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ABSTRACT:  
Network traffic monitoring and analysis systems have become increasingly difficult to develop 

as both the Internet's complexity and network traffic volume have skyrocketed in recent years. 

Mechanisms for on-line analysis of thousands of events per second and effective ways for off-

line analysis of huge historical data are essential for critical NTMA applications like the 

detection of network assaults and abnormalities. The high dimensionality of network data 

provided by modern network monitoring systems allows for the widespread application of 

machine learning approaches to enhance the detection and classification of network attacks and 

anomalies, but this higher dimensionality comes at the cost of an increased data processing 

overhead. In this study, we introduce Big-DAMA, a big data analytics framework designed 

specifically for NTMA use cases. Big-DAMA is a versatile BDAF that can handle both stream 

and batch processing to evaluate and store massive volumes of data from a variety of 

heterogeneous sources. Big-DAMA follows the Data Stream Warehouse paradigm by utilizing 

commercially available big data storage and processing engines to provide both stream data 

processing and batch processing capabilities. This is accomplished by decomposing these 

engines into three distinct parts: stream, batch, and query. Several techniques for anomaly 

detection and network security are implemented in Big-DAMA by making use of supervised and 

unsupervised machine learning models and pre-existing ML libraries. We use Big-DAMA to 

compare the performance of many supervised ML models in detecting abnormalities and assaults 

in networks. Measurements taken from the WIDE backbone network are used in conjunction 

with the popular MAWILab dataset to classify attacks and then put through a series of tests to 

determine performance. By employing hardware virtualization technology, Big-DAMA may be 

readily deployed in cloud settings, where it can speed up calculations by a factor of 10. This is in 

comparison to a regular Apache Spark cluster. 

 

Keywords: Big-Data, Network Traffic Monitoring and Analysis, Network Attacks, Machine 

Learning, High-Dimensional Data & MAWILab. 

 

I. INTRODUCTION 

Today, Network Traffic Monitoring and Analysis plays a crucial role in elucidating the 

functioning of complex and huge networks, especially when issues arise. The analysis and 

processing of very large amounts of rapidly changing, heterogeneous network monitoring data is 

a major challenge for large NTMA applications. The data collected for network monitoring 

typically arrives in the form of high-velocity streams that must be continuously processed and 

analyzed. Many methods have been proposed throughout the years to acquire extensive data 

from live networks. In order to evaluate and draw conclusions from such voluminous data, a data 

processing system with sufficient flexibility is required. Novel solutions for large data processing 

have been more widely used due to their rapid development. However, the platforms that have 
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been conceived are vastly different from one another, each with distinct requirements and aims. 

Each big data expert, therefore, must fumble their way through the myriad of options. The same 

is true for big data analytics using ML-based techniques; despite the proliferation of ML libraries 

for big data platforms, there is a significant chasm between the two fields. 

 

In this paper, we present Big-DAMA, a Big Data Analytics Framework for network traffic 

monitoring applications. Based on the foundation of an earlier system called DBStream, we've 

developed an early version of the Big-DAMA BDAF prototype. Big-DAMA is a versatile BDAF 

that can handle both stream and batch processing to evaluate and store massive volumes of data 

from a variety of heterogeneous sources. Big-DAMA uses both supervised and unsupervised 

machine learning models to implement multiple data analytics algorithms for network security 

and anomaly detection. Standard machine learning libraries are used to implement these models. 

At now, Big-DAMA is being used in a test capacity as a cluster built atop virtual hardware 

technologies. We apply the Big-DAMA BDAF to real datasets collected from the WIDE 

backbone operational network to demonstrate its use in an operational NTMA application, 

specifically the detection of network attacks and traffic anomalies. Network assaults and traffic 

irregularities are difficult to detect automatically since they are always changing. Since both 

novel attacks and variations on existing ones are constantly appearing in the wild, it is 

challenging to clearly and continually describe the set of probable anomalies that may develop, 

especially in the case of network attacks. This means that ML-based models show promise for 

capturing the underlying properties of such unexpected occurrences, and that a generic anomaly 

detection system should be able to identify a broad variety of anomalies with various structures. 

This study extends our prior preliminary work on using big data analytics and machine learning 

to improve network security. 

