

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1480

Evaluating the Performance of the Best Job First CPU Scheduling Algorithm with a

Markov Chain Model in a Multiprocessor Environment

Rupesh Sendre, Rahul Singhai, Pradeep Kumar Jatav

International Institute of Professional Studies (IIPS), Devi Ahilya University, Indore (M.P.)

Abstract

CPU scheduling addresses the challenge of selecting which job from the ready queue should be

dispatched by the dispatcher to the CPU, aiming to enhance resource utilization and overall system

performance. Numerous traditional CPU scheduling algorithms have been proposed, each with its own

advantages and disadvantages. Among these, the Best Job First CPU scheduling algorithm, introduced

by Mohammed et al. [21], stands out. This paper evaluates the performance of this algorithm using a

Markov Chain model in a multiprocessor environment. The study involves modeling the transitions

between jobs using Markovian principles, and assessing the system's performance in terms of resource

utilization, response time, and throughput. A comparative analysis is conducted to substantiate the

findings, and numerical illustrations are provided to support the simulation study.

Keywords – CPU Scheduling; Best Job First Algorithm; Multiprocessor; Markov Chain Analysis;

1. Introduction

Scheduling algorithms are used for distributing resources among users which simultaneously and

asynchronously request them. These algorithms are used in various systems such as operating systems

(to allocate processor time among queues and jobs), communications networks (routers handling packet

traffic), disk drives (I/O scheduling), printers (print spooling), and real-time systems. The primary goals

of scheduling algorithms are to minimize resource starvation, ensure fairness among resource users, and

maximize processor utilization by efficiently switching between jobs. Scheduling addresses the problem

of determining which outstanding requests should be allocated resources.

CPU scheduling algorithms help the dispatcher decide which ready-state process should be assigned to

the CPU next, aiming to enhance resource utilization and minimize queuing delays. Various scheduling

algorithms have been developed, proving effective in both uniprocessing and multiprocessing systems.

Multiprocessing systems, in particular, offer improved performance in terms of response time,

throughput, waiting time, and turnaround time, especially in scenarios where uniprocessing systems fall

short. Therefore, it is crucial to analyze the performance of scheduling algorithms in multiprocessing

environments as well.

In this study, we implement the traditional Best Job First (BJF) scheduling algorithm in a

multiprocessing environment. In conventional uniprocessing systems, each job receives an equal amount

of processor time, and the dispatcher ensures proportional service time for each queue based on its

quantum. However, if the time quantum is too small, excessive context switching may occur, and I/O-

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1481

bound jobs might not receive adequate processor time. To address these issues, we implemented BJF

scheduling for multiprocessors with a relatively large time quantum.

To demonstrate the effectiveness of Multiprocessor Best Job First (MPBJF) scheduling, we modeled the

scheduler transitions across two processors using a stochastic process. Our results indicate that MPBJF

scheduling achieves precise proportional processing and high performance across diverse data sets [7].

Key observations from implementing the BJF scheduling algorithm for multiprocessor systems include:

• Accuracy: Utilizing the Markov chain model [18-19, 24-25], MPBJF scheduling achieves

accurate proportional fairness with a low error rate, regardless of the number of queues and

processors in the system.

• Efficiency and Scalability: MPBJF scheduling runs jobs per processor and adds minimal

overhead to the existing operating system scheduler, even when jobs dynamically arrive, depart,

or change their time quantum.

• Flexible User Control: MPBJF scheduling assigns a default time quantum to each queue based

on its priority and allows users to specify job time quantum to control dispatcher transitions.

• High Performance: MPBJF scheduling integrates well with existing scheduler schemes

targeting attribute such as latency and throughput, maintaining high performance and accurate

fairness [7, 17].

These features demonstrate the versatility and efficiency of MPBJF scheduling in enhancing the

performance of multiprocessor systems.

2. Related Work

Designing effective and efficient ready queue processing in a multiprocessor environment has always

been a significant area of research. Numerous enhancements to various CPU scheduling algorithms have

been proposed to evaluate their performance. For instance, Shukla and Jain [1] estimated ready queue

processing under a new CPU scheduling algorithm in a multiprocessor environment with varying time

quantum. Their combined study of lottery scheduling and systematic lottery scheduling proved efficient

through model-based studies with numerical illustrations. Shukla et al. [10] proposed a lottery

scheduling procedure in a multiprocessor environment where process size and auxiliary information

were positively correlated. Additionally, Shukla and Jain [11] showed that a size-based priority scheme

for predicting ready queue time length outperformed the traditional lottery scheduling scheme in terms

of confidence intervals. In another study [2], the authors provided a general estimate of ready queue

processing in a multiprocessor environment and derived confidence intervals to compare the efficiency

of the estimate. Tam et al. [3] suggested shared memory multiprocessors with cache sharing within a

chipset, introducing multiple processing chips configured as SMP, CMP, and SMT with non-uniform

data sharing operating system schedulers. Levin et al. [4] developed the DP Fair scheduling policy to

address the shortcomings of greedy scheduling algorithms. Bertogna and Cirinei [5] proposed a new

approach for analyzing real-time systems globally scheduled on a symmetric multiprocessor platform,

demonstrating its effectiveness through mathematical formulations and numerical illustrations.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1482

Fairness is a fundamental requirement for any CPU scheduler. Existing round-robin scheduling

algorithms are often inaccurate, inefficient, and non-scalable for multiprocessors, a problem exacerbated

by the trend towards larger-scale multi-core processors. Li et al. [7] introduced a distributed weighted

round-robin scheduling algorithm to address these issues, achieving accurate proportional processing

and high performance across diverse data sets, supported by mathematical formulations and numerical

experiments. Fedorova et al. [8] described a new operating system scheduling algorithm that improves

performance isolation on chip multiprocessors, ensuring applications run efficiently under specific

thread allocations. They implemented this cache-fair algorithm in Solaris™ 10, showing improved

performance for SPEC CPU, SPEC JBB, and TPC-C benchmarks, supported by comparative studies.

