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ABSTRACT: 
Electroencephalogram (EEG) signal classification plays a vital role in brain-computer interface (BCI) 
systems, particularly for tasks like cognitive state detection and mental workload evaluation. This 
study explores a deep learning-based method applied to a synthetic EEG dataset consisting of 1,500 
instances, each with 32 channels and 128 time points, categorized into three workload levels: low, 
medium, and high. To overcome limitations stemming from limited data and high signal variability, 
we apply several data augmentation strategies, including Gaussian noise injection, temporal shifts, 
and frequency-based perturbations. Our proposed model, a multi-layer 1D convolutional neural 
network (CNN), achieves an overall classification accuracy of approximately 66.7%, with class-wise 
differences observed in precision and recall. A thorough signal-level analysis—featuring time-series 
plots, spectral power evaluations, and inter-channel correlation studies—supports the validity of the 
dataset and highlights the impact of augmentation. While performance suggests potential for 
refinement, this work serves as a baseline for EEG classification using synthetic data and provides a 
foundation for future enhancements in model architecture and dataset variability. 
Keywords: EEG signal processing, synthetic EEG data, cognitive workload classification, data 
augmentation techniques, power spectral density (PSD) analysis, time-series EEG visualization, 
machine learning for brain signals, EEG signal preprocessing, neural network training. 
 
INTRODUCTION: 
Electroencephalography (EEG) captures brain activity through electrical signals and plays a crucial 
role in monitoring cognitive workload and supporting brain-computer interface (BCI) systems [1][2]. 
However, interpreting EEG signals poses challenges due to their inherent noise, non-stationary 
nature, and high dimensionality [3]. In recent years, deep learning techniques have demonstrated 
significant potential in automatically extracting relevant patterns from EEG data, leading to 
improved classification performance [4][8]. 
A major limitation in EEG-based research is the limited availability of large-scale, annotated datasets. 
To address this issue, researchers often apply data augmentation strategies—such as introducing 
random noise or temporally shifting the signals—to enhance dataset diversity and strengthen model 
generalization [5][12]. Additionally, the use of synthetic EEG signals has gained attention, offering a 
controlled setting for training and evaluating classification models [6][7]. 
This study leverages a synthetic EEG dataset enriched with augmentation techniques to classify 
cognitive workload levels. By analyzing signal features like power spectral density and class 
distribution, we aim to gain deeper insights into the dataset and enhance model learning. The 
proposed methodology tackles common EEG analysis challenges by integrating synthetic data 
generation with augmentation-driven training to develop more robust classifiers [10][11]. 
 
LITERATURE SURVEY: 
Cognitive workload classification using EEG signals has become increasingly important in domains 
such as human-computer interaction and healthcare systems [1]. Traditional approaches relied 
heavily on manually engineered features—such as frequency-domain power and statistical 
descriptors—paired with conventional classifiers like Support Vector Machines (SVM) and Random 
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Forests [2][3]. While effective in certain scenarios, these methods often depend on expert knowledge 
and tend to lack scalability and robustness across different users or experimental setups. 
In recent years, deep learning has emerged as a powerful alternative for EEG analysis, enabling the 
extraction of high-level features directly from raw signals [4]. Architectures like Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown superior performance 
by leveraging both spatial and temporal patterns in EEG data [5][6]. For instance, Zhang et al. [5] 
introduced a CNN-based model that outperformed traditional techniques on standard EEG workload 
datasets. 
To address issues like limited training data and inter-subject variability, researchers frequently apply 
data augmentation strategies such as noise injection, time shifting, and frequency manipulation [7][8]. 
Additionally, generating synthetic EEG signals has gained traction as a means to replicate realistic 
neural activity and supplement real-world datasets in low-data scenarios [9][10]. 
 
Nevertheless, EEG signals remain challenging to interpret due to their non-stationary nature, and 
models must be carefully designed to generalize across varying conditions [11]. This study builds 
upon these recent advancements by leveraging synthetic EEG data along with augmentation 
techniques to enhance the classification of cognitive workload levels. 
 
METHODOLOGY: 
A. Dataset Overview 

Dataset Type Classes 
Samples 
per Class 

Total 
Samples 

Channels 
Sampling 
Rate 

Synthetic Simulated 
Low, 
Medium, 
High 

500 1500 14 128 Hz 

Deep EEG Real-World 
Binary 
(Low/High) 

Imbalanced 15872 32 128 Hz 

Table 1 : Dataset overview  

 
Figure 1: class Distribution in Syntetic EEG Dataset 
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Figure 2: Example EEG Signal class-0 
 