The reminder of the paper is structured as follows. Section II presents an overview on the related 

work. In Section III we describe the main characteristics of the Big-DAMA BDAF. Section IV 

presents the experimental results of the study, including an in depth analysis on the application of 

Big-DAMA so the automatic detection and analysis of network attacks and traffic anomalies, as 

well as a performance comparison of Big DAMA against other BDAFs. Finally, Section V 

concludes the paper. 

 

II. State of the art 

 

III. The big DAMA Framework 

Big-primary DAMA's use case is in network analysis and data storage for massive volumes of 

monitoring information. Following a normal lambda design, Big-DAMA decomposes different 

frameworks for stream, batch, and query in order to provide support for both stream data 

processing and batch processing. Lambda architecture is an approach to data processing that 

combines batch and stream processing to deal with large data sets. The idea behind this design is 

to strike a good balance between latency, throughput, and fault tolerance by using batch 

processing to offer complete and accurate views of batch data and real-time stream processing to 

enable on-the-fly data analysis. 

For stream-based analysis, Big-DAMA employs Apache Spark streaming; for batch analysis, 

Apache Spark; and for query and storage, Apache Cassandra. Cassandra's fault-tolerance and 

performance make it preferable to other HDFS and Hadoop-based DBs like HBase and 
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Hive.  While HDFS including HBase and Hive has a single point-of-failure represented by the 

HDFS name nodes, Cassandra is completely distributed and has no single point of failure since 

every node has the same function. While HDFS allows for many name nodes to be established, 

failure tolerance may still be a problem due to the roles-split. While HDFS has a more traditional 

data warehousing approach, Cassandra was designed from the ground up to handle real-time 

transactional data. When compared to HDFS DBs like HBase, Cassandra performs much better 

in terms of performance and latency. In comparison to other NoSQL databases like HBase, 

MongoDB, and Couch base, newer benchmarks1 show that Cassandra excels at the kinds of 

tasks typically performed by real-world applications. When it comes to scalability, Cassandra 

excels, offering linear scalability without sacrificing processing performance. And lastly, as a 

NoSQL system, it facilitates the storage and management of data from a wide variety of sources, 

including unstructured data. 

Figure 1 depicts Big-overall DAMA's architectural plan. The Big-DAMA BDAF, which draws 

inspiration from DBStream, is organized according to a DSW paradigm and provides the 

opportunity to integrate real-time processing with massive storage and analytics. This paradigm 

allows for simultaneous on-line and off-line processing needs to be met by a single 

infrastructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Big- DAMA is built on top of the Hadoop ecosystem and relies on a data warehouse 

for its infrastructure. 

 

Within the Big-DAMA BDAF, we have developed different algorithms for network security and 

anomaly detection using supervised and unsupervised machine learning models. Too far, these 

models have been built on top of the Big-DAMA batch-processing branch, using commercially 

available Spark ML machine learning libraries. 

We are currently investigating the possibility of adopting Apache Beam, an advanced unified 

programming model, which follows the recently introduced data flow model and simplifies the 

implementation of both batch and streaming data processing jobs that can run on the base Spark 

execution engine used by Big-DAMA. 
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Currently, Big-DAMA is running on top of a virtualized data cluster with 12 virtual nodes, each 

with 150 GB of RAM and 30 TB of storage space, all linked together via Open switch. The 

physical infrastructure consists of 3 physical server nodes, each equipped with 2 sinter Xeon(R) 

E5-2630 v2-2.60GHz CPUs (24 cores total) \sand with a total capacity of 64 GB of memory. 

VMs running on the Linux kernel do the virtualization, while the Proxmox Virtual Environment 

(https://www.proxmox.com/) is used to manage and orchestrate the VMs. Big data frameworks 

are partially managed by a Cloudera, Hadoop ecosystem installation 

\s(https://www.cloudera.com/), utilizing distribution CDH 5.10 and Cloudera Manager (with 

Spark 2).  

 

IV. Detecting network attacks with big DAMA 

We use the widely-used MAWILab dataset for attacks labelling to analyze actual network traffic 

measurements taken from the WIDE backbone network to demonstrate Big-DAMA in action. 

Since 2001, MAWILab has been collecting daily 15-minute network traffic traces on a backbone 

connection between Japan and the US and making them publicly available. Using this data as a 

starting point, the MAWILab project employs a hybrid of four time-tested anomaly detectors to 

perform partial labeling of the traffic. 

