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ABSTRACT 

The first step in the control design process is to create appropriate mathematical models of the system 

that has to be regulated. Physical laws or experimental data can be used to build these models. This 

section introduces the state-space and transfer function representations of dynamic systems. Next, we 

discuss some basic techniques for modeling electrical and mechanical systems and show how to build 

these models in MATLAB for further analysis. The observer is employed to watch the nonlinear 

function based on this. The stability of the closed-loop system is provided to guarantee the stability of 

the observer and the diagnosis system. 
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I. Introduction 

Systems that adapt or change over time in accordance with a set of rules are called dynamic systems. 

This rule can be expressed as a system of first-order differential equations for a wide variety of physical 

systems: 

𝑥̇=
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)      (1) 

Equation (1)'s state vector, x(t), is a set of variables that depicts the configuration of the system at a 

specific time. For instance, in a simple mechanical mass-spring-damper system, the two state variables 

may be the mass's location and velocity. The vector u(t) represents the external input vector to the 

system at time t[1-3]. The (possibly nonlinear) function f generates the time derivative (rate of change) 

of the state vector, dy/dx, at any given instant in time. Equation (1) can be integrated to precisely 

determine the state at any given future time, x(𝑡1), given knowledge of the starting state, x(𝑡0) and the 

temporal history of the inputs, u(t), between  𝑡0 and 𝑡1.  There is a minimal number of state variables, 

n, necessary to capture the "state" of a given system and be able to forecast the system's future behavior 

(solve the state equations), even though the state variables themselves are not unique. The system 

order, or n, establishes the dimensionality of the state-space. The number of independent energy 

storage components in the system typically correlates with the system order[4-5]. Equation (1) 

provides a relatively generic relationship that may be applied to a wide range of systems; on the other 

hand, its analysis may prove to be highly challenging. To make the problem more manageable, there 

are two frequent simplifications. First, the system is considered to be time invariant if the function f, 

that is, x  ̇ = f(x,u), does not depend directly on time. Considering that the fundamental physical 

principles themselves usually do not depend on time, this is generally a fairly plausible assumption. 

The parameters or coefficients of the function f are constant for time-invariant systems. It is possible 

for the state variables, x(t), and control inputs, u(t), to remain dependent on time. The system's linearity 

is the subject of the second widely held belief. Almost all physical systems are, in fact, nonlinear. Put 

otherwise, f is usually some complex function of the inputs and the state. Nonlinearities can occur in 

a variety of ways; in control systems, "saturation"—the occurrence of an element of the system 

reaching a physical limit—is one of the most prevalent. Fortunately, most systems have roughly linear 

dynamics over a limited enough working range (think of a tangent line close to a curve)[6-7]. The 

system of first-order differential equations in this instance can be expressed as a matrix equation,  

x ̇=Ax+Bu. 
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Fig-1 Mass spring damper system 

Analysis of linear time-invariant (LTI) systems (Fig-1 Mass spring damper system) was the only 

feasible approach up until the introduction of digital computers, and even then, only to a significant 

extent. As a result, these presumptions form the basis of the majority of control theory's conclusions. 

Thankfully, as we will see, these outcomes have shown to be incredibly successful, and LTI techniques 

have been used to overcome numerous important engineering issues. The real strength of feedback 

control systems lies in their ability to function (be robust) in the face of inevitable modeling 

uncertainty[8-9]. 

 

II. State-Space Representation: 

The typical state-space representation for continuous linear time-invariant (LTI) systems is provided 

below: 

𝑥̇  =A𝑥 +B𝑢           (2) 

𝑦 = 𝐶𝑥 + 𝐷𝑢            (3) 

Where A is the system matrix (nxn), B is the input matrix (nxp), C is the output matrix (qxn), D is the 

feedforward matrix (qxp), x is the vector of state variables (nx1), 𝑥̇ is the time derivative of the state 

vector (nx1), u is the input or control vector (px1), and y is the output vector (qx1)[10-11]. Because 

there are frequently state variables that are not immediately seen or are otherwise not of interest, the 

output equation, Equation (3), is required. Which state variables (or combinations thereof) are 

accessible for use by the controller are indicated by the output matrix, C. Furthermore, it frequently 

happens that the state variables are the sole way that the outputs depend on the inputs; in this scenario, 

D is the zero matrix. Equation (1) makes it simple to handle nonlinear systems, systems with non-zero 

initial conditions, and multi-input/multi-output (MIMO) systems using the state-space model, also 

known as the time-domain representation. Consequently, "modern" control theory makes heavy use of 

the state-space representation[12-15]. 