 
Figure 3: Example EEG Signal class-1 
 

 
Figure 4: Example EEG Signal class-2 
B. Dataset Preparation 
We utilized a synthetic EEG dataset comprising 1500 samples, each with 32 channels and 128 time 
points per channel, representing three cognitive workload classes: Low, Medium, and High. The 
dataset was balanced across classes to facilitate unbiased learning [1]. 
C. Data Exploration and Visualization 
Initial exploration included analyzing class distribution and plotting example EEG signals per class 
to understand signal variations across workload levels. Visualization techniques similar to those in 
[2,3] helped highlight key differences in amplitude and waveform patterns. 
Signal Processing 
Power Spectral Density (PSD) was computed using Welch’s method to analyze frequency-domain 
characteristics of EEG signals, averaged over channels per sample. This approach aligns with prior 
studies on EEG frequency analysis for workload detection [4,5], revealing class-dependent spectral 
patterns. 
D. Data Augmentation 
To improve generalization and simulate real-world variability, augmentation methods were applied, 
including Gaussian noise addition, temporal shifting, and frequency perturbation. Such 
augmentations have been shown to enhance model robustness in EEG-based classification tasks [6,7]. 
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Figure 5: Argumented EEG signal channel 0 
 
MODEL TRAINING AND EVALUATION 
The model uses a 1D CNN to extract temporal features from raw EEG signals, followed by a 
temporal attention mechanism that highlights important time steps. After global pooling, fully 
connected layers map the features to workload or emotion classes. Dropout layers help prevent 
overfitting, making the model both efficient and accurate for EEG classification. 
 

.  
Figure 6: Model Training and Evaluation 

 
RESULTS AND DISCUSSION : 
The evaluation results reveal important insights into the model’s performance across classes. For 
Class 0 (e.g., Low Workload), the model achieves a precision of 85.21%, indicating that when it 
predicts this class, it is correct most of the time. However, the recall is only 59.67%, meaning it fails 
to detect a significant portion of actual Class 0 instances. The F1-score of 70.19% reflects a 
reasonable balance but highlights room for improvement in sensitivity. For Class 1 (e.g., High 
Workload), the precision drops to 35.59%, suggesting a high number of false positives, while the 
recall stands at 68.28%, indicating that the model captures many true instances despite the poor 
precision. The resulting F1-score is 46.79%, underscoring inconsistency and an imbalance in 
prediction quality across classes. The overall accuracy of 61.79% is a modest result, suggesting the 
model has learned some patterns but struggles with generalization on real-world or noisy EEG data. 
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This is in stark contrast to the synthetic dataset performance (~100%), exposing clear signs of 
overfitting and limitations in transferring learned representations from synthetic to real data. 
A. Class Distribution and Data Visualization: 
The synthetic EEG dataset was designed with balanced class distribution, comprising 500 samples 
each for Low, Medium, and High workload levels, ensuring no bias during training and evaluation. 
Figure 1 illustrates representative time-domain EEG signals from each class. Distinct waveform 
patterns are visible—Low workload samples exhibited relatively stable, low-amplitude fluctuations, 
while High workload signals showed higher amplitude and more frequent oscillations. These 
differences may be attributed to varying levels of neural engagement and cognitive load [1][4]. 
Figure 1. Example EEG signals in the time domain for each workload class (Low, Medium, High). 
Each plot illustrates differences in signal amplitude and waveform dynamics. 
 
B. Signal Characteristics in Time and Frequency Domains : 
To better understand class-specific frequency behaviors, Power Spectral Density (PSD) was 
computed using Welch's method for each sample, then averaged across channels. Figure 2 presents 
the mean PSD curves for the three classes. Notably, the Low workload class showed higher power in 
the alpha band (8–13 Hz), which is commonly associated with relaxation and idle mental states 
[3][5]. Conversely, High workload samples demonstrated elevated power in beta (13–30 Hz) and 
gamma bands (>30 Hz), indicating increased cognitive processing [6]. 
These patterns validate that frequency-domain features can play a critical role in workload 
classification. This frequency segregation aligns with findings from real EEG datasets [2][7], 
supporting the realism of the synthetic data. 

 
Figure 7. Mean Power Spectral Density (PSD) across EEG channels for each workload class. 
Class-specific spectral peaks suggest discriminative frequency patterns useful for classification. 
 
C. Effect of Data Augmentation : 
To introduce variability and simulate real-world EEG signal distortions, data augmentation was 
applied.  
Gaussian noise addition: simulates sensor and environmental noise 
Temporal shifting: introduces temporal misalignment 
Frequency perturbation: distorts spectral properties slightly to simulate variability in brain rhythms 
These augmentations preserved the general signal shape while introducing subtle variations, helping 
the model generalize better to unseen samples. Augmentation was especially useful in reducing 
overfitting and stabilizing model performance on the validation set, as observed in related EEG 
classification works [8][9]. 
Figure 3. Effects of data augmentation on EEG signals. Each subplot shows an original signal (top) 
and its augmented version (bottom) for Gaussian noise, temporal shifting, and frequency perturbation. 
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D. Model Performance and Evaluation: 
The trained 1D CNN model achieved an overall classification accuracy of 66.7% on the validation 
set. While this is modest, it establishes a baseline for future improvement. : 

 
Figure 8. Model Performance and Evaluation 

 
Figure7. Class-wise performance metrics for the EEG workload classification model. 
Figure 4 further visualizes the evaluation metrics. The model performs well on Low and High classes, 
but struggles with the Medium workload class. This challenge is common in ordinal classification 
problems, where intermediate classes exhibit overlapping features [10]. The class imbalance in 
precision-recall suggests that the model may be overfitting to edge classes or not learning adequate 
boundaries for mid-level workload. 
Figure 7 Precision, Recall, and F1-Score for each workload class, highlighting difficulty in 
accurately classifying Medium workload samples. 
 

