

956
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

NETWORK SECURITY AND ANOMALY DETECTION WITH BIG-DAMA, A

BIG DATA ANALYTICS FRAMEWORK
1Dr B Ravi Prasad, Professor, CSE Department, Marri Laxman Reddy Institute of Technology and

Management, Hyderabad, rprasad.boddu@gmail.com
2Dr.Aluri Brahmareddy, Associate professor, CSE Department, Marri Laxman Reddy Institute of

Technology and Management, Hyderabad brahmareddy475@gmail.com

ABSTRACT:
Network traffic monitoring and analysis systems have become increasingly difficult to develop

as both the Internet's complexity and network traffic volume have skyrocketed in recent years.

Mechanisms for on-line analysis of thousands of events per second and effective ways for off-

line analysis of huge historical data are essential for critical NTMA applications like the

detection of network assaults and abnormalities. The high dimensionality of network data

provided by modern network monitoring systems allows for the widespread application of

machine learning approaches to enhance the detection and classification of network attacks and

anomalies, but this higher dimensionality comes at the cost of an increased data processing

overhead. In this study, we introduce Big-DAMA, a big data analytics framework designed

specifically for NTMA use cases. Big-DAMA is a versatile BDAF that can handle both stream

and batch processing to evaluate and store massive volumes of data from a variety of

heterogeneous sources. Big-DAMA follows the Data Stream Warehouse paradigm by utilizing

commercially available big data storage and processing engines to provide both stream data

processing and batch processing capabilities. This is accomplished by decomposing these

engines into three distinct parts: stream, batch, and query. Several techniques for anomaly

detection and network security are implemented in Big-DAMA by making use of supervised and

unsupervised machine learning models and pre-existing ML libraries. We use Big-DAMA to

compare the performance of many supervised ML models in detecting abnormalities and assaults

in networks. Measurements taken from the WIDE backbone network are used in conjunction

with the popular MAWILab dataset to classify attacks and then put through a series of tests to

determine performance. By employing hardware virtualization technology, Big-DAMA may be

readily deployed in cloud settings, where it can speed up calculations by a factor of 10. This is in

comparison to a regular Apache Spark cluster.

Keywords: Big-Data, Network Traffic Monitoring and Analysis, Network Attacks, Machine

Learning, High-Dimensional Data & MAWILab.

I. INTRODUCTION

Today, Network Traffic Monitoring and Analysis plays a crucial role in elucidating the

functioning of complex and huge networks, especially when issues arise. The analysis and

processing of very large amounts of rapidly changing, heterogeneous network monitoring data is

a major challenge for large NTMA applications. The data collected for network monitoring

typically arrives in the form of high-velocity streams that must be continuously processed and

analyzed. Many methods have been proposed throughout the years to acquire extensive data

from live networks. In order to evaluate and draw conclusions from such voluminous data, a data

processing system with sufficient flexibility is required. Novel solutions for large data processing

have been more widely used due to their rapid development. However, the platforms that have

mailto:rprasad.boddu@gmail.com
mailto:brahmareddy475@gmail.com

957
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

been conceived are vastly different from one another, each with distinct requirements and aims.

Each big data expert, therefore, must fumble their way through the myriad of options. The same

is true for big data analytics using ML-based techniques; despite the proliferation of ML libraries

for big data platforms, there is a significant chasm between the two fields.

In this paper, we present Big-DAMA, a Big Data Analytics Framework for network traffic

monitoring applications. Based on the foundation of an earlier system called DBStream, we've

developed an early version of the Big-DAMA BDAF prototype. Big-DAMA is a versatile BDAF

that can handle both stream and batch processing to evaluate and store massive volumes of data

from a variety of heterogeneous sources. Big-DAMA uses both supervised and unsupervised

machine learning models to implement multiple data analytics algorithms for network security

and anomaly detection. Standard machine learning libraries are used to implement these models.

At now, Big-DAMA is being used in a test capacity as a cluster built atop virtual hardware

technologies. We apply the Big-DAMA BDAF to real datasets collected from the WIDE

backbone operational network to demonstrate its use in an operational NTMA application,

specifically the detection of network attacks and traffic anomalies. Network assaults and traffic

irregularities are difficult to detect automatically since they are always changing. Since both

novel attacks and variations on existing ones are constantly appearing in the wild, it is

challenging to clearly and continually describe the set of probable anomalies that may develop,

especially in the case of network attacks. This means that ML-based models show promise for

capturing the underlying properties of such unexpected occurrences, and that a generic anomaly

detection system should be able to identify a broad variety of anomalies with various structures.