Elliott and Anderson [17] explored the significant performance advantages GPUs can offer over

traditional CPUs. Their survey on real-time systems integrating GPUs into multiprocessor environments

presented an integrated soft real-time multiprocessor system, demonstrating higher system performance

through mathematical formulations and numerical illustrations. Burns et al. [9] introduced an EDF-based

task-splitting scheme for scheduling multiprocessor systems, comparing it with two other schemes and

generating numerical results to maximize processor utilization. Davis and Burns [14] surveyed hard real-

time scheduling algorithms and schedulability analysis techniques for homogeneous multiprocessor

systems, reviewing different scheduling methods and performance metrics for comparison.

Vijayalakshmi and Padmavathi [15] compared genetic algorithms and list scheduling algorithms within

a multiprocessor task scheduling environment, generating experimental results that addressed

multiprocessor scheduling problems. Li and Baruah [12] proposed inter-processor migration for

scheduling mixed-criticality implicit-deadline sporadic task systems on identical multiprocessor

platforms, demonstrating their effectiveness through theoretical and mathematical experiments.

Cheramy et al. [13] developed a simulator for comparing and understanding real-time multiprocessor

scheduling policies, generating data sets for simulations and collecting experimental data. Chandra et al.

[16] introduced a novel weight readjustment algorithm to translate infeasible weight assignments to

feasible ones, presenting surplus fair scheduling—a proportional share CPU scheduler designed for

symmetric multiprocessors. They implemented this scheduler in the Linux kernel, demonstrating its

efficacy through experimental evaluation. Shukla and Ojha [20] presented a Markov chain model to

study transition states and designed various scheduling schemes treated as specific cases, comparing

them under a Markov chain model setup and evaluating their merits through simulation studies. The

Improved Round Robin (IRR) policy reduces average waiting time, increases throughput, and maintains

CPU utilization levels similar to traditional Round Robin scheduling. Sendre et al. [6] used a Markov

chain model to determine the performance of the IRR algorithm, proposing efficient and useful

scheduling methods supported by numerical studies.

The set of possible values of an individual random variable X(n) (or X(t)) of a stochastic process {X(n),

n1}, {X(t), tT} is known as state space, The stochastic process {X(n), n = 0,1,2…} is called Markov

chain, if, for j, k, j1, … , j(n-1) € N (or any subset of I). Medhi conducted extensive studies on a variety

of stochastic processes and their applications in different fields. He developed a Markov chain model to

study uncertain rainfall phenomena and demonstrated the use of stochastic processes in queue

management [22-23]. Naldi proposed and developed a Markov chain model to understand internet traffic

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1483

sharing among various operators in a competitive market [19]. Another researcher, Jain & Jain also

proposed a linear data model-based study of an improved round-robin (RR) CPU scheduling algorithm,

incorporating features of the shortest job first (SJF) scheduling with varying time quantum. This study

used a Markov chain model with different datasets and included numerical analyses [25]. Sendre et al.

also studied the use of Markov chain models on a variety of stochastic processes and their applications

in different multilevel queue schedulers, designing a scheduling scheme that was compared through

numerical studies [24].

Awad et al. developing efficient scheduling and allocation methods is essential for optimizing various

performance metrics. A notable approach is the Load Balancing Mutation Particle Swarm Optimization

(LBMPSO) model, which addresses reliability, execution time, transmission time, makespan, round trip

time, transmission cost, and load balancing between tasks and virtual machines. LBMPSO enhances the

reliability of the cloud computing environment by leveraging available resources and rescheduling tasks

that fail to allocate initially. Comparative studies have shown that LBMPSO outperforms standard

Particle Swarm Optimization (PSO), random algorithms, and the Longest Cloudlet to Fastest Processor

(LCFP) algorithm in terms of reducing makespan, execution time, round trip time, and transmission cost

[26]. Shyam & Nandal development of a new Round Robin scheduling algorithm has demonstrated

significant improvements over existing algorithms such as traditional Round Robin (RR), Improved

Round Robin (IRR), Enhanced Round Robin (ERR), Self-Adjustment Round Robin (SARR), and First-

Come, First-Served (FCFS). This new scheduling method offers superior performance, highlighting its

effectiveness in optimizing scheduling tasks compared to these well-known algorithms [27]. Another

researcher, Bitam et al. addressing the job scheduling problem within fog computing environments, a

novel bio-inspired optimization approach known as the Bees Life Algorithm (BLA) has been introduced.

This method focuses on optimizing the distribution of tasks across all fog computing nodes, aiming to

achieve an optimal balance between CPU execution time and the memory allocated for services used by

mobile users. Empirical performance evaluations have shown that the Bees Life Algorithm outperforms

traditional methods such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) regarding

CPU execution time and memory allocation [28]. Another researcher, Gawali & Shinde, also proposed

system incorporates LEPT preemption to preempt resource-intensive tasks effectively. This approach is

enhanced through a divide-and-conquer strategy, which has been experimentally validated by comparing

it with existing frameworks like BATS (Bidirectional Arrival and Time-based Scheduler) and Improved

Differential Evolution Algorithm (IDEA). The evaluation focuses on metrics such as turnaround time

and response time, demonstrating the superiority of the proposed system in handling these performance

metrics effectively [29].

