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ABSTRACT 

 

In this paper a Transient queueing theoretical approach is identified, for the evaluation of  

performance of the MapReduce programming model (TQ-MR) followed by analysis of the same is 

also presented. The suggested approach is intended to  analyze  the behavior of the TQ-MR by 

considering  different job arrival rates at mappers and given job completion times of both mappers 

and reducers for various values of mappers and reducers.  This  TQ-MR model, with two stages of 

services and no waiting in between these stages. The derived transient differential equations are used 

to finding the performance measures like Average queue length, waiting time and Blocking 

Probabilities of  Mappers and Waiting Probability of Shuffling phase as time progresses. These 

measures are computed based on numerical simulation experiments conducted on MATLAB. Finally 

results are  presented and also to portray  the effect of various input parameters.  

   

1. INTRODUCTION 

 

Apache Hadoop is a  framework intended to give the functionality of a  Distributed system. 

MapReduce is a programming model written in Java developed in conjunction with Hadoop. The 

main objective of this combination is to  process datasets with large size.   It basically process data 

on computational nodes of clusters parallel in a well defined  manner. MapReduce layer is 

programming model consisting of Mappers and Reducers that process data across the clusters. 

Mappers place the data in parallel  clusters for computation and Reducers are used for assembling 

data together. Most of the search engines like Bing, Google Search, Yahoo, Yadex and Baidu etc  do 

invariably use  MapReducers on their data through Hadoop clusters. 

Hadoop MapReducers are highly scalable which can execute  on low-cost hardware commodities. 

Accordingly, it is also resilient and doesn’t  require high coding and completely depends on Mappers 

and Reducers function to process data. As MapReducers process enormous of data, it is always 

required to define  and  fine tune parameters for jobbing the tasks. The decision for improving the 
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performance always depends on defining the number of mappers and reducers to be used for process 

execution. With the increase in the number of reducers leads potentially may lead to some  

disadvantages like increase  in the overhead of the framework coupled with load balancing. In this 

case, several administrators need to pay much attention in designing the MapReduce Hadoop 

framework for obtaining the better performance. 

Over the past few years, with the growing demand of MapReduce framework, researchers are 

working on optimizing the performance in means of execution time, and processing speed through 

analytical, simulation and experimental models. When compared to other models   the analytical 

models  most of the time yield accurate and reliable estimates for performance metrics with a 

considerably  low cost. Yang et al [1] designed an analytical model and validated with experimental 

evaluation for MapReduce performance evaluation Vianna et al [2] proposed an analytical model for 

Hadoop workloads, with combination of precedence graph and queueing network models. Khaled 

Ssalah et al [3]  focussed on designing analytical model to run parallel jobs on cloud clusters using 

finite queuing model with minimum number of computing resources and also analyzed various 

performance metrics such   as throughput, response time, and probability for blocking through 

simulation. Zuqiang Ke and Nohpill Park[4] developed an analytical model for availability analysis 

of  MapReduce computing on a Hadoop platform and represented the same as a  queueing model. 

They also optimized the availability of MapReduce computing resources supported by the  derivation 

of suitable  balancing equations. The same authors[5] also proposed an analytical model for Hadoop 

platform, using mapreduce model to evaluate  the probability of availability  of map-reduce 

computing at a instant of time. Based on these studies the TQ-MR model is developed and evaluated 

through numerical examples. 

 Despite the fact that  various researchers proposed many models  still there are certain  limitations in 

suggesting  best  analytical  MapReduce framework . These researchers do not consider the time as 

one of the factor that influence performance and they also confine to deterministic service time. This  

work, proposes analytical transient queuing model which evaluates the performance of MapReducer 

by considering jobs at different arrival times and completion times of jobs at Mappers including 

Reducers. The analytical transient queuing model define waiting queue with varying length by using 

queuing model with multi-server. It may  help in bringing out the optimality by minimizing the 

execution time of jobs, which leads to reduction in execution cost by proper parameter tuning. 
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The primary contributions towards the work are carried out as follows 

i) The proposed analytical transient queuing  model for evaluating on  the  performance of 

Hadoop MapReduce  with the configuration of m mappers and n reducers. 

ii) The transient state diagram  is drawn for  all possible cases  

iii) Based on the transient state diagram the transitional differential equations are derived to 

finding the performance measures.  

iv)    Numerical illustration is carried out using MATLAB with some examples and conclusions 

are drawn based on the results. 

