems in general 

[28]. Agent-based simulation, together with land-use transport interaction model and cellular automata 

are applicable in planning support systems. These models can be applied at different time scales, such 

as short-term modeling, e.g. diurnal patterns in cities, and long- term models for exploring change 

through strategic planning. Tools such as MASON [37] and SUMO [32] allow simulating moving 

entities (e.g. mobile users of vehicles) that can interact with static ones. These tools have been 

successfully exploited to study intelligent traffic control systems [7], [29], [48], [51], mobile 

applications that resort to crowd sensed data [44] and so on. The main problem of these approaches is 

that, due to the armature, they do not allow creating massive scenarios, with many interconnections. 

CupCarbon is a multi agent and discrete event, smart- city and Internet of Things Wireless 

Sensor Network (SCI- WSN) simulator [39]. It allows designing, visualizing and validating distributed 
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algorithms in a network. It employs the OpenStreetMap framework to deploy sensors directly on the 

map. The main goal of this tool is to help trainers to explain the basic concepts and how sensor 

networks work and it can help scientists to test their wireless topologies, protocols, etc. The main 

problem of scalability remains. 

Moreover, it is worth mentioning that there is a number of image and 3D based simulators, 

such as CanVis, Second Life, Suicidator City Generator, Blended Cities. Among them, UrbanSim is a 

software-based simulation for urban areas, with tools for examining the interplay between land use, 

transportation, and policy [4]. It is intended for use by Metropolitan Planning Organizations and others 

needing to interface existing travel models with new land use forecasting and analysis capabilities. 

UrbanSim does not focus on scenario development, as most of these tools do, but rather on 

understanding the consequences of certain scenarios on urban communities. However, typically such 

a kind of tools do not cope with issues concerned with wireless communications and pervasive 

computing, which are the keywords related to the IoT world. 

IV. MULTILEVEL SIMULATION 

Since many IoT models are composed of a very large number of nodes, the usage of fine 

grained simulation models leads to scalability problems in the performance evaluation. In other words, 

a monolithic simulator that handles all the nodes in the IoT and implements a fine grained level of 

detail is unable to provide the simulation results in an acceptable amount of time. Even using a PADS 

approach, the massively populated setups are difficult to handle. This can be overcome by: 1. 

employing High Performance Computing execution platforms or 2. Reducing the level of detail in the 

simulation model. Both these solutions are not feasible since the first is very costly and the second 

often leads to misleading (or wrong) simulation results due to the excessive amount of details removed 

from the simulated model. 

For these reasons, we propose a multi-level modeling and simulation [23] approach for large 

scale IoT setups. That is, a simulation in which multiple simulation models are glued together [38]. 

Each one with a specific task and working with at a different level of detail. 

 

 

 

 

 

Fig. 2. Multi-level simulation. 

Under the implementation viewpoint, this means a "high level" adaptive PADS simulator (i.e. 

GAIA/ART IS) that works at a coarse grained level of detail and that coordinates the execution of a 

set of domain specific "middle" or "low level" simulators that are used only when a fine grained level 

of detail is necessary (e.g. OMNeT++ [2], ns-3 [1], SUMO [3]). The switch between coarse and fine 

grained models can be automatic or triggered by the simulation modeler. For example, if a given 

simulated area is populated by too many wireless devices then a detailed simulation model could assess 

network capacity or congestion problems. The main issues with this multi-level approach are the 

interoperability among the simulators and the design of the inter-model interactions (e.g. 

synchronization and state exchanges at runtime between model components). 
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More specifically, as shown in Figure 2, at the simulation bootstrap the whole scenario is 

executed at level 0 (that is, with a minimal details). Hence, the high level simulator (e.g. GAIA/ART 

IS) manages the evolution of all the model components and their interactions following a time-stepped 

synchronization approach [9]. At time step t2, it is found that a part of the simulated scenario (for 

example a specific zone in the simulated area or a specific group of modelled nodes) has to be 

simulated with more details. This means that, in the figure, a part of the simulated area is still modelled 

at level 0 while a specific zone is now managed by the level 1 model. If necessary, in the following of 

the simulation, a specific area can be further detailed using a level 2 model (and simulator). To simplify 

this discussion, if we consider only two levels then that all the model components managed by the 

level 0 simulator are evolved using t-sized time steps and all the others use t'-sized time steps. Time 

step t2 (that is the same of t’ 1 for level 1) is the moment in which a part of the model components is 

