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ABSTRACT 

Traditionally, normal decoupled d-q vector control techniques have been used to regulate grid-

connected converters. Recent research, however, suggests that these kinds of techniques have limits 

when it comes to how well they work with dynamic systems. This research explores the use of a neural 

network to regulate a grid-connected rectifier/inverter in order to mitigate such limits. The neural 

network uses back-propagation across time to train itself and implements a dynamic programming 

technique. Additional techniques are used to improve performance and stability in the face of 

disturbances. These techniques include applying grid disturbance voltage to the outputs of a well-

trained network and using integrals of error signals to the network inputs.  
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Introduction 

The need for energy around the world is growing at an exponential rate as we go into the twenty-first 

century. It is anticipated that this trend would continue far into the future due to economic expansion 

and increased per capita power usage [1]. There is a significant disadvantage with renewable energy 

sources, despite the fact that they have the capacity to supply nearly two billion people living in distant 

places with electricity and meet the world's energy needs [2,3]. The amount of energy they produce 

fluctuates greatly depending on weather factors, such as photovoltaic systems' solar irradiation. In 

order to improve these systems' energy efficiency, maximum power point tracking methods must be 

used. Although traditional methods such as Incremental Conductance, Perturb & Observe, and Hill 

Climbing Search have been thoroughly investigated in this domain, Artificial Neural Networks 

(ANNs) have notable benefits concerning precision and the capacity to represent intricate interactions 

[4,5,6]. Our goal is to develop a novel and dependable control strategy for grid-connected photovoltaic 

energy conversion systems using artificial neural networks (ANNs). Our main objective is to maximize 

power extraction and provide effective energy distribution in order to maximize the performance of 

the PV system. In order to achieve this, we use the voltage-based Perturb and Observe technique, 

which enables us to continuously modify the PV system's critical point in order to maximize power 

output. In addition, we include an integral-proportional (PI) controller to efficiently control both active 

and reactive powers as well as the DC bus voltage[7]. This guarantees the PV system will operate 

steadily and dependably in a variety of situations. We utilize the capability of Artificial Neural 

Networks (ANNs) [8,9] to further optimize the production of renewable energy and improve the 

system's responsiveness to climatic fluctuations. ANNs have several useful features, such as the 

capacity to effectively and precisely predict complicated relationships and take climate fluctuations 

into consideration. The system's performance and efficiency can be increased by using ANNs, which 

will enable it to maximize energy generation from renewable sources and adapt to various 

environmental circumstances. Variations in internal parameters or possible modeling mistakes are 

taken into consideration in our study as internal disturbances that must be taken into account and 

managed within the control system [10,11]. The sustainability and dependability of the PV system are 

further ensured by closely monitoring and addressing external disturbances like grid instability. We 

can maximize the PV system's power production, improve energy management, and add to the overall 

sustainability and efficiency of renewable energy generation by integrating the PI controller, the 
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voltage-based Perturb and Observe technique, and the use of ANNs. The paper is divided into four 

primary sections. The introduction gives a quick overview of the subject at hand. The photovoltaic 

system's modeling is the main topic of the second section. The controllers and mathematical models 

used in our investigation are described in the third section[12]. The fourth and last section provides a 

thorough analysis of the results and shows the simulation outcomes. 

 

System Modeling: 

One of the many parts of the system shown in Fig. 1 is a photovoltaic (PV) system that is made to 

work in a variety of weather conditions. Power exchange is possible between two-stage power 

electronics converters, namely an inverter and a boost converter, connected by a DC bus. In order to 

reduce the overall harmonic distortion in the current, the inverter is connected to the electrical grid via 

a 35 kV step-up transformer and a three-phase RL filter [13]. 

 
Fig. 1. Grid-Connected Photovoltaic System 

Fig.2 depicts the electrical equivalent to a photovoltaic cell, which consists of a current source that is 

produced by light, two diodes (D1, D2), and series (𝑅𝑠 ) and parallel resistors (𝑅𝑠ℎ). The following 

equation explains how a solar cell's current-voltage relationship works [14]: 

 

𝐼𝑝𝑣= 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑠ℎ      (1) 

𝐼𝑑1 = 𝐼01 [𝑒
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝛽1𝑉𝑇 − 1]      (2) 

𝐼𝑑2 = 𝐼02 [𝑒
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝛽2𝑉𝑇 − 1]      (3) 

𝐼𝑠ℎ =
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝑅𝑠
        (4) 

𝑉𝑇 =
𝐾𝑇

𝑞
        (5) 

Where T is temperature of the cell (K), q is the electronic charge (C), 𝐼𝑝𝑣 is the current output (A) of 

the solar cell, is its voltage at output (V), 𝐼𝑝ℎ is the current generated by light (A), 𝐼01 and 𝐼02 are the 

first and second diodes' respective reverse saturation currents (in amps), 𝑉𝑇 is the cell thermal voltage, 

and 𝛽1 and 𝛽1 are the first and second diodes' respective dimensionless ideal. 