The rest of the paper is presented as follows. Section 2 describes the related work.  Section 3 presents the 

analytical transient queueing model to capture the dynamism of the  MapReduce computations. In 

section 4, the numerical illustration with examples depicts  how  to arrive at the performance measures   

with this model. Finally  section 5 discusses the conclusions and suggest  the future scope of  work. 

2. RELATED WORK 

For the past so many years, the performance evaluation of  MapReduce frame work on Hadoop platform  

has been discussed by several researchers. The myriad of related works can be categorized in to three 

types of evolutionary models, they are analytical, simulation and experimental models. In view of the 

objective of this study,  this section confirms only to review the literature belongs to the analytical 

models and specifically  focus on  queueing models  that are used  for computation  of  performance 

measures  of MapReduce models.  

Xio Yang and Jianling Sun [6] proposed an analytical model to improve the performance by minimizing 

the job execution time through modifying the Map split granularity and number of reducers without 

modifying the framework. Shouvik Bardhan and Daniel A.Menasce[7] build a model to predict 

completion time of the map phase of MapReduce Jobs using queueing network models. They also 

conducted experiments to validate the model. Khaled Salab et al.[8] presented an analytical queueing 

model to achieve elasticity for MapReduce jobs on cloud  and to determine the minimum number of 

mappers and reducers required to satisfy the SLO response time under various workload conditions. 

Xiaolong Yu and Wei Li [9] investigated the analytical model with adoption of queueing theory for big 

data processing. The developed queueing model discovers the nature of the MapReduce programming 

model and also  find the utilization and mean waiting time for the mappers as well as reducers. They 

have used this  model to improve the system utilization by  adjusting workload and tuning the  system 

parameters. They suggested a  simulation model for validating this  model. F.Farhat et.al[10] analytically 
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investigated the stochastic behavior mapper nodes that impact on  job completion time of  the 

MapReduce job. They optimize the Mean Sojourn time with respect to task inter-arrival time to the 

mapper node. Their experimental results yields  the performance and most required parameters of the 

various types of schedulers targeting MapReduce applications. Zuqiang Ke and Nohpill Park[11] 

proposes analytical model with representation of queueing model for availability of MapReduce 

computing on a Hadoop platform at an instant of time. The availability model considers the number of 

map and reduce tasks, number of nodes engaged, task arrival/exit rates and failure/repair rates to finding 

the availability. In this study  the performance measures are derived from balance equations. The 

efficacy of the model is  demonstrated by  conducting parametric simulations and achieving the 

availability with respect to throughput. The M/G/1/K performance  model with FCFS discipline  is 

proposed by the  Guzlan Miskeen[12] for finding the MapReduce performance. The performance 

measures like mean response time, loss probability and mean queue length are calculated with numerical 

investigation for various values of number of mappers, reducers and arrival rates of the jobs. The model 

is analyzed via discrete-event simulation. Kui Li et.al [13] developed elastic scaling algorithm based on  

finite multi server queueing model for balancing the average waiting time of tasks and total resource 

utilization rate of the cluster. Evaluation function and QoS constraints are the key factors of this model 

and Particle swarm optimization is used to search the feasible solution space determined by the 

constraints are applied in this algorithm. 

3. PROPOSED TQ-MR MODEL 

In his section a Transient Queueing model for MapReduce (TQ-MR) is proposed to analyse the 

performance of  Hadoop MapReduce computing system by adopting M/M/1 model with two stages of 

services. In the first stage consists of mapper phase service and shuffle phase service with where C is the 

sum of the  number of mappers and reducers are configured in the system. With help of the method,  first 

order difference differential equations approach to explore the dynamic behaviour of the time dependent 

MapReduce system and find the various performance measures like Average queue length, waiting time, 

and blocking probabilities of the mappers and reducers. For this analysis the basic architecture of the 

Hadoop MapReduce computing system is considered as defined in Khaled Salab et al.[8] and Guzlan 

Miskeen[12]. 