This study extends our prior preliminary work on using big data analytics and machine learning

to improve network security.

The reminder of the paper is structured as follows. Section II presents an overview on the related

work. In Section III we describe the main characteristics of the Big-DAMA BDAF. Section IV

presents the experimental results of the study, including an in depth analysis on the application of

Big-DAMA so the automatic detection and analysis of network attacks and traffic anomalies, as

well as a performance comparison of Big DAMA against other BDAFs. Finally, Section V

concludes the paper.

II. State of the art

III. The big DAMA Framework

Big-primary DAMA's use case is in network analysis and data storage for massive volumes of

monitoring information. Following a normal lambda design, Big-DAMA decomposes different

frameworks for stream, batch, and query in order to provide support for both stream data

processing and batch processing. Lambda architecture is an approach to data processing that

combines batch and stream processing to deal with large data sets. The idea behind this design is

to strike a good balance between latency, throughput, and fault tolerance by using batch

processing to offer complete and accurate views of batch data and real-time stream processing to

enable on-the-fly data analysis.

For stream-based analysis, Big-DAMA employs Apache Spark streaming; for batch analysis,

Apache Spark; and for query and storage, Apache Cassandra. Cassandra's fault-tolerance and

performance make it preferable to other HDFS and Hadoop-based DBs like HBase and

958
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

Hive. While HDFS including HBase and Hive has a single point-of-failure represented by the

HDFS name nodes, Cassandra is completely distributed and has no single point of failure since

every node has the same function. While HDFS allows for many name nodes to be established,

failure tolerance may still be a problem due to the roles-split. While HDFS has a more traditional

data warehousing approach, Cassandra was designed from the ground up to handle real-time

transactional data. When compared to HDFS DBs like HBase, Cassandra performs much better

in terms of performance and latency. In comparison to other NoSQL databases like HBase,

MongoDB, and Couch base, newer benchmarks1 show that Cassandra excels at the kinds of

tasks typically performed by real-world applications. When it comes to scalability, Cassandra

excels, offering linear scalability without sacrificing processing performance. And lastly, as a

NoSQL system, it facilitates the storage and management of data from a wide variety of sources,

including unstructured data.

Figure 1 depicts Big-overall DAMA's architectural plan. The Big-DAMA BDAF, which draws

inspiration from DBStream, is organized according to a DSW paradigm and provides the

opportunity to integrate real-time processing with massive storage and analytics. This paradigm

allows for simultaneous on-line and off-line processing needs to be met by a single

infrastructure.

Figure 1: Big- DAMA is built on top of the Hadoop ecosystem and relies on a data warehouse

for its infrastructure.

Within the Big-DAMA BDAF, we have developed different algorithms for network security and

anomaly detection using supervised and unsupervised machine learning models. Too far, these

models have been built on top of the Big-DAMA batch-processing branch, using commercially

available Spark ML machine learning libraries.

We are currently investigating the possibility of adopting Apache Beam, an advanced unified

programming model, which follows the recently introduced data flow model and simplifies the

implementation of both batch and streaming data processing jobs that can run on the base Spark

execution engine used by Big-DAMA.

Transactional sources

OLTP

File 1

Source

Other

Source

Data presentation

layer

Data

Warehouse

DM 1 DM 2

DM 3

Data Access Layer

Reporting tools

User

generates

reports

ETL Reporting

959
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

Currently, Big-DAMA is running on top of a virtualized data cluster with 12 virtual nodes, each

with 150 GB of RAM and 30 TB of storage space, all linked together via Open switch. The

physical infrastructure consists of 3 physical server nodes, each equipped with 2 sinter Xeon(R)

E5-2630 v2-2.60GHz CPUs (24 cores total) \sand with a total capacity of 64 GB of memory.

VMs running on the Linux kernel do the virtualization, while the Proxmox Virtual Environment

(https://www.proxmox.com/) is used to manage and orchestrate the VMs. Big data frameworks

are partially managed by a Cloudera, Hadoop ecosystem installation

\s(https://www.cloudera.com/), utilizing distribution CDH 5.10 and Cloudera Manager (with

Spark 2).