Starting with a huge number of traffic characteristics retrieved from the packet traces as input, 

we compare the execution durations and detection accuracy of five different supervised ML 

models. Finally, we conduct an in-depth analysis of how well the various extracted features 

perform in detecting the examined assaults, and we compare and contrast various feature 

selection strategies for retaining the most important characteristics and improving execution 

speeds.  

 

Table I: Input features for the ML-based detectors. 

Field Feature Description 

Tot. volume 
# pkts  num. packets 

# bytes  num. bytes 

PKT size 

pkt h  H(PKT) 

pkt {min,avg,max,std}  min/max/std, PKT 

pkt p{1,2,5,...95,97,99}  percentiles 

IP Proto 

# ip protocols  num. diff. IP protocols 

ipp h  H(IPP) 

ipp {min,avg,max,std}  min/max/std, IPP 

ipp p{1,2,5,...95,97,99}  percentiles 

% icmp/tcp/udp  share of IP protocols 

IP TTL 

pkt h  H(TTL) 

ttl {min,avg,max,std}  min/max/std, TTL 

ttl p{1,2,5,...95,97,99}  percentiles 

IPv4/IPv6 

% IPv4/IPv6  Share of IPv4/IPv6 pkts. 

# IP src/dst  num. unique IPs 

top ip src/dst  most used IPs 
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TCP/UDP ports 

# port src/dst  num. unique ports 

top port src/dst  most used ports 

port h  H(PORT) 

port {min,avg,max,std}  min/max/std, PORT 

port p{1,2,5,...95,97,99}  percentiles 

TCP flags (byte) 

flags h  H(TCPF) 

flags {min,avg,max,std}  min/max/std, TCPF 

flags p{1,2,5,...95,97,99}  percentiles 

% SYN/ACK/PSH/...  share of TCP flags 

TCP WIN size 

win h  H(WIN) 

win {min,avg,max,std}  min/max/std, TCPF 

win p{1,2,5,...95,97,99}  percentiles 

 

Finally, we compare Big-performance DAMA's to that of existing big data platforms, 

demonstrating that the proposed system not only achieves excellent accuracy but also has the 

potential to surpass other platforms of its kind in terms of execution times. 

Field Feature Description. 

 

A. Data Description & ML Models 

This study analyses data from two months' worth of packet traces, which were gathered at the 

end of 2015. From the assaults and anomalies that have been identified, we zero in on those that 

are simultaneously picked up by all four MAWILab detectors, with a special emphasis on the 

ones that have been deemed unusual by MAWILab. 

We focus on five distinct assaults and anomalies: I distributed denial-of-service attacks (DDoS), 

(2) HTTP flash crowds (mptp-la), (3) Flooding attacks (Ping flood), and (4) UDP and (5) TCP-

ACK probing traffic as part of a distributed network scan (netscan). To do this, we train five 

distinct ML models, each of which is capable of detecting one of the five aforementioned attack 

types, and then we run all of these detectors in parallel on top of the data. As a consequence, 

each method of detection is able to not only identify the existence of an attack but also to 

categories its kind. 

For the detectors' conception, we choose among five fully-supervised models: CART Decision 

Trees (CART), Random Forest (RF), Support Vector Machines (SVM), Na ve Bayed (NB), and 

Neural Networks (MLP).  
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Figure 2: Detection performance per type of attack and ML-based approach. 

 

We chose these detectors because they have shown to be effective in the context of earlier work 

on anomaly detection and traffic categorization. To fine-tune these ML-based algorithms and 

conduct the analyses, we make use of the Spark ML Machine-Learning libraries. For more detail 

on the algorithms and their setup options, we refer the curious reader to the survey and the Spark 

ML documentation. Our assessment takes into account a time-slotted breakdown of anomaly 

types and their respective detection efficiencies. To do this, we calculate a collection of features 

defining the traffic in each one-second time slot extracted from the traffic traces. Furthermore, a 

label li, consisting of a binary vector li 2 R51, is applied to each slot I where each position 

denotes whether or not slot I has an anomaly of type j = 1..5. 

Conventional packet measurements such as traffic throughput, packet sizes, IP addresses and 

ports, transport protocols, flags, etc. are used to generate a large number (n) of features 

describing a time slot, which are then used to better detect attacks and anomalies. There are a 

total of n = 245 characteristics calculated for each of the I = 1..m time slots, and they are all 

listed in Tab. I. Please take into account that we not only use conventional characteristics like the 

minimum, mean, and maximum of some of the input data, but also take into account the 

empirical distribution of some of them, sampling the empirical distribution at a variety of 

percentiles. Since the whole distribution is considered, the information used as input is much 

enhanced. We also calculate the empirical entropy H (.), which reflects the dispersion of the 

samples in the given time interval, for each of these distributions. 