transferred from the coarse-grained simulator to the finer one. In the following, the components at 

level 0 will jump from 12 to 13 while the components simulated at level 1 will be updated at t 2, t '3 

and t ' 4 (that is the same of t3 for level 0) but since there is no more need for such a level of detail, all 

the components simulated at level 1 are transferred again to the level 0 simulator. Following the 

constraints imposed by the time-stepped synchronization algorithm, all the interactions among level 0 

simulated components can happen at every coarse-grained time step while the interactions at level 1 

can happen at every fine grained time step. Finally, the interaction between components managed at 

different levels can happen only at the coarse grained time steps. That is, when there is a match between 

the time steps at the different levels. Using this approach the total number of nodes handled by the 

simulator does not changes but the level of detail used in the simulation evolution is adapted to the 

needs of the simulation model at runtime. In other words, this means that the simulation model is not 

run at the lowest level of detail for the whole duration of the simulation. Hence, it is possible to obtain 

a better scalability with respect to traditional simulation (monolithic or PADS) approaches. On the 

other side, it is clear that the multi-level modeling (as every kind of model approximation) introduces 

some amount of error in every analysis. As in every simulation, appropriate verification and validation 

techniques need to be used. At the time of writing, we are finalizing the design of the multi-level 

simulator and we are working on a prototype implementation [18], [19] that includes the case study 

described in the following section. 

V. CONCLUSIONS 

In this paper, we discussed on main issues to cope with, in order to properly simulate the IoT. 

Scalability and high level of details are the two main and quite often counter posed goals. We over 

viewed some existing techniques, reaching the conclusion that the use of adaptive, agent-based, 

Parallel and Distributed Simulation (PADS), coupled with multilevel simulation is a good strategy to 

employ in this context. The analysis of the use case, related to the design of smart services for smart 

cities and decentralized areas, shows that multi-level simulation techniques provide means to simulate 

wide geographical areas, with a multitude of simulation entities (agents). However, when needed it is 

possible to trigger a more detailed, fine grained simulation, so as to consider aspects which could not 

be simulated otherwise. The interesting aspect of this approach is that the detailed (and more costly) 

simulation can be performed in a specific, limited simulated area, only for the needed time interval of 

the simulation. 

REFERENCES 

[1] ns-3 web site, https://www.nsnam.org. 

[2] Omnet++ web site, https://omnetpp.org. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 3,  March : 2023 
 

UGC CARE Group-1                                                                                                                       615 

[3] Sumo web site, http://sumo.dlr.de. 

[4] Urbansim web site, http://www.urbansim.org/main/webhome. 

[5] Parallel And Distributed Simulation (PADS) Research Group. http://pads.cs.unibo.it, 2016. 

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of things: A 

survey on enabling technologies, protocols, and applications. IEEE Communications Surveys 

Tutorials, 17(4):2347-2376, Fourthquarter 2015. 

[7] R. Bauza, J. Gozalvez, and M. Sepulcre. Operation and performance of vehicular ad-hoc routing 

protocols in realistic environments. In Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 

68th, pages 1-5, Sept 2008. 

[8] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini. A survey of context data distribution for 

mobile ubiquitous systems. ACM Comput. Surv., 44(4):24:1-24:45, Sept. 2012. 

[9] L. Bononi, M. Bracuto, G. D'Angelo, and L. Donatiello. Performance analysis of a parallel and 

distributed simulation framework for large scale wireless systems. In MSWIM '04: Proceedings of the 

7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile 

systems, pages 52-61, New York, NY, USA, 2004. ACM. 

[10] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli. A simulation platform for 

large-scale internet of things scenarios in urban environments. In Proceedings of the First International 

Conference on IoT in Urban Space, URB-IOT '14, pages 50-55, ICST, Brussels, Belgium, Belgium, 

2014. ICST (Institute for Computer Sciences, SocialInformatics and Telecommunications 

Engineering). 

[11] M. Brumbulli and E. Gaudin. Complex Systems Design & Management Asia: Smart Nations - 

Sustaining and Designing: Proceedings of the Second Asia-Pacific Conference on Complex Systems 

Design & Management, CSD&M Asia 2016, chapter Towards Model-Driven Simulation of the 

Internet of Things, pages 17-29. Springer International Publishing, Cham, 2016. 

[12] G. D'Angelo. Parallel and distributed simulation from many cores to the public cloud. In HPCS'11: 

Proceedings of International Conference on High Performance Computing and Simulation. IEEE, 

2011. 