IV. Detecting network attacks with big DAMA

We use the widely-used MAWILab dataset for attacks labelling to analyze actual network traffic

measurements taken from the WIDE backbone network to demonstrate Big-DAMA in action.

Since 2001, MAWILab has been collecting daily 15-minute network traffic traces on a backbone

connection between Japan and the US and making them publicly available. Using this data as a

starting point, the MAWILab project employs a hybrid of four time-tested anomaly detectors to

perform partial labeling of the traffic.

Starting with a huge number of traffic characteristics retrieved from the packet traces as input,

we compare the execution durations and detection accuracy of five different supervised ML

models. Finally, we conduct an in-depth analysis of how well the various extracted features

perform in detecting the examined assaults, and we compare and contrast various feature

selection strategies for retaining the most important characteristics and improving execution

speeds.

Table I: Input features for the ML-based detectors.

Field Feature Description

Tot. volume
pkts num. packets

bytes num. bytes

PKT size

pkt h H(PKT)

pkt {min,avg,max,std} min/max/std, PKT

pkt p{1,2,5,...95,97,99} percentiles

IP Proto

ip protocols num. diff. IP protocols

ipp h H(IPP)

ipp {min,avg,max,std} min/max/std, IPP

ipp p{1,2,5,...95,97,99} percentiles

% icmp/tcp/udp share of IP protocols

IP TTL

pkt h H(TTL)

ttl {min,avg,max,std} min/max/std, TTL

ttl p{1,2,5,...95,97,99} percentiles

IPv4/IPv6

% IPv4/IPv6 Share of IPv4/IPv6 pkts.

IP src/dst num. unique IPs

top ip src/dst most used IPs

960
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

TCP/UDP ports

port src/dst num. unique ports

top port src/dst most used ports

port h H(PORT)

port {min,avg,max,std} min/max/std, PORT

port p{1,2,5,...95,97,99} percentiles

TCP flags (byte)

flags h H(TCPF)

flags {min,avg,max,std} min/max/std, TCPF

flags p{1,2,5,...95,97,99} percentiles

% SYN/ACK/PSH/... share of TCP flags

TCP WIN size

win h H(WIN)

win {min,avg,max,std} min/max/std, TCPF

win p{1,2,5,...95,97,99} percentiles

Finally, we compare Big-performance DAMA's to that of existing big data platforms,

demonstrating that the proposed system not only achieves excellent accuracy but also has the

potential to surpass other platforms of its kind in terms of execution times.

Field Feature Description.

A. Data Description & ML Models

This study analyses data from two months' worth of packet traces, which were gathered at the

end of 2015. From the assaults and anomalies that have been identified, we zero in on those that

are simultaneously picked up by all four MAWILab detectors, with a special emphasis on the

ones that have been deemed unusual by MAWILab.

We focus on five distinct assaults and anomalies: I distributed denial-of-service attacks (DDoS),

(2) HTTP flash crowds (mptp-la), (3) Flooding attacks (Ping flood), and (4) UDP and (5) TCP-

ACK probing traffic as part of a distributed network scan (netscan). To do this, we train five

distinct ML models, each of which is capable of detecting one of the five aforementioned attack

types, and then we run all of these detectors in parallel on top of the data. As a consequence,

each method of detection is able to not only identify the existence of an attack but also to

categories its kind.

For the detectors' conception, we choose among five fully-supervised models: CART Decision

Trees (CART), Random Forest (RF), Support Vector Machines (SVM), Na ve Bayed (NB), and

Neural Networks (MLP).

961
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

Figure 2: Detection performance per type of attack and ML-based approach.

We chose these detectors because they have shown to be effective in the context of earlier work

on anomaly detection and traffic categorization. To fine-tune these ML-based algorithms and

conduct the analyses, we make use of the Spark ML Machine-Learning libraries. For more detail

on the algorithms and their setup options, we refer the curious reader to the survey and the Spark

ML documentation. Our assessment takes into account a time-slotted breakdown of anomaly

types and their respective detection efficiencies. To do this, we calculate a collection of features

defining the traffic in each one-second time slot extracted from the traffic traces. Furthermore, a

label li, consisting of a binary vector li 2 R51, is applied to each slot I where each position

denotes whether or not slot I has an anomaly of type j = 1..5.