 

B. Detection Performance with Full Features 

By calculating the True and False Positive Rates for each attack type using the entire set of 245 

characteristics as input, we evaluate the detection/classification capabilities of the five supervised 

techniques. The ROC curves for each detector and each suggested attack class are shown in Fig. 
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2. All given findings are in agreement with 10-fold cross validation, which helps prevent over-

fitting. The chosen supervised detectors' comparison findings are shown in Fig. 2. There is no 

other method, other than the NB model, that yields more precise findings across all five assault 

types. DDoS assaults have significantly worse detection performance overall. Both the MLP and 

RF models function optimally, correctly identifying around 80% of assaults. 

In Table II, we provide the area under the ROC curve and the total execution time for the whole 

10-fold cross validation cycle for each model. Timings are reported as a percentage of the 

quickest time to completion during benchmarking of the models. 

For the time being, we will just look at the first row of each model (i.e., features mode full), 

which displays the results when all the input characteristics are used. Despite the fact that MLP 

and RF models provide almost identical detection results, training the former takes much longer 

(by a factor of three) than training the latter. Because of this, RFs are an attractive option for 

using Big-DAMA to identify network threats. Our next demonstration demonstrates how fewer 

but more relevant input characteristics might further boost execution speed. 

 

C. Improving Execution Time by Feature Selection 

While employing a high number of input features tends to boost the performance of certain 

supervised techniques, this is not always the ideal strategy to pursue since doing so might have a 

detrimental effect on execution speed. Increasing the number of features used raises the feature 

space's dimensionality, which may cause problems like sparsely and training over-fitting.  In the 

same vein, features that aren't necessary or that are redundant may have a negative impact on 

efficiency. Next, we demonstrate how much execution times may be reduced by paying close 

attention to the pre-filtering of input characteristics using common feature selection approaches. 

In order to build a more specific list of traffic characteristics, several search algorithms and 

assessment criteria may be used. For our purposes, we divide correlation-based selection into 

two camps: I a sub-set search selection, or FS, in which we take the sub-sets of features that are 

poorly correlated among each other but highly correlated to the targets; and (ii) a top PLCC 

feature selection, in which we simply take the most linearly correlated features for each attack 

type. To do this, we use the Best-First search method. Absolute values of the partial linear 

correlation coefficients (PLCC) between characteristics and assaults, broken down by attack 

type, are shown in Fig. 3.  

 

Table II: Area under the ROC curve and relative execution time on MAWI dataset. 

model 
features 

mode 

DDoS mptp-la  ping-flood  netscan-UDP  

netscan-TCP 

(ACK) 

ROC 

relative 

ET  ROC 

relative 

ET  ROC 

relative 

ET  ROC 

relative 

ET  ROC 

relative 

ET  

CART 

full 0.926 27.9 0.975 12.4 0.953 20.9 0.973 14.5 0.919 22.4 

FS 0.926 1.9 0.945 1.4 0.973 1.7 0.959 1.8 0.939 2.2 

top 

PLCC  0.895 1.7 0.966 1.8 0.957 6.2 0.972 5 0.922 6.2 

MLP 

full 0.995 27.4×103 0.998 27.3×103 0.996 27.3×103 0.997 27.3×103 0.997 27.4×103 

FS 0.948 59.7 0.979 76.3 0.995 74.7 0.995 13.9 0.989 72.9 

top 

PLCC  0.871 25.7 0.995 21.7 0.998 1.4×103 0.995 1.1×103 0.994 1.2×103 

Naive full 0.831 29.5 0.953 27.5 0.967 26.6 0.945 26.5 0.929 262 
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Bayes FS 0.865 1.37 0.995 2 0.969 3 0.969 2.3 0.952 2 

top 

PLCC  0.826 1.2 0.983 3.3 0.983 4.9 0.936 4.5 0.959 4.7 

Random 

Forest 

full 0.979 10.6 0.998 4.7 0.996 7.5 0.995 7.3 0.989 7.6 

FS 0.985 6 0.988 2.7 0.996 3.9 0.996 4 0.992 4.6 

top 

PLCC  0.943 405 0.989 2.5 0.992 5.6 0.997 5.9 0.989 5.8 

SVM 

full 0.936 37.7 0.983 5.6 0.982 13.6 0.983 11.3 0.969 18.5 

FS 0.805 3 0.917 1 0.934 2.8 0.934 2 0.879 2.2 

top 

PLCC  0.756 2.2 0.983 1.2 0.959 3.5 0.939 3.9 0.901 5 

 