[13] G. D'Angelo and S. Ferretti. LUNES: Agent-based Simulation of P2P Systems. In Proceedings of 

the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems 

(MOSPAS 2011). IEEE, 2011. 

[14] G. D'Angelo and M. Marzolla. New trends in parallel and distributed simulation: From many-

cores to cloud computing. Simulation Modelling Practice and Theory (SIMPAT), 2014. 

[15] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, and J. Garcia-Haro. 

Simulation scalability issues in wireless sensor networks. Communications Magazine, IEEE, 44(7):64-

73, july 2006. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 3,  March : 2023 
 

UGC CARE Group-1                                                                                                                       616 

[16] S. Ferretti. Publish-subscribe systems via gossip: a study based on complex networks. In Proc. of 

the 4th Annual Workshop on Simplifying Complex Networks for Practitioners, SIMPLEX '12, pages 

7-12, New York, NY, USA, 2012. ACM.  

[17] S. Ferretti. Shaping opportunistic networks. Computer Communications, 36(5):481-503, 2013. 

[18] S. Ferretti and G. D'Angelo. Smart shires: The revenge of countrysides. In Proc. of IEEE 

Symposium on Computers and Communication. IEEE, 2016. 

[19] S. Ferretti, G. D'Angelo, and V. Ghini. Smart multihoming in smart shires: Mobility and 

communication management for smart services in countrysides. In Proc. of IEEE Symposium on 

Computers and Communication. IEEE, 2016. 

[20] S. Ferretti, V. Ghini, and F. Panzieri. A survey on handover management in mobility architectures. 

Computer Networks, 94:390-413, 2016. 

[21] R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley & Sons, 2000. 

[22] R. M. Fujimoto. Parallel discrete event simulation. In Proceedings of the 21st conference on 

Winter simulation, WSC '89, pages 19-28, New York, NY, USA, 1989. ACM. 

[23] S. Ghosh. On the concept of dynamic multi-level simulation. In Proceedings of the 19th Annual 

Symposium on Simulation, ANSS '86, pages 201-205, Los Alamitos, CA, USA, 1986. IEEE Computer 

Society Press. 

[24] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo. A survey on 

facilities for experimental internet of things research. IEEE Communications Magazine, 49(11):58-67, 

November 2011. 

[25] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. V. Luong, M. Brut, and P. Gatellier. Dpwsim: A 

simulation toolkit for iot applications using devices profile for web services. In Internet of Things 

(WF-IoT), 2014 IEEE World Forum on, pages 544-547, March 2014. 

[26] D. Jefferson. Virtual time. ACM Transactions Program. Lang. Syst., 7(3):404–425, 1985. 

[27] Y. Jun, C. Raczy, and G. Tan. Evaluation of a sort-based matching algorithm for ddm. In 

Proceedings of the sixteenth workshop on Parallel and distributed simulation, PADS '02, pages 68-75, 

Washington, DC, USA, 2002. IEEE Computer Society. 

[28] S. Karnouskos and T. N. d. Holanda. Simulation of a smart grid city with software agents. In 

Computer Modeling and Simulation, 2009. EMS '09. Third UKSim European Symposium on, pages 

424 429, Nov 2009. 

[29] J. P. Kerekes, M. D. Presnar, K. D. Fourspring, Z. Ninkov, D. R. Pogorzala, A. D. Raisanen, A. 

C. Rice, J. R. Vasquez, J. P. Patel, R. T. MacIntyre, and S. D. Brown. Sensor modeling and 

demonstration of a multi-object spectrometer for performance- driven sensing. volume 7334, pages 

73340J-73340J-12, 2009. 

[30] R. Khan, S. U. Khan, R. Zaheer, and S. Khan. Future internet: The internet of things architecture, 

possible applications and key challenges. In Proceedings of the 2012 10th International Conference on 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 3,  March : 2023 
 

UGC CARE Group-1                                                                                                                       617 

Frontiers of Information Technology, FIT '12, pages 257-260, Washington, DC, USA, 2012. IEEE 

Computer Society. 

[31] M. Kirsche. Simulating the internet of things in a hybrid way. In Proceedings of the Networked 

Systems (NetSys) 2013 PhD Forum, 03 2013. Poster Abstract. 

[32] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent development and applications of 

SUMO - Simulation of Urban Mobility. International Journal On Advances in Systems and 

Measurements, 5(3&4):128-138, December 2012. 

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 

21:558-565, July 1978.  