In this study, a novel approach named Harris Hawks Optimization based on Simulated Annealing

(HHOSA) is introduced for job scheduling in cloud environments. The HHOSA method integrates

Simulated Annealing (SA) as a local search technique within the Harris Hawks Optimization (HHO)

framework to enhance solution quality and convergence speed compared to the standard HHO

algorithm. Performance evaluation of HHOSA is conducted against state-of-the-art job scheduling

algorithms using the CloudSim toolkit, employing both standard and synthetic workloads. The results

highlight that HHOSA significantly reduces the makespan in job scheduling compared to standard HHO

and other existing algorithms. Furthermore, HHOSA demonstrates faster convergence particularly in

larger search spaces, making it well-suited for addressing large-scale scheduling challenges [30].

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1484

Another researcher, Gupta et al. enhanced versions of the Heterogeneous Earliest Finish Time (HEFT)

algorithm are proposed to minimize the makespan of workflow submissions on virtual machines while

adhering to user-defined financial constraints. The study highlights that these enhanced HEFT variants

outperform the basic HEFT algorithm by achieving shorter schedule lengths for workflows executed

across different virtual machines. This improvement underscores the efficacy of adapting HEFT to meet

specific financial constraints while optimizing workflow scheduling in cloud computing environments

[31]. Another researcher, Alsaidy et al. proposed initialization method for Particle Swarm Optimization

(PSO) is introduced, utilizing heuristic algorithms such as Longest Job to Fastest Processor (LJFP) and

Minimum Completion Time (MCT). These algorithms are employed to initialize the PSO framework,

aiming to improve its performance in minimizing metrics such as makespan, total execution time, degree

of imbalance, and total energy consumption in task scheduling scenarios. The effectiveness of the

proposed LJFP-PSO and MCT-PSO algorithms is evaluated and compared against recent task

scheduling methods through simulations. Results demonstrate that LJFP-PSO and MCT-PSO achieve

superior performance compared to conventional PSO and other comparative algorithms, highlighting

their efficacy in optimizing task scheduling processes [32]. Another researcher, Ullah et al. also focus is

on enhancing makespan optimization to minimize unproductive time for machinery and tasks in an

Electronics manufacturing facility. The research employs a case study methodology centered on job

scheduling, emphasizing resource availability. Specifically, Johnson's algorithm and its variations for

two-machine and three-machine flow shop scheduling scenarios are implemented to identify optimal

scheduling sequences. The investigation evaluates idle time and makespan metrics for individual

machines using task processing durations and in-out timestamps. Results indicate optimal idle times of

6.21 minutes and a makespan of 142.06 minutes for two-machine scenarios. This research offers

valuable insights applicable to industries with diverse machinery and components, contributing

significantly to scheduling efficiency and overall productivity improvements [33].

3. Proposed System

In a uniprocessor environment, jobs are assigned to processors based on a specific CPU scheduling

algorithm, such as First-Come-First-Serve (FCFS) or preemptively based on a time-quantum in

algorithms like Best Job First scheduling. However, in a multiprocessing setup, jobs are dispatched in a

Best Job First fashion, but the selection of which processor receives the job is dynamic. This paper

examines the performance of the Best Job First scheduling algorithm using a Markov chain model in a

multiprocessing environment with two processors, P1 and P2, each handling a large number of randomly

assigned jobs.

We make the following assumptions to model job allocation between P1 and P2:

• All ready jobs reside in a ready queue, and the CPU scheduler selects jobs based on the Best Job

First strategy and assigns them randomly to any available processor.

• Initially, each job has an equal probability (Pr1 and Pr2) of being assigned to either processor Pr1

and Pr2 (∑ Pri = 1𝟐
𝐢=𝟏).

• Jobs are initially assigned Pi(i = 1, 2) with a dynamic priority and a fixed timer interrupts job

execution after a predefined time-quantum.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1485

• A job holds the processor until its time quantum expires. If the job is not completed, it returns to

the end of the ready queue; if completed, it exits the processor.

• Processor allocation continues until the ready queue is empty.

• Processors may be assigned jobs consecutively (P1, P2, P1...) or in an alternating pattern.

• If both processors are free, they move to a resting state; if both are busy, they remain in a busy

state.

• If both processors are ready and new jobs arrive in the ready queue, they can be assigned to

either processor, changing their state from R (ready) to either P1 or P2.

• When processors become available, their state changes from B (busy) to either P1 or P2.

This study utilizes these assumptions to analyze the efficiency of the Best Job First scheduling algorithm

in a multiprocessing environment using a Markov chain model.

Figure 3.1: Generalized markov chain models in multiprocessor environment.

Figure 3.2: Generalized transition probability model.

Under their assumption the behavior of processors and action of scheduler can be modeled by core state

discrete time Markov chain (fig. 3.2) in which transition probabilities are represented by an edge

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1486

connecting the circulars indicating the different chain states and the time is indicated by number of

attempts.

Thus, the initial condition before the first allotment of processors are:

P [X(0) = P1] = Pr1 ; P [X(0) = P2] = Pr2; P [X(0) = B] = 0; P [X(0) = R] = 1 - ∑ Pri𝟐
𝐢=𝟏 . …… eq. 1

Therefore, the one step transition probabilities matrix is as follows:

Let Tij (i, j = 1, 2, 3,…) be the unit step transition probabilities of scheduler over three states then

transition probability depend on subject to condition:

T14 = (1 – ∑ 𝑇1𝑖𝟑
𝒊=𝟏); T24 = (1 – ∑ 𝑇2𝑖𝟑

𝒊=𝟏); T34 = (1 – ∑ 𝑇3𝑖𝟑
𝒊=𝟏); T44 = (1 – ∑ 𝑇4𝑖𝟑

𝒊=𝟏); & 0 ≤ Tij≤ 1,

The state probabilities, after the first time quantum can be obtained by a simple relationship:

P [X(1) = P1] = P [X(0) = P1] P [X(1) = P1/ X(0) = P1] + P [X(0) = P2] P [X(1) = P1/ X(0) = P2] + P [X(0) = B] P [X(1) =

P1/ X(0) = B] + P [X(0) = R] P [X(1) = P1/ X(0) = R]

P [X(1) = P1] = ∑ 𝑃𝑟𝑖 𝑇𝑖1𝟑
𝒊=𝟏 ; P [X(1) = P2] = ∑ 𝑃𝑟𝑖 𝑇𝑖2𝟑

𝒊=𝟏 ;

P [X(1) = B] = ∑ 𝑃𝑟𝑖 𝑇𝑖3𝟑
𝒊=𝟏 ; P [X(1) = R] = ∑ 𝑃𝑟𝑖 𝑇𝑖4𝟑

𝒊=𝟏 ……eq. 2

Similarly, state probabilities after second time quantum can be obtained by simple relationship:

P [X(2) = P1] = P [X(1) = P1] P [X(2) = P1/ X(1) = P1] + P [X(1) = P2] P [X(2) = P1/ X(1) = P2] + P [X(1) = B] P [X(2) =

P1/ X(1) = B] + P [X(1) = R] P [X(2) = P1/ X(1) = R]

P [X(2) = P1] = ∑𝟒
𝒊=𝟏 (∑ 𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏) Ti1; P [X(2) = P2] = ∑𝟒
𝒊=𝟏 (∑ 𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏) Ti2;

P [X(2) = B] = ∑𝟒
𝒊=𝟏 (∑ 𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏) Ti3; P [X(2) = R] = ∑𝟒
𝒊=𝟏 (∑ 𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏) Ti4 eq. 3

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1487

The generalized expressions for n time quantum are:

P [X(n) = P1] = ∑𝟒
𝒎=𝟏 ∑𝟒

𝒍=𝟏 ∑𝟒
𝒌=𝟏 ∑𝟒

𝒊=𝟏 ∑ 𝑃𝑟𝑗 𝑇𝑗𝑖 𝑇𝑖𝑘 𝑇𝑘𝑙 … . . 𝑇𝑚1𝟑
𝒋=𝟏 ;

P [X(n) = P2] = ∑𝟒
𝒎=𝟏 ∑𝟒

𝒍=𝟏 ∑𝟒
𝒌=𝟏 ∑𝟒

𝒊=𝟏 ∑ 𝑃𝑟𝑗 𝑇𝑗𝑖 𝑇𝑖𝑘 𝑇𝑘𝑙 … . . 𝑇𝑚2𝟑
𝒋=𝟏 ;

P [X(n) = B] = ∑𝟒
𝒎=𝟏 ∑𝟒

𝒍=𝟏 ∑𝟒
𝒌=𝟏 ∑𝟒

𝒊=𝟏 ∑ 𝑃𝑟𝑗 𝑇𝑗𝑖 𝑇𝑖𝑘 𝑇𝑘𝑙 … . . 𝑇𝑚3𝟑
𝒋=𝟏 ;

P [X(n) = R] = ∑𝟒
𝒎=𝟏 ∑𝟒

𝒍=𝟏 ∑𝟒
𝒌=𝟏 ∑𝟒

𝒊=𝟏 ∑ 𝑃𝑟𝑗 𝑇𝑗𝑖 𝑇𝑖𝑘 𝑇𝑘𝑙 … . . 𝑇𝑚4𝟑
𝒋=𝟏 eq. 4

4. BJF CPU Scheduling Schemes Under Multiprocessing Environment

In this section, we have discussed few scheduling schemes that may be produced from above mentioned

generalized MPBJF scheduling model by imposing some restrictions and condition. The three schemes

realized are as follows:

4.1 Scheme - I: When job may be assigned to either the first processor P1 or second processor P2 only.

New job joins from ready queue from tail and the oldest job is dispatched to any of two processor P1

or P2 for execution. Similarly, the other jobs are selected from ready queue in FCFS order is assigned

randomly to either processor P1 or P2. Thus, the assignment of processor for jobs is random.

OR

Figure 4.1: Restricted transition probability diagram

Thus, the initial probabilities under scheme-I are:

P [X(0) = P1] = 1 ; P [X(0) = P2] = 0 ; P [X(0) = B] = 0 ; P [X(0) = R] = 0

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1488

Unit step transaction probability matrix for X(n) under scheme-I is:

By using eq. 2 the state probabilities after the first time quantum are:

P [X(1) = P1] = T11 ; P [X(1) = P2] = T12 ; P [X(1) = B] = T13; P [X(1) = R] = T14

By using eq. 3 the state probabilities after the second time quantum are:

P [X(2) = P1] = P [X(1) = P1] P [X(2) = P1 / X(1) = P1] + P [X(1) = P2] P [X(2) = P1 / X(1) = P2] + P [X(1) = B] P [X(2) = P1 / X(1) =

B] + P [X(1) = R] P [X(2) = P1 / X(1) = R]

P [X(2) = P1] = T11T11+ T12 T21 + T13 T31 + T14 T41

P [X(2) = P2] =P [X(1) = P1] P [X(2) = P2/ X(1) = P1] + P [X(1) = P2] P [X(2) = P2/ X(1) = P2] + P [X(1) = B] P [X(2) = P2/ X(1) = B]

+ P [X(1) = R] P [X(2) = P2/ X(1) = R]

P [X(2) = P2] = T12 T21 + T22T22+ T23 T32+ T24 T42

P [X(2) = B]=P [X(1) = P1] P [X(2) = B/ X(1) = P1] + P [X(1) = P2] P [X(2) = B/ X(1) = P2] + P [X(1) = B] P [X(2) = B/ X(1) = B] + P