The magnitude of the correlation coefficient is used to rank the features. First, PLCC values are 

often below 0.5, indicating that attributes are not strongly connected with the assaults. It is 

important to keep in mind that the lower performance achieved for the DDoS attack type might 

be explained by the fact that fewer input attributes are significantly connected to the DDoS class. 

Keeping only features with a PLCC coefficient value greater than 0.2 allows us to select the top-

PLCC features for each type of attack, yielding 11, 29, 51, 45, and 47 features for DDoS, HTTP 

flash crowd, ping flood, UDP, and TCP nets can, respectively. Choose 13 features, 19 features, 

21 features, and 19 features, respectively, for FS.  The execution time and area under the receiver 

operating characteristic curve for each of these feature selection methods are shown in Tab. 

II. Note that in all cases, there is a significant reduction on the execution times, with an 

associated reduction on the detection performance. Still, for the two best models, namely MLP 

and \sRF, detection results remain highly accurate. Interesting is the scale of the CART decision 

tree model, for which performance seven slightly increases for some types of attacks, with a 

dramatic reduction on the execution times. 

To get a better understanding on which are the best features to detect the studied attacks, Tab. III 

reports the top- \s10 correlated features per attack type, and Fig. 4 shows the \sinter-feature 

correlations among each set of 10 features, in form of a circular graph. Features are coherent 

with the characteristics of each attack type, e.g., having large number \sof packets towards a top 

targeted destination IP and destination \sport in the case of a DDoS attack.  
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Figure 3: Linear correlation between features and attacks (absolute values). Features are sorted 

by correlation coefficient magnitude. P-values are below 0.01 for the flagged, top correlated 

features. 

 

Note that in all cases, features derived from the empirical distributions are present \sin the top-10 

features, suggesting that such types of features, generally not computed in other studies, are 

highly relevant for the sake of detection of network attacks. 

 

D. Big-DAMA vs. DBStream vs. Spark 

In the last section of the study, we compare Big-DAMA to other big data systems for network 

monitoring. To compare different network monitoring systems, we adapt the benchmark for use 

with our own network security tasks and datasets. The benchmark comprises of seven distinct 

analysis tasks or jobs that are all interconnected in some way and are meant to be indicative of 

typical tasks in network traffic analysis. A variety of analytical complexities and time-window 

batch lengths (from processing micro-batches of 1 minute to lengthy batches of 1 hour) make up 

these projects. 

Table III: Top-10 correlated features per attack type. 

 

  DDoS HTTP flash crowd Ping flood  UDP netscan  TCP netscan 

f1 # pkts  % pkts! +TCPdst-port  % IPv4 pkts  head p (IPlen)  % IPv4 pkts 

f2 % pkts! +IP  p  TCPdst-port % IPv6 pkts  head p (IPlen)  % IPv6 pkts 
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f3 

tail p (TCPsrc-

port)    head p  TCPdst-port     p (IPlen)        

head p  

UDPdst-port      

tail p (TCPsrc-

port) 

f4 

tail p  UDPdst-

port     head p  TCPdst-port          

% ICMP 

pkts     % pkts! +IP  

head p (TCPwin-

size) 

f5 

tail p  TCPdst-

por     tail p  TCPdst-port      % pkts! +IP          

tail p (UDPsrc-

port)  

head p (TCPwin-

size) 

f6 

head p 

(UDPsrc-port)    tail p  TCPdst-port        # dst IPs           p (IPlen)           # TCPdst-ports 

f7 # TCPdst-ports      head p (TCPwin-size)            

head p 

(IPlen)               % UDP pkts  p  TCPdst-port 

f8 head p (IPTTL)      % pkts! +IP            

head p 

(IPTTL)         

tail p  UDPdst-

port    

tail p  TCPdst-

port 

f9 # src IPs       H  p  TCPdst-port        

head p 

(IPTTL)       # dst IPs      

head p  TCPdst-

port 

f10 head p (IPTTL)      tail p (TCPsrc-port)      # src IPs      # UDPdst-ports     p  TCPdst-port 

 

 

 

 
Figure 4: Top-10 feature correlation graphs for the different types of attack. 