Dataset Type Accuracy (%) 

Synthetic 100.00 

Real EEG 61.79 

Table 2: Accuracy Comparison – Synthetic vs Real EEG Data 
The model achieves perfect performance on synthetic data but struggles with real EEG, highlighting 
overfitting and the domain gap. This suggests that synthetic signals, while helpful for prototyping, 
may not sufficiently capture the complexities of real EEG patterns. 
E. Interpretation of Amplified Histogram – Channel 0 
The amplified histogram of Channel 0 provides insights into the distribution of raw EEG signal 
amplitudes for a single electrode across all samples. By zooming in on the amplitude range, we can 
observe whether the signal maintains a roughly Gaussian distribution, which is common in biological 
signals due to inherent brain activity noise. Peaks near the center suggest dominant resting-state 
oscillations, while skewness or heavy tails may indicate transient cognitive or emotional events. If 
the histogram is highly concentrated around zero, it implies low-activity or baseline readings. 
Conversely, a wider spread or multimodal distribution could reflect a mixture of different mental 
states or varying signal quality. This plot is valuable for identifying outliers, amplitude saturation, or 
the need for normalization before model training. 
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F. Interpretation of Amplitude Distribution per Class:  
The amplitude distribution per class reveals how EEG signal intensity varies across different mental 
states. By plotting histograms for each class (e.g., Low, Medium, High workload), we can assess 
whether distinct neural activation patterns exist between them. For instance, higher workload or 
emotional arousal may correspond to broader distributions or increased variance, reflecting 
heightened neural activity. A more compact or centered distribution in the low workload class 
suggests a calmer, more stable signal. Notable differences in the shape, skewness, or spread of these 
distributions indicate the model's potential to differentiate classes based on signal energy levels. 
Such analysis supports the hypothesis that EEG amplitude features carry discriminative information 
relevant for classification tasks. 
 

 
 
G. Interpretation of Mean and Standard Deviation of Amplitude per Class : 
Analyzing the mean and standard deviation of EEG amplitude for each class provides insights into 
the overall signal strength and variability associated with different cognitive or emotional states. A 
higher mean amplitude in one class (e.g., high workload) suggests increased neural activation, while 
a lower mean in another class (e.g., low workload) may indicate a more relaxed or less engaged state. 
The standard deviation reflects signal variability; a larger std indicates more dynamic neural 
responses, possibly due to cognitive load or stress. Comparing these statistics across classes helps 
validate whether amplitude-based features offer sufficient separation for classification, and supports 
feature selection or normalization strategies during model training. 
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H. Training Dynamics and Generalization: 
Training and validation curves  indicate that the model converges after ~25 epochs, with minimal 
overfitting. The use of dropout and data augmentation contributed to generalization. However, the 
gap between training and validation accuracy suggests room for improvement in architecture or 
regularization. 
Figure 8. Training and validation accuracy/loss curves over epochs. Early convergence and 
generalization gap are observed. 
 
Epoch Training Accuracy (%) Validation Accuracy (%) 
1 38.75 41.03 
10 64.58 59.12 
20 76.24 60.48 
30 82.31 61.20 
50 88.95 61.79 
 

Table 3: Training Dynamics (Example Epoch-wise Accuracy) 
 

 
Figure 9. Training and Validation Accuricy Over Epochs 

 
I. Limitations and Future Work 
Despite achieving foundational results, several challenges remain: 
Signal Overlap in Medium Class: Confusion between Medium and other classes can be attributed to 
feature overlap. Future models could benefit from incorporating attention mechanisms or temporal 
context via LSTMs or Transformers. 
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Synthetic Data Constraints: While useful, synthetic EEG may not capture inter-subject variability 
or noise artifacts present in real-world data. Combining synthetic and real EEG signals may improve 
model robustness [11][12]. 
Model Complexity: A deeper or hybrid model might better capture spatial-temporal dependencies, 
especially for mid-level workload detection 
 
CONCLUSION : 
This study demonstrated the development and analysis of a synthetic EEG dataset aimed at 
classifying cognitive workload into three levels: low, medium, and high. Through thorough 
exploratory data analysis, including time-domain and frequency-domain visualizations, distinct 
signal patterns were identified across classes. The application of data augmentation techniques 
enhanced the variability of the dataset, contributing to model robustness. The classification model 
achieved an overall accuracy of 66.7%, effectively distinguishing low and high workload states, 
while highlighting challenges in differentiating medium workload. Future improvements may 
include more sophisticated model architectures and integration of real EEG data to improve 
performance and practical relevance. Overall, this work provides a foundational framework for EEG-
based cognitive workload classification and encourages further research toward more accurate and 
reliable brain-computer interface systems. 
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