[X(1) = R] P [X(2) = B/ X(1) = R]

P [X(2) = B] = T13 T31 + T23 T32 + T33T33

P [X(2) = R] =P [X(1) = P1] P [X(2) = R/ X(1) = P1] + P [X(1) = P2] P [X(2) = R/ X(1) = P2] + P [X(1) = B] P [X(2) = R/ X(1) = B] +

P [X(1) = R] P [X(2) = R/ X(1) = R]

P [X(2) = R] = T14 T41 + T24 T42 + T44T44

Similarly, third time quantum are:

P [X(3) = P1] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T11 + (T12 T21 + T22T22+ T23 T32 + T24 T42) T21 + (T13 T31 + T23 T32 + T33 T33)

T31 + (T14 T41 + T24 T42 + T44 T44) T41

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1489

P [X(3) = P2] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T12 + (T12 T21 + T22T22+ T23 T32 + T24 T42) T22 + (T13 T31 + T23 T32 + T33

T33) T32 + (T14 T41 + T24 T42 + T44 T44) T42

P [X(3) = B] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T13 + (T12 T21 + T22T22+ T23 T32 + T24 T42) T23 + (T13 T31 + T23 T32 + T33 T33)

T33

P [X(3) = R] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T14 + (T12 T21 + T22T22+ T23 T32 + T24 T42) T24 + (T14 T41 + T24 T42 + T44 T44)

T44

Similarly, we can find fourth, fifth and so on time quantum.

4.2 Scheme - II: When processors assigned in alternative manner (i.e. P1, P2, P1, …) The following

transition are restricted in this scheme:

• A new job can only enter to first processor P1 only.

• Transition from processor P1 to P1 or P2 to P2 are restricted.

Figure 4.2: Restricted transition probability diagram.

Thus, the initial probabilities under scheme-II are:

P [X(0) = P1] = 1 ; P [X(0) = P2] = 0 ; P [X(0) = B] = 0 ; P [X(0) = R] = 0

Unit step transaction probability matrix for X(n) under scheme-II is:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1490

By using eq. 2 the state probabilities after the first time quantum are:

P [X(2) = P1] = P [X(1) = P1] P [X(2) = P1 / X(1) = P1] + P [X(1) = P2] P [X(2) = P1 / X(1) = P2] + P [X(1) = B] P [X(2) = P1 / X(1) =

B] + P [X(1) = R] P [X(2) = P1 / X(1) = R]

P [X(2) = P1] = T12 T21 + T13 T31 + T14 T41

P [X(2) = P2] =P [X(1) = P1] P [X(2) = P2/ X(1) = P1] + P [X(1) = P2] P [X(2) = P2/ X(1) = P2] + P [X(1) = B] P [X(2) = P2/ X(1) = B]

+ P [X(1) = R] P [X(2) = P2/ X(1) = R]

P [X(2) = P2] = T12 T21 + T23 T32+ T24 T42

P [X(2) = B]=P [X(1) = P1] P [X(2) = B/ X(1) = P1] + P [X(1) = P2] P [X(2) = B/ X(1) = P2] + P [X(1) = B] P [X(2) = B/ X(1) = B] + P

[X(1) = R] P [X(2) = B/ X(1) = R]

P [X(2) = B] = T13 T31 + T23 T32 + T33T33

P [X(2) = R] =P [X(1) = P1] P [X(2) = R/ X(1) = P1] + P [X(1) = P2] P [X(2) = R/ X(1) = P2] + P [X(1) = B] P [X(2) = R/ X(1) = B] +

P [X(1) = R] P [X(2) = R/ X(1) = R]

P [X(2) = R] = T14 T41 + T24 T42 + T44T44

Similarly, third time quantum are:

P [X(3) = P1] = (T12 T21 + T23 T32 + T24 T42) T21 + (T13 T31 + T23 T32 + T33 T33) T31 + (T14 T41 + T24 T42 + T44 T44) T41

P [X(3) = P2] = (T12 T21 + T13 T31 + T14 T41) T12 + (T13 T31 + T23 T32 + T33 T33) T32 + (T14 T41 + T24 T42 + T44 T44) T42

P [X(3) = B] = (T12 T21 + T13 T31 + T14 T41) T13 + (T12 T21 + T23 T32 + T24 T42) T23 + (T13 T31 + T23 T32 + T33 T33) T33

P [X(3) = R] = (T12 T21 + T13 T31 + T14 T41) T14 + (T12 T21 + T23 T32 + T24 T42) T24 + (T14 T41 + T24 T42 + T44 T44) T44

Similarly, we can find fourth, fifth and so on time quantum.

4.3 Scheme - III: When some restriction is applied to control transition –

Transition from processors P1 or P2 to R is restricted as it is assuming that no processor can move to

resting state until there exists at least one job in ready queue and if any of the processor become free

then operating systems immediately assigns few jobs that are currently assign to another processor.

• Transition from state R to R or B to B is restricted.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1491

Figure 4.3: Restricted transition probability diagram.