Conventional packet measurements such as traffic throughput, packet sizes, IP addresses and

ports, transport protocols, flags, etc. are used to generate a large number (n) of features

describing a time slot, which are then used to better detect attacks and anomalies. There are a

total of n = 245 characteristics calculated for each of the I = 1..m time slots, and they are all

listed in Tab. I. Please take into account that we not only use conventional characteristics like the

minimum, mean, and maximum of some of the input data, but also take into account the

empirical distribution of some of them, sampling the empirical distribution at a variety of

percentiles. Since the whole distribution is considered, the information used as input is much

enhanced. We also calculate the empirical entropy H (.), which reflects the dispersion of the

samples in the given time interval, for each of these distributions.

B. Detection Performance with Full Features

By calculating the True and False Positive Rates for each attack type using the entire set of 245

characteristics as input, we evaluate the detection/classification capabilities of the five supervised

techniques. The ROC curves for each detector and each suggested attack class are shown in Fig.

962
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

2. All given findings are in agreement with 10-fold cross validation, which helps prevent over-

fitting. The chosen supervised detectors' comparison findings are shown in Fig. 2. There is no

other method, other than the NB model, that yields more precise findings across all five assault

types. DDoS assaults have significantly worse detection performance overall. Both the MLP and

RF models function optimally, correctly identifying around 80% of assaults.

In Table II, we provide the area under the ROC curve and the total execution time for the whole

10-fold cross validation cycle for each model. Timings are reported as a percentage of the

quickest time to completion during benchmarking of the models.

For the time being, we will just look at the first row of each model (i.e., features mode full),

which displays the results when all the input characteristics are used. Despite the fact that MLP

and RF models provide almost identical detection results, training the former takes much longer

(by a factor of three) than training the latter. Because of this, RFs are an attractive option for

using Big-DAMA to identify network threats. Our next demonstration demonstrates how fewer

but more relevant input characteristics might further boost execution speed.

C. Improving Execution Time by Feature Selection

While employing a high number of input features tends to boost the performance of certain

supervised techniques, this is not always the ideal strategy to pursue since doing so might have a

detrimental effect on execution speed. Increasing the number of features used raises the feature

space's dimensionality, which may cause problems like sparsely and training over-fitting. In the

same vein, features that aren't necessary or that are redundant may have a negative impact on

efficiency. Next, we demonstrate how much execution times may be reduced by paying close

attention to the pre-filtering of input characteristics using common feature selection approaches.

In order to build a more specific list of traffic characteristics, several search algorithms and

assessment criteria may be used. For our purposes, we divide correlation-based selection into

two camps: I a sub-set search selection, or FS, in which we take the sub-sets of features that are

poorly correlated among each other but highly correlated to the targets; and (ii) a top PLCC

feature selection, in which we simply take the most linearly correlated features for each attack

type. To do this, we use the Best-First search method. Absolute values of the partial linear

correlation coefficients (PLCC) between characteristics and assaults, broken down by attack

type, are shown in Fig. 3.

Table II: Area under the ROC curve and relative execution time on MAWI dataset.

model
features

mode

DDoS mptp-la ping-flood netscan-UDP

netscan-TCP

(ACK)

