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ABSTRACT 

Due to the widespread use of information and communication technology (ICT) applications in our 

daily lives, malicious software threats and their detection are becoming a crucial aspect of information 

security. One of the most challenging issues in the design and development of antimalware systems is 

malware identification. In order to detect polymorphic and metamorphic malware quickly, dynamic 

analysis methods must be developed. demonstrates how to use Long Short-Term Memory (LSTM) to 

analyze trace data and find dangerous code. Models were developed for the execution traces of both 

malicious and benign Portable Executable (PE) files. We constructed our first dataset using the 

execution trace output obtained from dynamic analysis of the PE file. The suggested solution is more 

than 98% accurate, according to extensive testing with a data set that includes both benign and 

malicious programmers. 
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I. Introduction 

Malware is software designed to carry out destructive tasks, such as obtaining root access, stealing 

private data, and rendering the target machine inoperable. Meanwhile, the rapid growth of the software 

industry and the Internet has led to the emergence of a broad variety of malware. More than 774 million 

malware samples have been found in the previous three quarters, representing a nearly 34% rise. Over 

time, malware—also referred to as malware—increases. Malware detection is therefore a significant 

and intriguing subject. Malware detection techniques have been thoroughly researched. Static anti-

virus software that relies on signatures is frequently employed to detect malware because of its limited 

capacity to recognize novel threats. If malware has been encrypted, disguised, or packed to evade 

detection, it can readily evade detection by signature-based security methods. 

Zero-day malware can get beyond this detection mechanism. Scanning of the system in real time The 

malware detection program lurenjie17@mails.ucas.ac.c is more effective than cloaking techniques. A 

safe and regulated environment, including virtual computers, emulators, sandboxes, etc., is necessary 

for dynamic behavior-based malware detection techniques [4] [5]. Conducting behavioral analysis 

using information gathered from interactions with the environment, such as API and DLL calls, is the 

next step. Despite their significant research, these methods are useless when used to large data sets [6]. 

It takes a lot of effort and time to prevent dynamic behavior-based malware detection technologies 

from compromising the operating system. Machine learning-based methods for detecting malware 

have been developed in recent years. The first publication of the data mining-based malware detection 

technique was in ref [7]. It employs three different kinds of static features: A text string, a byte 

sequence, and a PE header are used to spot malware. Kolter and Maloof [8] evaluated the effectiveness 

of naive Bayes, decision trees, and support vector machines for virus identification using n-grams as 

opposed to byte sequences. In recent years [9,10], malware has also been detected using artificial 

neural networks [9]. There are also new methods for detecting malware. 
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Malware can be detected by image processing in [11] and [12]. However, the previous attempt was 

successful enough in terms of malware detection. The machine learning classifier is trained by 

manually analyzing malicious code and comparing it with features extracted from the code itself. An 

innovative and efficient approach to determine if a Windows executable is malware has been proposed 

in this study to reduce engineering costs for artificial features. The assembly format files of the 

executables need to be recovered by splitting them first with IDA Pro. We need a method to take the 

opcode string out of each file in assembly format. Then, word embedding techniques [13] and long-

term memory (LSTM) [14] are used to comprehend the feature vector representation of the opcode 

and automatically learn the opcode sequence patterns of the malware. After the second LSTM layer, 

we add an average aggregation layer to improve the immutability of the local feature representation. 

We ran a series of tests on a dataset consisting of 969 malicious files and 123 benign files to see if our 

strategy worked. MalwareXiv: 1906.04593v1 [cs.CR] 10 June 2019 Detection performance was 

evaluated during the experimental period and comprehensive performance comparison with other 

similar studies was conducted. The assessment results demonstrate that our suggested method can 

identify malware with an average AUC of 0.99 and classify malware with an average AUC of 0.987. 

Malware analysis techniques are usually categorised into two major groups: static and dynamic. In 

static analysis, an application is observed for malicious patterns without execution. These data files or 

applications are decrypted and disassembled into feature vectors. Feature vectors characterise the 

essential features and format information of the file potentially containing the malicious pattern. Anti-

malware solutions detect malicious patterns by analysing these feature vectors. Conventional malware 

detectors use a signature-based detection method. These detectors are stored with a vast database of 

malware signatures (malicious code patterns). They decode the suspicious file and match its extracted 

static features with the stored malware signatures. Malware variants can easily undermine conventional 

anti-malware solutions.  

 

II. Literature Review 

Unlike static analysis, dynamic analysis-based malware analysis techniques are more resistant to 

obfuscation. Dynamic analysis was used to classify API requests that took less than five minutes in 

[1]. The AUC, a measure of quality, was calculated using 170 samples and yielded a score of 0.96. 