Thus, the initial probabilities under scheme-III are:

P [X(0) = P1] = 1 ; P [X(0) = P2] = 0 ; P [X(0) = B] = 0 ; P [X(0) = R] = 0

Unit step transaction probability matrix for X(n) under scheme-3 is:

By using eq. 2 the state probabilities after the first time quantum are:

P [X(1) = P1] = 0 ; P [X(1) = P2] = T12 ; P [X(1) = B] = T13; P [X(1) = R] = T14

By using eq. 3 the state probabilities after the second time quantum are:

P [X(2) = P1] = P [X(1) = P1] P [X(2) = P1 / X(1) = P1] + P [X(1) = P2] P [X(2) = P1 / X(1) = P2] + P [X(1) = B] P [X(2) = P1 / X(1) =

B] + P [X(1) = R] P [X(2) = P1 / X(1) = R]

P [X(2) = P1] = T12 T21 + T13 T31 + T14 T41

P [X(2) = P2] =P [X(1) = P1] P [X(2) = P2/ X(1) = P1] + P [X(1) = P2] P [X(2) = P2/ X(1) = P2] + P [X(1) = B] P [X(2) = P2/ X(1) = B]

+ P [X(1) = R] P [X(2) = P2/ X(1) = R]

P [X(2) = P2] = T12 T21 + T23 T32+ T24 T42

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1492

P [X(2) = B]=P [X(1) = P1] P [X(2) = B/ X(1) = P1] + P [X(1) = P2] P [X(2) = B/ X(1) = P2] + P [X(1) = B] P [X(2) = B/ X(1) = B] + P

[X(1) = R] P [X(2) = B/ X(1) = R]

P [X(2) = B] = T13 T31 + T23 T32

P [X(2) = R] =P [X(1) = P1] P [X(2) = R/ X(1) = P1] + P [X(1) = P2] P [X(2) = R/ X(1) = P2] + P [X(1) = B] P [X(2) = R/ X(1) = B] +

P [X(1) = R] P [X(2) = R/ X(1) = R]

P [X(2) = R] = T14 T41 + T24 T42

Similarly, third time quantum are:

P [X(3) = P1] = (T12 T21 + T23 T32 + T24 T42) T21 + (T13 T31 + T23 T32) T31 + (T14 T41 + T24 T42) T41

P [X(3) = P2] = (T12 T21 + T13 T31 + T14 T41) T12 + (T13 T31 + T23 T32) T32 + (T14 T41 + T24 T42) T42

P [X(3) = B] = (T12 T21 + T13 T31 + T14 T41) T13 + (T12 T21 + T23 T32 + T24 T42) T23

P [X(3) = R] = (T12 T21 + T13 T31 + T14 T41) T14 + (T12 T21 + T23 T32 + T24 T42) T24

Similarly, we can find fourth, fifth and so on time quantum.

5. Simulation Study with Numerical Analysis Using Data Sets

In order to analyze three schemes mentioned in section 4.1, 4.2 and 4.3 under Markov chain model with

varying quantum probability (random and linear) transition elements using different data sets are as

follows:

5.1 Data set – I

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.1.1: The transition probabilities P [X(n) = Pi] for random and linear cases:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1493

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.1.2: The transition probabilities P [X(n) = Pi] for random and linear cases:

Scheme III: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1494

Table 5.1.3: The transition probabilities P [X(n) = Pi] for random and linear cases:

5.2 Data set – II

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.2.1: The transition probabilities P [X(n) = Pi] for random and linear cases:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1495

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.2.2: The transition probabilities P [X(n) = Pi] for random and linear cases:

Scheme III: Let initial probabilities are: Pr1 = 1; Pr2 = 0; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1496

Table 5.2.3: The transition probabilities P [X(n) = Pi]for random and linear cases:

5.3 Data set – III

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0; Pr3 = 0 and Pr4 = 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.3.1: The transition probabilities P [X(n) = Pi] for random and linear cases:

Scheme II: Let initial probabilities are: Pr1= 1; Pr2= 0; Pr3= 0 and Pr4= 0

Consider data set of random and linear probabilities matrix are follows:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1497

Table 5.3.2: The transition probabilities P [X(n) = Pi] for random and linear cases:

Scheme III: Let initial probabilities are: Pr1= 1; Pr2= 0; Pr3= 0 and Pr4= 0

Consider data set of random and linear probabilities matrix are follows:

Table 5.3.3: The transition probabilities P [X(n) = Pi] for random and linear cases:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1498

6. Graphical Analysis

Graphical analysis is performed under above mentioned three schemes in section 4.1, 4.2 and 4.3 with

different data sets in section 5.1, 5.2 and 5.3 considering random and linear probability matrix to put

various quantum values. So, this analytical discussion on graphs about the variation P [X(n) = Pi] over

three data sets are as follows:

6.1 Data set – I:

Figure 6.1.1: Scheme – I, random probability. Figure 6.1.4: Scheme – I, linear probability.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1499

Figure 6.1.2: Scheme – II, random probability. Figure 6.1.5: Scheme – II, linear probability.

Figure 6.1.3: Scheme – III, random probability. Figure 6.1.6: Scheme – III, linear probability.

Remark: In data set – I, we have observed that the graphical analysis reveals striking similarities across

the graphs. Specifically, the dispatcher spends a significantly higher amount of time in the resting state

R compared to other transition states. A notable observation in the context of multiprocessor job

scheduling is highlighted in figures 6.1.1 and 6.1.3, where the random probability for processor P2 state

is slightly higher than that for the resting state. This suggests an improvement in the dispatcher's

performance, indicating a proportional increase in the likelihood of jobs assigned to processor P2 being

executed more frequently than those assigned to processor P1. This observation underscores the

effectiveness of the scheduling strategy in optimizing processor utilization and job execution efficiency.

6.2 Data set – II:

Figure 6.2.1: Scheme – I, random probability. Figure 6.2.4: Scheme – I, linear probability.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1500

Figure 6.2.2: Scheme – II, random probability. Figure 6.2.5: Scheme – II, linear probability.

Figure 6.2.3: Scheme – III, random probability. Figure 6.2.6: Scheme – III, linear probability.