[34] A. M. Law and D. M. Kelton. Simulation Modeling and Analysis. McGraw-Hill Higher 

Education, 3rd edition, 1999. 

[35] R. Lea and M. Blackstock. Smart cities: An iot-centric approach. In Proc. of the International 

Workshop Intelligence and Smart Sensing, IWWISS '14, pages 12:1-12:2. ACM, 2014. 

[36] V. Looga, Z. Ou, Y. Deng, and A. YI"a-J"a"aski. Mammoth: A massivescale emulation platform 

for internet of things. In 2012 IEEE 2nd International Conference on Cloud Computing and 

Intelligence Systems, volume 03, pages 1235–1239, Oct 2012.  

[37] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A multiagent simulation 

environment. Simulation, 81(7):517-527, July 2005. 

[38] L. Magne, S. Rabut, and J.-F. Gabard. Towards an hybrid macro-micro traffic flow simulation 

model. In INFORMS spring 2000 meeting, 2000. 

[39] K. Mehdi, M. Lounis, A. Bounceur, and T. Kechadi. Cupcarbon: A multi-agent and discrete event 

wireless sensor network design and simulation tool. In Proceedings of the 7th International ICST 

Conference on Simulation Tools and Techniques, SIMUTools 14, pages 126-131, ICST, Brussels, 

Belgium, Belgium, 2014. ICST (Institute for Computer Sciences, Social- Informatics and 

Telecommunications Engineering). 

[40] J. Misra. Distributed discrete event simulation. ACM Computing Surveys, 18(1):39–65, 1986. 

[41] C. Perera, A. B. Zaslavsky, P. Christen, and D. Georgakopoulos. Sensing as a service model for 

smart cities supported by internet of things. Trans. Emerging Telecommunications Technologies, 

25(1):81-93, 2014. 

[42] K. Perumalla. Tutorial: Parallel and distributed simulation: Traditional techniques and recent 

advances, 2007. 

[43] R. Petrolo, V. Loscr'1, and N. Mitton. Towards a smart city based on cloud of things. In Proc. of 

the International Workshop on Wireless and Mobile Technologies for Smart Cities, WiMobCity '14, 

pages 61-66. ACM, 2014. 

[44] C. Prandi, S. Ferretti, S. Mirri, and P. Salomoni. Trustworthiness in crowd- sensed and sourced 

georeferenced data. In 2015 IEEE International Conference on Pervasive Computing and 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 3,  March : 2023 
 

UGC CARE Group-1                                                                                                                       618 

Communication Workshops, PerCom Workshops 2015, St. Louis, MO, USA, March 23-27, 2015, 

pages 402-407, 2015. 

[45] Y. Song, B. Han, X. Zhang, and D. Yang. Modeling and simulation of smart home scenarios based 

on internet of things. In 2012 3rd IEEE International Conference on Network Infrastructure and Digital 

Content, pages 596-600, Sept 2012. 

[46] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee. Towards simulating the internet of 

things. In Advanced Information Networking and Applications Workshops (WAINA), 2014 28th 

International Conference on, pages 444-448, May 2014. 

[47] S. Tay, G. Tan, and K. Shenoy. Piggy-backed time-stepped simulation with 'super-stepping'. In 

Simulation Conference, 2003. Proceedings of the 2003 Winter, volume 2, pages 1077 - 1085 vol.2, 

dec. 2003. 

[48] A. Wegener, M. Pi'orkowski, M. Raya, H. Hellbruck, S. Fischer, and J.-P. Hubaux. Traci: An 

interface for coupling road traffic and network simulators. In Proceedings of the 11th Communications 

and Networking Simulation Symposium, CNS '08, pages 155-163, New York, NY, USA, 2008. ACM. 

[49] H. Wirtz, J. Ruth, M. Serror, J. A. Bitsch Link, and K. Wehrle. Opportunistic interaction in the 

challenged internet of things. In Proc, of the MobiCom Workshop on Challenged Networks, CHANTS 

'14, pages 7-12. ACM, 2014. 

[50] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel simulation of large-scale 

wireless networks. SIGSIM Simul. Dig., 28(1):154-161, 1998, 

[51] D. Zubillaga, G. Cruz, L. D. Aguilar, J. Zapot'ecatl, N. Fern'andez, J. Aguilar, D. A. Rosenblueth, 

and C. Gershenson. Measuring the complexity of self-organizing traffic lights, Entropy, 16(5):2384, 

2014. 

 