Separately collected samples of benign and malicious software were used to build a response network 

using the API call feature set. It performs well compared to previous methods, but lacks research on 

execution speed, which is essential for real-time implementations. ESN and RNN tests were performed 

in [3] to learn the language of the malware. ESN performed better than RNN in the majority of studies. 

Tests were performed in [4] to determine when to stop running viruses on network traffic, as shown in 

[5]. Conventional procedures require 67% more time than this method. With long-chain API calls as a 

feature, the RNN and its long-term short-term memory (LSTM) and CNN versions were used for 

malware classification in [6]. The main problem with current methods is that they take a long time to 

test the behavior of the system during operation. It has been used in [7] to classify malware using a 

system call sequence in the form of a hybrid CNN and RNN. SVM and Hidden Markov Model were 

previously used to obtain these system calls, but dynamic analysis was used to obtain them and it was 

found to be more efficient (HMM). The biggest problem, however, is the lack of discussion about the 

relevance of runtime in real-time virus detection. Using RNN and two datasets, [13] proposes a 

technique. In addition, they tested the performance of several wellknown classical machine learning 

classifiers. With a run time of 5 seconds, they claimed an accuracy of 94%. Analysis-based static, 

dynamic, and mixed malware detection methods have been the subject of several investigations. HMM 

has been used for both static and dynamic feature set analysis and to compare detection rates for a 

large number of malware types in [8]. Overall, they found that dynamic analysis had the best detection 

rate WindowsDynamic-Brain-Droid (WDBD) was the model we developed to compare and contrast 

several traditional machine learning algorithms (MLA) and deep learning architecture to determine 
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which technique is best for Windows Malware Classification. The number of malware and benign 

patterns in our dataset varies with runtime, which is why we used two separate datasets. 

 

III. Proposed Methodology 

The main goal of Long-Term Memory (LSTM), a specialised RNN architecture, is to resolve the leak 

slope problem or at the very least lessen the impact of the gradability problem. performance of 

computers is a leak slope. Nodes in the LSTM neural network have concealed state from the preceding 

phase, similar to RNN. The node, a typical LSTM unit, has a better structure than an RNN, which is 

crucial for supplying long-term memory by lessening the impact of the leak gradient. A standard LSTM 

unit generates an output value from an input value. The produced output value of the current cell and 

the prior cell's cell state value—which will be detailed in more detail in the coming paragraphs—are 

both used during this process. The following three functions can be carried out by an LSTM unit. 

Erasing undesired information from the tile's present state by using the Forgotten Gate Through the 

front door, add new details to the current state of the cell. Output the condition of the current cell 

through the output port. 

An typical LSTM unit's interior is straightforward and practical, as seen in Figure 1. By disregarding 

the input of this current cell (Xt) and its output (ht1) of the preceding cell (ht1), the sigmoid function 

may be utilised to create an output between 0 and 1 on the left side of a cell. The current cell state is 

updated and created by multiplying this value, ft, by the cell state that was previously displayed, Ct1. 

A value that travels across cells to transfer information between them is essentially what a cell state is. 

The forgetting gate is a component of the unit that uses a multiplier operation to determine which 

information will be forgotten and how much will be remembered in succeeding cells [26]. In the centre 

of the cell, there are two sigmoid functions, a tan h function, and their output is multiplied together. 

The output of the previous cell, ht1, as well as the input from the current cell, Xt, are both used as 

inputs for the sigmoid function in this. The output value of this sigmoid, in contrast to the sigmoid 

function used in the monitoring process, will be used to signify what new value should be added to the 

existing state of the cell. An array of possible values is created by the tan h function, which may or 

may not be added to the cell's present state in the future. By dividing the output of the cell's sigmoid 

by the output of tan h C t, one may determine the values that should be added to the cell's present state. 

The output of the sigmoid it is multiplied by the output of the tan h C t to achieve this. The final current 

cell state is produced by updating the prior cell state Ct1, which was altered by the forget gate, with 

fresh data from the input via an add operation. The front gate is the name given to this portion of the 

LSTM unit as a result [26]. 

An array of possible values is created by the tan h function, which may or may not be added to the 

cell's present state in the future. By dividing the output of the cell's sigmoid by the output of tan h C t, 

one may determine the values that should be added to the cell's present state. The output of the sigmoid 

it is multiplied by the output of the tan h C t to achieve this. The final current cell state is produced by 

updating the prior cell state Ct1, which was altered by the forget gate, with fresh data from the input 

via an add operation. 
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Fig 1: Data processing Pipeline 

The front gate is the name given to this portion of the LSTM unit as a result [26]. In general, the current 

LSTM cell creates the output by updating the cell state of the previous cell while also receiving the 

output and cell state of the previous cell in addition to the current cell's input. The sequential internal 

nature of the LSTM architecture gives higher efficiency when handling data that comprises prolonged 

sequences of events than the basic RNN architecture. 