 

III. Transfer Function Representation:  

One of the most crucial characteristics of LTI systems is that, in the event that the system's input is 

sinusoidal, the output will likewise be sinusoidal, albeit potentially with varying magnitude and phase. 

The system's frequency response is represented by these magnitude and phase discrepancies, which 

are functions of frequency.  A system's time-domain representation can be changed into a frequency-

domain input/output representation, or transfer function, by applying the Laplace transform. By doing 

this, it also converts the differential equation that governs into an algebraic equation, which is 

frequently simpler to understand. The following defines the Laplace transform of a time domain 

function, f(t): 

𝐹(𝑠) = 𝐿(𝑓(𝑡)) = ∫ 𝑒−𝑠𝑡∞

0
𝑓(𝑡)𝑑𝑡         (4) 

Where the complex frequency variable S=σ+jω is the parameter. In practical application, it is 

uncommon that you will need to assess a Laplace transform directly (but you should know how to). 

It is especially crucial to understand the Laplace transform of a function's nth derivative:  
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𝐿 {
𝑑𝑛𝑓

𝑑𝑡𝑛
} = 𝑠𝑛𝑓(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓(0) − ⋯ . −𝑓𝑛−1(0)     (5) 

When evaluating LTI single-input/single-output (SISO) systems, such as those controlled by a 

constant coefficient differential equation, frequency-domain techniques are most frequently 

employed, as the following example illustrates: 

𝑎𝑛 
𝑑𝑛𝑦

𝑑𝑡𝑛  +………..+ 𝑎1 
𝑑𝑦

𝑑𝑡
 + 𝑎0 𝑦(𝑡)= 𝑏𝑚 

𝑑𝑚𝑢

𝑑𝑡𝑚  +………..+ 𝑏1 
𝑑𝑢

𝑑𝑡
 + 𝑏0 𝑢(𝑡)     (6) 

The Laplace transform of this equation is given below: 

𝑎𝑛𝑠𝑛𝑌(𝑠) + ⋯ + 𝑎1𝑠 𝑌(0) +  𝑎0𝑌(𝑠) = 𝑏𝑚𝑠𝑚𝑈(𝑠) + ⋯ + 𝑏1𝑠 𝑈(𝑠) +  𝑏0𝑈(𝑠)  (7) 

Where the Laplace Transforms of y(t) and u(t), respectively, are denoted by Y(s) and U(s). Keep in 

mind that we always assume that y(0), ̇(y(0))̇ , u(0), and all other initial conditions are zero while 

finding transfer functions. The function of transfer from  

 input 𝑈(𝑠) to output 𝑌(𝑠) is, therefore: 

G(s)= 
𝑌(𝑠)

𝑈(𝑠)
 =

𝑏𝑚𝑠𝑚+𝑏𝑚−1𝑠𝑚−1…+𝑏1𝑠 + 𝑏0

𝑎𝑛𝑠𝑛+ 𝑏𝑛−1𝑠𝑛−1…+𝑎1𝑠 + 𝑎0
        (8) 

It is useful to factor the numerator and denominator of the transfer function into what is termed zero-

pole-gain form: 

G(s)= 
𝑁(𝑠)

𝐷(𝑠)
 = K  

(𝑠−𝑧1)(𝑠−𝑧2)…….(𝑠−𝑧𝑚−1)(𝑠−𝑧𝑚)

(𝑠−𝑝1)(𝑠−𝑝2)…….(𝑠−𝑝𝑛−1)(𝑠−𝑝𝑛)
      (9) 

The zeros of the transfer function,𝑧1 … … 𝑧𝑚 are the roots of the numerator polynomial, i.e. the values 

of  such that 𝑁(𝑠) = 0. The poles of the transfer function, 𝑝1 … … 𝑝𝑛 , are the roots of the denominator 

polynomial, i.e. the values of  such that D(s)=0. Both the zeros and poles may be complex valued 

(have both real and imaginary parts). The system gain is 

  𝐾 =
𝑏𝑚

𝑎𝑛
. 