 
Fig. 2. Equivalent cell electrical circuit 

Grid Side Converter Model (GSC): 

The equations on the grid side can be expressed as [16]: 

𝑉𝑔,𝑎𝑏,𝑐= 𝑉𝑖𝑎,𝑏,𝑐 +𝑅𝑓 𝑖𝑔𝑎,𝑏,𝑐 +𝐿𝑓 
𝑑𝑖𝑔𝑎,𝑏,𝑐

𝑑𝑡
   (6) 

After applying the d-q transformation, equation (7) is transformed into the following form: 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, No.5, June : 2024 
[ 

UGC CARE Group-1                                                                                                                         13 

𝑉𝑖𝑑 = 𝑉𝑔𝑑 + 𝑅𝑓𝑖𝑔𝑑 + 𝐿𝑓
𝑑𝑖𝑔𝑑

𝑑𝑡
− 𝐿𝑓𝜔𝑔𝑖𝑖𝑞   (7) 

𝑉𝑖𝑞 = 𝑉𝑔𝑑 + 𝑅𝑓𝑖𝑔𝑞 + 𝐿𝑓
𝑑𝑖𝑔𝑞

𝑑𝑡
− 𝐿𝑓𝜔𝑔𝑖𝑖𝑞   (8) 

In this context, the direct and quadrature elements of the grid voltage are denoted as 𝑉𝑔𝑑 and 𝑉𝑔𝑞, 

while the direct and quadrature elements of the grid current are represented by 𝑖𝑔𝑑 and 𝑖𝑔𝑞. 

Additionally, 𝑉𝑖𝑑 and 𝑉𝑖𝑞 correspond to the direct and quadrature components of the source inverter 

voltage, respectively. 𝑅𝑓 and 𝐿𝑓 refer to the resistance and inductance of the filter, respectively, and 

𝜔𝑔 = 2. 𝜋. 𝑓𝑔, fg, which is determined through the Phase Locked Loop (PLL)[19]. 

The equations showed previously able to be expressed in the following form: 
𝑑𝑖𝑔𝑑

𝑑𝑡
= −𝜆1.𝑖𝑔𝑑 − 𝜔𝑔𝑖𝑔𝑞 + 𝜆2(𝑣𝑖𝑑 − 𝑣𝑔𝑑)     (9) 

𝑑𝑖𝑔𝑞

𝑑𝑡
= −𝜆1.𝑖𝑔𝑞 − 𝜔𝑔𝑖𝑔𝑞 + 𝜆2(𝑣𝑖𝑞 − 𝑣𝑔𝑞)     (10) 

By defining 𝜆1 as 𝑅𝑓/𝐿𝑓 and 𝜆2 as 1/𝐿𝑓, the expressions can be rewritten as follows. The active and 

reactive powers (𝑃𝑔, 𝑄𝑔) injected inside the grid are calculated using the following equations: 

𝑃𝑔 = 3/2(𝑣𝑔𝑑 . 𝑖𝑔𝑑 − 𝑣𝑔𝑞 . 𝑖𝑔𝑞)      (11) 

𝑄𝑔 = 3/2(𝑣𝑔𝑞 . 𝑖𝑔𝑑 − 𝑣𝑔𝑑. 𝑖𝑔𝑞)      (12) 

The following is an expression for the DC-Link voltage equation: 

𝐶𝑏
𝑑𝑉𝑑𝑐

𝑑𝑡
= 𝑖𝑑𝑐 = 𝑖𝑠 − 𝑖𝑔       (13) 

Where 𝑉𝑑𝑐 stands for the DC-Link's voltage, 𝑖𝑑𝑐 for the current flowing through it, and C for the 

capacitance of the DC-Link capacitor. Moreover, 𝑖𝑠 and𝑖𝑔 refer to the current flowing through the PV-

boost side and the grid side, respectively. 