 

IV. Result & Discussion 

We designed and developed two datasets for the study: the sequences of instructions (for the ISM 

model) and the basic blocks (for the BSM model). We obtained native x86 PE (Portable Executable) 

files from Windows Operating Systems (Microsoft Windows 8.1 Pro (OS Build 9600), Microsoft 

Windows 10 Pro 19.09 (OS Build 18363.418), and Commando VM v-2.0 [30]). Malicious executables 

were downloaded from the VirusShare website [31]. Since we aim to detect malware, we randomly 

chose the malicious samples, including various malware types, such as virus, worm, and trojan. We 

conducted a total of 16 experiments for the first model, ISM by manipulating 4 values for the sequence 

length, 3 values for dropout rate, 5 values for optimizer and 4 values for the number of LSTM nodes. 

The resulting number of correctly and incorrectly classified samples are shown in a confusion matrix 

(Table 2). The number of true negatives TN in the confusion matrix refers to correctly recognized 

instructions as benign instructions. In contrast, the number of true positives TP refers to correctly 

recognized instructions as malicious instructions. The number of false positives FP shows benign 

instructions recognized as malicious, whereas the number of false negatives FN shows malicious 

instructions recognized as benign. The true positive rate TPR is calculated by (1) as 92.19% and the 

false positive rate FPR is calculated by (2) as 18.34%. Accuracy rate ACC is calculated by (3) as 

87.51%. 

Here fig-2representsthe precision of the distinction between benign and malicious samples. 

Additionally, the graph contrasts the proposed LSTM model with the existing ANN model. The ANN 

model is unable to accurately differentiate between dangerous and benign components. Because 

malicious code consists of a series of operations, ANN is unable to remember code sequences. 

However, because the LSTM model has a memory unit, it can provide improved accuracy as the 

number of epochs increases. While the number of ages is increased, ANN fails to offer improved 

accuracy at the same time. The dataset (Drebin-215) also contains 215 functionalities from 15,036 app 

samples, of which 9476 were malware samples from the Drebin project and the remaining 5560 were 

safe samples [4]. The dataset (Drebin-215) also contains 215 data points from 15,036 app specimens, 

of which 9476 were deemed benign and the remaining 5560 were deemed malicious. The public can 

access the Drebin samples for free and they are frequently used by scientists 
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Fig 2: Accuracy Measurement 

Precision is defined as TP/(TP+FP). Figure 3 depicts the classification of harmful samples and good 

samples. The graph also compares the proposed LSTM model to the current ANN model. The ANN 

method falls short of offering a more precise classification of damaging and beneficial cases. ANN is 

unable to recall harmful code sequences since it comprises of a number of operations. However, 

because the LSTM model has a memory component, it can provide better precession as the number of 

epochs rises. At the same time, as the number of epochs rises, ANN fails to provide. In [27] and [26], 

two LSTM architectures were reported, which used two and four hidden LSTM layers, respectively. 

The proposed ISM method achieved similar accuracy rates with those two models. Our BSM method 

improved the accuracy rate by approximately %10 by achieving %99.26. Our LSTM architecture 

included a single hidden LSTM layer, which made the architecture less complicated. Finally, we 

developed a novel method to detect malicious code by extending previously proposed methods in 

several aspects. Our method is capable of detecting malware using obfuscation techniques by 

employing dynamic analysis since run trace outputs are dynamically generated. The ability of neural 

networks to adapt to data changes makes our method robust against malware obfuscation methods. In 

addition, working on assembly code without preprocessing in ISM and with small preprocessing in 

BSM keeps the time minimum spent for preprocessing. Also, using a single LSTM layer reduces the 

need for resources required for training the model. 

 

V. Conclusion 

Malware detection methods have been evolving since the advent of information technologies that 

profoundly affected people's lives. Faster virus detection methods must be developed due to the 

information technology sector's exponential expansion and more accurate. Malware writers' anti-

detection tactics, such as obfuscation methods, also necessitate the use of complex and completely 

automated malware detection systems. Artificial intelligence (AI)-based technologies are the most 

promising options for developing more reliable malware detection methods in light of these 

requirements. In early AI-based research, machine learning (ML) classification algorithms were 

widely used to differentiate between data generated by beneficial and dangerous software. However, 

ML classification algorithms do not provide completely automated techniques as feature extraction 

and selection need time and effort. 
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