 

The seven occupations are summed up as follows: J1: every 10 minutes, use team Cyrus IP2ASN 

mapping lists (http://www.team-cymru.org/) to map source/destination IPs to the underlying 

Autonomous System, and then calculate aggregate traffic data like min/max/avg RTT, number of 

different IPs, and total quantity of uploaded/downloaded bytes; J2: each hour, aggregate flows by 
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source AS to provide the same traffic data as J1; J3: every hour, choose the 10 autonomous 

systems with the highest number of IP addresses by mapping source IP addresses to AS 

numbers; J4: once each hour, choose the top 10 /24 subnets based on the quantity of flows they 

generate. J5: tally the number of flows and the bytes uploaded/downloaded for each source IP 

per minute. This is because J6 and J7 are incremental queries that take use of the DSW design: 

Update the list of active destination IPs from the last hour by computing a new set of destination 

IPs every minute in J6. Lastly, in J7, you should calculate the moving average of the bytes 

uploaded/downloaded per source IP per minute over the last hour. 

We evaluate Big-DAMA in relation to a standalone Spark cluster and our previously developed 

DBStream system, a BDAF for network monitoring. The virtualized 12-node environment 

described in Section III is home to both Big-DAMA and Spark. Unfortunately, DBStream can 

only be executed on a single node and does not function in a distributed environment.  

 
Figure 5: Performance comparison in terms of execution time in processing MAWI data. Big-

DAMA can speed up computations by a factor of 10 when compared to a standard Apache Spark 

cluster. 

 

Even while this skews the comparison in favor of DBStream, we have shown in that a single-

node deployment may still beat a Spark cluster on recursive analytical workloads like those seen 

in the test, especially jobs J6 and J7. Datasets similar to those used in this article are used for 

further evaluations. 

The findings are shown in Fig. 5 for three distinct data sizes (200 GB, 400 GB, and 800 GB) that 

were studied. The first thing to notice is that the results from the comparison between DBStream 

and the Spark cluster obtained in still hold: when traffic volumes are low, DBStream is able to 

outperform a 12-node Spark cluster. This is primarily due to the underlying characteristics of 

both systems, especially regarding the recursive jobs; DBStream is specifically tailored to handle 

such analytics, whereas Spark is meant for pure batch processing. It's important to keep in mind, 

however, that the Spark results are almost same across all three data volumes, indicating that the 
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bottleneck is not in the cluster capacity but rather in the features of Spark (data import delays are 

not taken into account in the benchmark). Big-DAMA may lower the execution time of a Spark 

cluster by an order of magnitude, from more than 300 minutes down to roughly 20. Big- DAMA, 

in contrast to DBStream, utilizes the whole 12-node cluster, allowing for linear scalability 

beyond a single node. A high-performance data analytics solution is provided by combining 

Spark streaming for managing tiny batches with the recursive nature of the DSW architecture for 

merging recursive findings on the Cassandra DB. 

 

V. Concluding remarks 

The findings are shown in Fig. 5 for three distinct data sizes (200 GB, 400 GB, and 800 GB) that 

were studied. The first thing to notice is that the results from the comparison between DBStream 

and the Spark cluster obtained in still hold: when traffic volumes are low, DBStream is able to 

outperform a 12-node Spark cluster. This is primarily due to the underlying characteristics of 

both systems, especially regarding the recursive jobs; DBStream is specifically tailored to handle 

such analytics, whereas Spark is meant for pure batch processing. It's important to keep in mind, 

however, that the Spark results are almost same across all three data volumes, indicating that the 

bottleneck is not in the cluster capacity but rather in the features of Spark (data import delays are 

not taken into account in the benchmark). Big-DAMA may lower the execution time of a Spark 

cluster by an order of magnitude, from more than 300 minutes down to roughly 20. Big- DAMA, 

in contrast to DBStream, utilizes the whole 12-node cluster, allowing for linear scalability 

beyond a single node. A high-performance data analytics solution is provided by combining 

Spark streaming for managing tiny batches with the recursive nature of the DSW architecture for 

merging recursive findings on the Cassandra DB. 
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