 
Fig. 3. Boost converter 

Fig. 3 illustrates a boost converter placed in between the inverter and the PV panel. Its objective is to 

raise a solar panel's voltage in accordance with the duty cycle (α)[10].  The relationship between the 

duty cycle, the converter's outputs, and the outputs of the PV panel—which serves as the converter's 

input—is explained as follows:  

Output voltage of Boost converter = 
1

1−𝛼
 𝑉𝑝𝑣     (14) 

Output current of Boost converter = 𝐼𝑝𝑣 (1 − 𝛼)    (15) 

Inductor and capacitor can be calculated as; 

𝐿𝑝𝑣= 
𝛼

∆𝐼𝑝𝑣𝑓𝑠
 𝑉𝑝𝑣         (16) 

Capacitor value = 
𝛼

∆𝑉𝑝𝑣𝑓𝑠
 𝑖𝑔𝑟𝑖𝑑       (15) 

 

Artificial Neural Network: 

Powerful tools include artificial neural networks for modeling nonlinear functions and exhibit 

remarkable universal capabilities. One of the major strengths of ANNs is their capacity for learning 

and improving their performance through training data. At their core, ANNs consist of neurons which 

function as computing nodes. Each neuron multiplies the input signals by constant weights, adds the 

products, applies a nonlinear function, and then transfers the output to an activation function, as 
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depicted in Fig.4. According to previous research, the mathematical representation of a neuron may be 

stated [17, 18]: 

𝑌 = 𝜑(∑ 𝑊𝑖. 𝑋𝑖 + 𝑏𝑁
𝑖=1 )       (18) 

In this context, the model of a neuron can be described mathematically as follows: the neuron's input 

signals are represented by (𝑋1 , 𝑋2… 𝑋𝑁), while (𝑊1 , 𝑊2 ,… 𝑊𝑁) correspond to the weights 

associated with each input signal. Additionally, Y is the neuron's output signal, b is bias parameter, 

and φ denotes a tangent sigmoid function. 

 
Fig. 4. Artificial neuron representation 

Photovoltaic systems are characterized by power-voltage (P-V) and current-voltage (I-V) nonlinear 

curves, which exhibit a unique maximum power point (MPP). To optimize performance, the P&O 

algorithm adjusts the reference voltage according to changes in the power-to-voltage ratio. In this 

approach, the optimum reference voltage for the ANN controller is created using an adaptive and 

variable-step P&O approach, as illustrated in Fig.5. 

 
Fig. 5. Structure of an ANN-based MPPT 

The optimal reference voltage derived from this MPPT technique is highly effective, as it can maintain 

minimal voltage variation around the MPP. To enhance the robustness of the system, an ANN-based 

control loop is proposed to track the MPP even in the face of environmental changes. To create the 

ANN controller using Matlab/Simulink, we have selected hidden layers for the MPPT controller, as 

depicted in Fig.6. The activation functions used for the hidden layers and the output layer are "tansig" 

and "purelin," respectively. The weights and biases of this network are updated using the Levenberg-

Marquardt (LM) algorithm, which is a back propagation algorithm. The external loop incorporates an 

adaptive P&O technique to regulate the 𝑉𝑝𝑣 voltage and achieve the reference voltage, as illustrated 

in Fig.7 [15-17]. 
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Fig. 6. Neural network diagram 

 
Fig. 7. P&O-based ANN-MPPT  

 

Results:  

The results of our simulation tests, which tested our suggested control approach for a 100-kW 

photovoltaic system linked to a threephase electrical grid with a voltage of 380V and frequency of 

50Hz (the system's specifications are listed in the Appendix), are shown in this section. The system 

consists of a voltage-controlled inverter with VOC (Voltage Oriented Control) control, a boost 

converter using ANN-based MPPT control, and a three-phase RL filter that reduces the total harmonic 

distortion (THD) of the injected current while maintaining a dependable connection to the power grid. 

The simulation results shown in Fig. 8-14 show how successful the suggested control approach is. In 

particular, the solar system's power output was successfully increased through the use of the Artificial 

Neural Network (ANN) approach. This suggests that the system was able to produce the most energy 

feasible thanks to the ANN technique. Our ANN-based MPPT system has a fast response time, which 

enables the photovoltaic system to swiftly adjust to changes in solar radiation levels and boosts the 

efficiency of energy production. 

 
Fig-8 Solar Voltage 
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Fig-9 ANN-based MPPT generated Pulse 

 
Fig- 10 Grid current 

 
Fig-11 Grid Voltage 

 
Fig-12 Grid frequency (With ANN-based MPPT) 
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Fig- 13 THD in load voltage 

 
Fig-14 Grid frequency (Without ANN-based MPPT at high load) 

 

Conclusion: 

Our study's objective was to create a reliable control plan for a solar system that is connected to the 

grid by using two different controllers: an Artificial Neural Network (ANN) controller. We were able 

to optimize the PV system's power production through the use of the ANN-MPPT (Maximum Power 

Point Tracking) technique, which resulted in increased efficiency and quicker reaction times. Our 

investigation verified that the PV system's active and reactive powers were successfully managed, 

guaranteeing that all of the electricity it produced was efficiently fed into the grid. We also set the 

reactive power to zero, which improved system performance much more and allowed us to reach a 

power factor almost equal to unity. Overall, our results demonstrate that the suggested control method 

effectively maximizes the output of grid-connected solar energy systems. 
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