ROC

relative

ET ROC

relative

ET ROC

relative

ET ROC

relative

ET ROC

relative

ET

CART

full 0.926 27.9 0.975 12.4 0.953 20.9 0.973 14.5 0.919 22.4

FS 0.926 1.9 0.945 1.4 0.973 1.7 0.959 1.8 0.939 2.2

top

PLCC 0.895 1.7 0.966 1.8 0.957 6.2 0.972 5 0.922 6.2

MLP

full 0.995 27.4×103 0.998 27.3×103 0.996 27.3×103 0.997 27.3×103 0.997 27.4×103

FS 0.948 59.7 0.979 76.3 0.995 74.7 0.995 13.9 0.989 72.9

top

PLCC 0.871 25.7 0.995 21.7 0.998 1.4×103 0.995 1.1×103 0.994 1.2×103

Naive full 0.831 29.5 0.953 27.5 0.967 26.6 0.945 26.5 0.929 262

963
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

Bayes FS 0.865 1.37 0.995 2 0.969 3 0.969 2.3 0.952 2

top

PLCC 0.826 1.2 0.983 3.3 0.983 4.9 0.936 4.5 0.959 4.7

Random

Forest

full 0.979 10.6 0.998 4.7 0.996 7.5 0.995 7.3 0.989 7.6

FS 0.985 6 0.988 2.7 0.996 3.9 0.996 4 0.992 4.6

top

PLCC 0.943 405 0.989 2.5 0.992 5.6 0.997 5.9 0.989 5.8

SVM

full 0.936 37.7 0.983 5.6 0.982 13.6 0.983 11.3 0.969 18.5

FS 0.805 3 0.917 1 0.934 2.8 0.934 2 0.879 2.2

top

PLCC 0.756 2.2 0.983 1.2 0.959 3.5 0.939 3.9 0.901 5

The magnitude of the correlation coefficient is used to rank the features. First, PLCC values are

often below 0.5, indicating that attributes are not strongly connected with the assaults. It is

important to keep in mind that the lower performance achieved for the DDoS attack type might

be explained by the fact that fewer input attributes are significantly connected to the DDoS class.

Keeping only features with a PLCC coefficient value greater than 0.2 allows us to select the top-

PLCC features for each type of attack, yielding 11, 29, 51, 45, and 47 features for DDoS, HTTP

flash crowd, ping flood, UDP, and TCP nets can, respectively. Choose 13 features, 19 features,

21 features, and 19 features, respectively, for FS. The execution time and area under the receiver

operating characteristic curve for each of these feature selection methods are shown in Tab.

II. Note that in all cases, there is a significant reduction on the execution times, with an

associated reduction on the detection performance. Still, for the two best models, namely MLP

and \sRF, detection results remain highly accurate. Interesting is the scale of the CART decision

tree model, for which performance seven slightly increases for some types of attacks, with a

dramatic reduction on the execution times.

To get a better understanding on which are the best features to detect the studied attacks, Tab. III

reports the top- \s10 correlated features per attack type, and Fig. 4 shows the \sinter-feature

correlations among each set of 10 features, in form of a circular graph. Features are coherent

with the characteristics of each attack type, e.g., having large number \sof packets towards a top

targeted destination IP and destination \sport in the case of a DDoS attack.

964
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

Figure 3: Linear correlation between features and attacks (absolute values). Features are sorted

by correlation coefficient magnitude. P-values are below 0.01 for the flagged, top correlated

features.

Note that in all cases, features derived from the empirical distributions are present \sin the top-10

features, suggesting that such types of features, generally not computed in other studies, are

highly relevant for the sake of detection of network attacks.

D. Big-DAMA vs. DBStream vs. Spark

In the last section of the study, we compare Big-DAMA to other big data systems for network

monitoring. To compare different network monitoring systems, we adapt the benchmark for use

with our own network security tasks and datasets. The benchmark comprises of seven distinct

analysis tasks or jobs that are all interconnected in some way and are meant to be indicative of

typical tasks in network traffic analysis. A variety of analytical complexities and time-window

batch lengths (from processing micro-batches of 1 minute to lengthy batches of 1 hour) make up

these projects.

Table III: Top-10 correlated features per attack type.

 DDoS HTTP flash crowd Ping flood UDP netscan TCP netscan

f1 # pkts % pkts! +TCPdst-port % IPv4 pkts head p (IPlen) % IPv4 pkts

f2 % pkts! +IP p TCPdst-port % IPv6 pkts head p (IPlen) % IPv6 pkts

965
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

f3

tail p (TCPsrc-

port) head p TCPdst-port p (IPlen)

head p

UDPdst-port

tail p (TCPsrc-

port)

f4

tail p UDPdst-

port head p TCPdst-port

% ICMP

pkts % pkts! +IP

head p (TCPwin-

size)

f5

tail p TCPdst-

por tail p TCPdst-port % pkts! +IP

tail p (UDPsrc-

port)

head p (TCPwin-

size)

f6

head p

(UDPsrc-port) tail p TCPdst-port # dst IPs p (IPlen) # TCPdst-ports

f7 # TCPdst-ports head p (TCPwin-size)

head p

(IPlen) % UDP pkts p TCPdst-port

f8 head p (IPTTL) % pkts! +IP

head p

(IPTTL)

tail p UDPdst-

port

tail p TCPdst-

port

f9 # src IPs H p TCPdst-port

head p

(IPTTL) # dst IPs

head p TCPdst-

port

f10 head p (IPTTL) tail p (TCPsrc-port) # src IPs # UDPdst-ports p TCPdst-port

Figure 4: Top-10 feature correlation graphs for the different types of attack.