Keep in mind that the state-space representation also allows us to directly determine the transfer 

function in the following ways: 

G (s)= 
𝑌(𝑠)

𝑈(𝑠)
 = 𝐶(𝑠𝐼 − 𝐴)−1 + D       (10) 

 

IV. Mechanical Systems: 

Mechanical system analysis is based on Newton's equations of motion. Equation (11), which represents 

Newton's second law, indicates that the product of a body's mass and acceleration is the total force 

acting on it. For our purposes, Newton's third law says that two bodies in contact feel the same amount 

of contact force, but it acts in different directions. 

∑ 𝐹 = 𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2         (11) 

It is best to create a free-body diagram (FBD) of the system that displays all of the applied forces when 

using this equation. The free-body diagram for this system is shown below. The spring force is 

proportional to the displacement of the mass, x, and the viscous damping force is proportional to the 

velocity of the mass, 𝑣 = 𝑥̇. Both forces oppose the motion of the mass and are, therefore, shown in 

the negative x-direction. Note also that x=0 corresponds to the position of the mass when the spring is 

unstretched (shown in fig-2). 

 
Fig-2  Free body diagram of Mass spring damper system 
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We now calculate the total force and apply Equation (11), Newton's second law, in each direction. 

There aren't any forces at work in the y direction in this instance, but there are some in the x 

direction. 
∑ 𝐹𝑥 = 𝐹(𝑡) − 𝑏𝑥̇ − 𝑘𝑥 = 𝑚𝑥̈       

 (12) 

The dynamic state of the system is fully described by this equation, which is sometimes referred to as 

the governing equation. We will later see how to utilize this to examine system attributes like stability 

and performance, as well as to compute the system's reaction to any external input, F(t). The mass-

spring-damper system's state-space representation can be found by breaking down the second-order 

governing equation into a pair of first-order differential equations. We select the position and velocity 

as our state variables in order to achieve this.  

𝑋 =  [
𝑥
𝑥̇

]          (13) 

Whereas the velocity variable records the kinetic energy held by the mass, the position variable records 

the potential energy contained in the spring. The damper doesn't hold energy; it just releases it. It is 

frequently useful to think about which variables best capture the energy stored in the system when 

selecting state variables. 

The state equation in this case is: 

𝑋̇ = [
𝑥̇
𝑥̇

] = [
0 1

−𝑘/𝑚 −𝑏/𝑚
] [

𝑥
𝑥̇

] + [
0

1/𝑚
] 𝐹(𝑡)    (14) 

For example, the output equation is as follows if we want to be able to control the mass's position: 

 

𝑦 = [1 0] [
𝑥
𝑥̇

]         (15) 

Table-1 Parameters of mass spring damper system[16-20] 

 

m                   Mass                                     10.0 kg 

k                   Spring constant                          1.0 N/m 

b                   Damping constant                        0.5 Ns/m 

F                   Input force                              2.0 N 

 

For this system, assuming zero initial conditions, the Laplace transform is 

 

𝑚𝑠2𝑋(𝑠) + 𝑏𝑠𝑋(𝑠) + 𝑘𝑋(𝑠) = 𝐹(𝑠)       (16) 

 

Consequently, the force input to displacement output transfer function is 

 
𝑋(𝑠)

𝐹(𝑠)
= 

1

𝑚𝑠2+𝑏𝑠+𝑘
        (17) 

𝑋(𝑠)

𝐹(𝑠)
= 

1

10𝑠2+0.5𝑠+1
        

Response of deseeded system can be checked with different input signal with help of bode and 

nyquist plot with matlab. 

 

V. Results: 
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Fig-3 Step Response and Impulse response of designed system 

 
Fig-4 Gain margin and phase margin of designed system 

Gm =  Inf, Pm = 12.8371, Wcg =  Inf, Wcp = 0.4444 

 
Fig-5 Nyquist plot  of designed system 
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Fig-6 root locus plot of designed system 

VI. Conclusion:  

This paper considers the identification of nonlinear time-invariant single input-single output (SISO) 

systems, consisting of a multivariable linear dynamic system and one static SISO nonlinear 

system. The LEM model approximates the original nonlinear system around the equilibrium manifold 

and is built on the basis of the local models, which can be derived, for example, by identification. The 

LEM model can make a decent approximation model for the kinds of systems under consideration, as 

demonstrated by a numerical example. 
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