Remark: In data set – II, it is evident that the processor states P1 and P2 exhibit stable patterns when the

number of quantum cycles n >= 5 but up to n = 5 it reflects changing in graphical patterns. An

interesting finding is that, across all datasets, the probability of the resting state R remains consistent on

average (with exceptions noted in figures 6.2.4 and 6.2.5), while the probability of the busy state B is

relatively low. This indicates efficient utilization of processor states and optimal processor utilization

overall. The observation suggests that a less restrictive scheduling scheme contributes to enhanced

utilization of processor time, leading to improved system performance.

6.3 Data set – III:

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1501

Figure 6.3.1: Scheme – I, random probability. Figure 6.3.4: Scheme – I, linear probability.

Figure 6.3.2: Scheme – II, random probability. Figure 6.3.5: Scheme – II, linear probability.

Figure 6.3.3: Scheme – III, random probability.

Figure 6.3.6: Scheme – III, linear probability.

Remark: In data set – III, our analysis reveals several key observations. Firstly, the random probability

distribution of processor states P1 and P2 consistently shows higher values compared to the linear

probability states across different quantum numbers. This suggests an improvement in performance

efficiency for the Multiprocessor Best Job First (MPBJF) scheduling method used in these datasets.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1502

Conversely, when considering linear probability, the graphs exhibit more variability, indicating less

predictability in the dispatcher's performance. This variability translates to a lower likelihood of jobs

being executed within processor states. A significant finding from dataset - III is that random probability

distributions provide greater opportunities for job processing in a multiprocessor environment compared

to linear probability distributions. This observation underscores the effectiveness of random probability

in enhancing job execution rates and optimizing system performance under MPBJF scheduling.

7. Conclusion

Efficient and optimal utilization of processors is crucial for any operating system scheduler. Traditional

scheduling algorithms have often faced challenges such as inefficiency, high overhead, or compatibility

issues with existing scheduler schemes. Therefore, it is imperative for operating systems to adopt CPU

scheduling algorithms that are efficient, accurate, and high-performing. This paper presents a

comprehensive analysis and comparison of three variants of the Multiprocessor Best Job First (MPBJF)

CPU scheduling algorithm using a Markov chain model. We utilize varying probability matrices across

multiple datasets, each imposing restrictions on state transition probabilities. MPBJF scheduling

seamlessly integrates with existing schedulers by prioritizing jobs on a per-processor basis, offering a

practical solution for contemporary operating systems.

We conducted experimental and numerical evaluations to assess the performance of MPBJF scheduling.

Through diverse datasets comprising random and linear probability distributions, our experiments

demonstrate that MPBJF achieves efficient, accurate, and high-performance results compared to

traditional uniprocessing systems. Our formal graphical analyses highlight the stability and effectiveness

of MPBJF scheduling schemes, particularly scheme-I and scheme-III when applied to random datasets.

These findings underscore the algorithm's potential to enhance system performance and are highly

recommended for implementation in practical environments. Moreover, our study suggests that higher

transition probabilities contribute to better utilization of processors. Therefore, we recommend that

designers of multiprocessor systems consider this principle when developing quantum-based CPU

scheduling algorithms. By adopting such strategies, system designers can significantly improve overall

system performance and efficiency.

8. Future Scope

Looking forward, the pursuit of efficient and optimal processor utilization remains critical for advancing

operating system schedulers. Historical scheduling algorithms have often fallen short due to

inefficiencies, high overhead, or incompatibility with existing schemes. Thus, there is an ongoing need

for operating systems to continually refine and adopt CPU scheduling algorithms that are not only

efficient and accurate but also high-performing. Looking ahead, there are several avenues for future

research and development in this domain. One promising direction involves exploring further

optimizations in state transition probabilities to enhance MPBJF's performance under diverse operational

conditions. Additionally, investigating the integration of machine learning techniques or adaptive

algorithms could potentially offer more dynamic and responsive scheduling solutions. Furthermore, our

study suggests that higher transition probabilities tend to optimize processor utilization. Therefore,

future multiprocessor system designs should prioritize these insights when developing quantum-based

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1503

CPU scheduling algorithms. By embracing these advancements, system designers can effectively

improve overall system efficiency and performance in increasingly complex computing environments.

9. References

[1] D. Shukla & A. Jain, “Estimation of ready queue processing time under SL-Scheduling scheme in Multiprocessor

Environment”, IJCSS, Vol. 4, Issue 1, pp. 74-81, 2010.

[2] D. Shukla, A. Jain & K. Verma, “Estimation of Ready Queue Processing Time using Transformed Factor-Type

Estimator in Multiprocessor Environment”, IJCA, Vol. 79, No. 16, pp. 40-48, 2013.

[3] D. Tam, R. Azimi& M. Stumm, “Thread Clustering: Sharing-Aware Scheduling on SMP-CMP-SMT Multiprocessors”,

ACM, pp. 47-58, 2007.

[4] G. Levin, S. Funk, C. Sadowski, I. Pye& S. Brandt, “DP-Fair: A Simple Model for Understanding Optimal

Multiprocessor Scheduling”, 22nd Euromicro Conference on RTS, IEEE pro., pp. 3-13, 2010.

[5] M. Bertogna & M. Cirinei, “Response-Time Analysis for Globally Scheduled Symmetric Multiprocessor Platforms”, ,

pp. , .

[6] R. Sendre, R. Singhai & S. Jain, “Markov Chain Analysis of Improved Round Robin CPU Scheduling Algorithm”,

IJREAM, Vol. 04, Issue 03, pp. 728-737, 2018.

[7] T. Li, D. Baumberger & S. Hahn, “Efficient and Scalable Multiprocessor Fair Scheduling Using Distributed Weighted

Round-Robin”, PPoPP’09 ACM, pp. 1-10, 2009.