The seven occupations are summed up as follows: J1: every 10 minutes, use team Cyrus IP2ASN

mapping lists (http://www.team-cymru.org/) to map source/destination IPs to the underlying

Autonomous System, and then calculate aggregate traffic data like min/max/avg RTT, number of

different IPs, and total quantity of uploaded/downloaded bytes; J2: each hour, aggregate flows by

966
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

source AS to provide the same traffic data as J1; J3: every hour, choose the 10 autonomous

systems with the highest number of IP addresses by mapping source IP addresses to AS

numbers; J4: once each hour, choose the top 10 /24 subnets based on the quantity of flows they

generate. J5: tally the number of flows and the bytes uploaded/downloaded for each source IP

per minute. This is because J6 and J7 are incremental queries that take use of the DSW design:

Update the list of active destination IPs from the last hour by computing a new set of destination

IPs every minute in J6. Lastly, in J7, you should calculate the moving average of the bytes

uploaded/downloaded per source IP per minute over the last hour.

We evaluate Big-DAMA in relation to a standalone Spark cluster and our previously developed

DBStream system, a BDAF for network monitoring. The virtualized 12-node environment

described in Section III is home to both Big-DAMA and Spark. Unfortunately, DBStream can

only be executed on a single node and does not function in a distributed environment.

Figure 5: Performance comparison in terms of execution time in processing MAWI data. Big-

DAMA can speed up computations by a factor of 10 when compared to a standard Apache Spark

cluster.

Even while this skews the comparison in favor of DBStream, we have shown in that a single-

node deployment may still beat a Spark cluster on recursive analytical workloads like those seen

in the test, especially jobs J6 and J7. Datasets similar to those used in this article are used for

further evaluations.

The findings are shown in Fig. 5 for three distinct data sizes (200 GB, 400 GB, and 800 GB) that

were studied. The first thing to notice is that the results from the comparison between DBStream

and the Spark cluster obtained in still hold: when traffic volumes are low, DBStream is able to

outperform a 12-node Spark cluster. This is primarily due to the underlying characteristics of

both systems, especially regarding the recursive jobs; DBStream is specifically tailored to handle

such analytics, whereas Spark is meant for pure batch processing. It's important to keep in mind,

however, that the Spark results are almost same across all three data volumes, indicating that the

967
UGC CARE Group-1,

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 52, Issue 3, March 2023

bottleneck is not in the cluster capacity but rather in the features of Spark (data import delays are

not taken into account in the benchmark). Big-DAMA may lower the execution time of a Spark

cluster by an order of magnitude, from more than 300 minutes down to roughly 20. Big- DAMA,

in contrast to DBStream, utilizes the whole 12-node cluster, allowing for linear scalability

beyond a single node. A high-performance data analytics solution is provided by combining

Spark streaming for managing tiny batches with the recursive nature of the DSW architecture for

merging recursive findings on the Cassandra DB.

V. Concluding remarks

The findings are shown in Fig. 5 for three distinct data sizes (200 GB, 400 GB, and 800 GB) that

were studied. The first thing to notice is that the results from the comparison between DBStream

and the Spark cluster obtained in still hold: when traffic volumes are low, DBStream is able to

outperform a 12-node Spark cluster. This is primarily due to the underlying characteristics of

both systems, especially regarding the recursive jobs; DBStream is specifically tailored to handle

such analytics, whereas Spark is meant for pure batch processing. It's important to keep in mind,

however, that the Spark results are almost same across all three data volumes, indicating that the

bottleneck is not in the cluster capacity but rather in the features of Spark (data import delays are

not taken into account in the benchmark). Big-DAMA may lower the execution time of a Spark

cluster by an order of magnitude, from more than 300 minutes down to roughly 20. Big- DAMA,

in contrast to DBStream, utilizes the whole 12-node cluster, allowing for linear scalability

beyond a single node. A high-performance data analytics solution is provided by combining

Spark streaming for managing tiny batches with the recursive nature of the DSW architecture for

merging recursive findings on the Cassandra DB.

REFERENCES