[8] A. Fedorova, M. Seltzer & M.D. Smith, “Improving Performance Isolation on Chip Multiprocessors via an Operating

System Scheduler”, 16th International Conference PACT 2007, IEEE Computer Society, pp. 2007.

[9] A. Burns, R.I. Davis, P. Wang & F. Zhang,”Partitioned EDF Scheduling for Multiprocessors using a C=D Scheme”,

18th International Conference on RTNS, France, pp. 169-178, 2010.

[10] D. Shukla, A. Jain & A. Chowdhary, “Estimation of ready queue processing time under Usual Lottery Scheduling

scheme in Multiprocessor Environment”, JACSM, Vol. 11, No. 11, pp. 58-63, 2011.

[11] D. Shukla & A. Jain, “Analysis of ready queue processing time under PPS-LS and SRS-LS scheme in Multiprocessor

Environment”, GESJ: Computer Science and Telecommunication, Vol. 33, No. 1, pp. 54-61, 2012.

[12] H. Li & S. Baruah, “Global Mixed-Criticality Scheduling on Multiprocessors”, 24th Euromicro Conference on RTS,

IEEE pro., pp. 166-175, 2012.

[13] M. Cheramy, P.E. Hladik & A.M. Deplanche, “SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor

Scheduling Algorithm”,5th International Workshop on WATERS, 2014.

[14] R.I. Davis & A. Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems”, ACM Computing

Surveys, 2010.

[15] S.R. Vijayalakshmi & G. Padmavathi, “A Performance Study of GA and LHS in Multiprocessor Job Scheduling”,

IJCSI, Vol. 7, Issue 1, No. 1, pp. 37-42, 2010.

[16] A. Chandra, M. Adler, P. Goyal & P. Shenoy, “Surplus Fair Scheduling: A Proportional-Share CPU Scheduling

Algorithm for Symmetric Multiprocessors”, Work Supported NSF, CCR, CDA.

[17] G.A. Elliott & J.H. Anderson,”Globally Scheduled Real-Time Multiprocessor Systems with GPUs”, Work Supported

NSF, ARO, AFOSR and AFRL, pp. 1-54, 2009.

[18] D. Shukla, S. Jain, R. Singhai & R. Agrawal, “Markov Chain Model for the Analysis of Round-Robin Scheduling

Scheme”, IJANA, Vol. 1, No. 1, pp. 1-7, 2009.

[19] M. Naldi, “Internet Access Traffic Sharing in a Multi-user Environment”, Computer Networks, Vol. 38, pp. 809-824,

2002.

[20] D. Shukla & S. Ojha, “Deadlock index analysis of multi-level queue scheduling in operating system using data model

approach”, GESJ: CST, No. 6(29), pp. 93-110, 2010.

[21] Al-Husainy A.F M, “Best Job First CPU Scheduling Algorithm”, ITJ, Vol. 6, No. 2, pp. 288-293, 2007.

[22] J. Medhi, “Stochastic Jobs”, Ed. 4, Wiley Limited (Fourth Reprint), New Delhi, 1991(a). -

[23] J. Medhi, “Stochastic Models in Queuing Theory”, Academic Press Professional, Inc, San Diego, CA, 1991(b).

[24] R. Sendre & R. Singhai, “Stochastic Process to Analyze Behavior of Improved Round Robin CPU Scheduling

Algorithm”, IJMIE, Vol. 8, Issue 9, pp. 401-418, 2018.

[25] S. Jain & S. Jain, “Analysis of Multi Level Feedback Queue Scheduling using Markov Chain Model with Data Model

Approach”, IJANA, Vol. 7, No. 6, pp. 2915-2924, 2016.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 3, March : 2023

UGC CARE Group-1, 1504

[26] A.I. Awad, N.A. EL-Hefnawy & H.M. Abdel_Kader, “Enhanced Particle Swarm Optimization For Task Scheduling In

Cloud Computing Environments”, Elsevier, ICCMIT-2015, Vol. 65, pp. 920-929, 2015.

[27] R. Shyam & S.K. Nandal, “Improved Mean Round Robin with Shortest Job First Scheduling”, IJARCSSE, Vol. 04,

Issue 07, pp. 170-179, 2014.

[28] S.Bitam, S. Zeadally & A. Mellouk, “Fog Computing Job Scheduling Optimization Based on Bees Swarm”, Taylor &

Francis, EIS-2018, Vol. 12, No. 04, pp. 373-397, 2018.

[29] M.B. Gawali, & S.K. Shinde, “Task Scheduling and Resource Allocation in Cloud Computing using a Heuristic

Approach”, Springer, JCCASA-2018, Vol. 07, No. 04, pp. 02-16, 2018.

[30] I. Attiya, M.A. Elaziz, & S. Xiong, “Job Scheduling in Cloud Computing Using a Modified Harris Hawks Optimization

and Simulated Annealing Algorithm”, CIN-2020, Vol.2020, pp. 01-17, 2020.

[31] S. Gupta, S. Iyer, G. Agarwal, P. Manoharan, A.D. Algarni, G. Addehim & K. Raahemifar “Efficient Prioritization and

Processor Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud

Environment”, Electronics-2022, pp. 01-15, 2022.

[32] S.A. Alsaidy, A.D. Abbood & M.A. Sahid “Heuristic Initialization of PSO Task Scheduling Algorithm in Cloud

Computing”, Elsevier, Vol. 34, pp. 2370-2382, 2022.

[33] Md.R. Ullah, S. Molla, I.Md. Siddique, A.A. Siddique & Md.M. Abedin “Utilization of Johnson’s Algorithm for

Enhancing Scheduling Efficiency and Identifying the Best Operation Sequence: An Illustrative Scenario”, JRAP, Vol.

08, Issue 03, pp. 11-20, 2023.