3.1 Assumptions 
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The GTQ-MR model is finite server transient queueing model with m mappers and n reducers, so the 

model depicted as a standard queueing notation i.e M/M/(m+n). The following assumptions are made 

for computing the performance measures through the transitional  differential equations. 

1.The TQ-MR is buffer less queueing model and no waiting in between the stages. 

2. The job arrival rate follows Poisson distribution and the job completion times of both mappers and 

reducers follow exponential distribution. 

3. The jobs are accepted in FIFO manner. 

4. The new jobs are blocked, when all the mappers are busy. 

5. The failures of the system are not considered. 

6. The job completion time of the mapping phase also includes the shuffling phase.  

 

3.2 Derivation of performance metrics 

The job arrival time and its processing time in MapReduce are fluctuated manner, because of the 

dynamic changes are occurred in Internet traffic, bandwidth consumption and user behaviour etc. In 

view of the fluctuation situation leads to be a complexity and the processing times are vary from time 

to time. In this scenario the analysis of TQ-MR behaviour is represented as a function of time. By 

observing all these issues that were faced by several researchers, this work has adopted transient 

queuing model design for TQ-MR. The corresponding state transient diagram is depicted in the 

Annexure III for transient queuing model.  Based on the state transient diagram the following 

transitional differential equations are derived for all possible cases at the time interval ‘t’. Let Pm,n be 

the probability of ‘m’ mappers which are busy to provide service at the rate of µ1 and ‘n’ represents 

the number of reducers that are busy with a service rate of µ2 

 

3.3 Derivation of Balanced Equations: 

𝑑𝑃0,0(𝑡)

𝑑𝑡
 = −𝜆𝑃0,0(𝑡) + 𝜇2 𝑃0,1(𝑡)        (1) 

𝑑𝑃𝑖,0(𝑡)

𝑑𝑡
 = −(𝜆 + 𝜇1)𝑃𝑖,0(𝑡) + 𝜇2 𝑃𝑖,1(𝑡)+ 𝜆𝑃𝑖−1,0(𝑡), 0 < 𝑖 < 𝑚, 𝑗 = 0    (2) 

𝑑𝑃𝑖,0(𝑡)

𝑑𝑡
 = −(𝜇1)𝑃𝑖,0(𝑡) + 𝜇2 𝑃𝑖,1(𝑡)+ 𝜆𝑃𝑖−1,0(𝑡), 𝑖 = 𝑚, 𝑗 = 0    (3)  

𝑑𝑃0,𝑗(𝑡)

𝑑𝑡
 = −(𝜆 + 𝜇2)𝑃0,𝑗(𝑡) + 𝜇1 𝑃1,𝑗−1(𝑡)+ 𝜇2 𝑃0,𝑗+1(𝑡), 𝑖 = 0, 0 < 𝑗 < 𝑛   (4) 

𝑑𝑃0,𝑗(𝑡)

𝑑𝑡
 = −(𝜆 + 𝜇2)𝑃0,𝑗(𝑡) + 𝜇1 𝑃1,𝑗−1(𝑡), 𝑖 = 0, 𝑗 = 𝑛      (5) 
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𝑑𝑃𝑖,𝑗(𝑡)

𝑑𝑡
 = −(𝜆 + 𝜇1 + 𝜇2)𝑃𝑖,𝑗(𝑡) + 𝜆𝑃𝑖−1,𝑗(𝑡) + 𝜇1 𝑃𝑖+1,,𝑗(𝑡)+ 𝜇2 𝑃𝑖,𝑗+1(𝑡), 𝑖 < 𝑚, 𝑗 < 𝑛  (6) 

𝑑𝑃𝑖,𝑗(𝑡)

𝑑𝑡
 = −(𝜇1 + 𝜇2)𝑃𝑖,𝑗(𝑡) + 𝜆𝑃𝑖−1,𝑗(𝑡)+ 𝜇2 𝑃𝑖,𝑗+1(𝑡), 𝑖 = 𝑚, 𝑗 < 𝑛   (7) 

𝑑𝑃𝑖,𝑗(𝑡)

𝑑𝑡
 = −(𝜆 + 𝜇1 + 𝜇2)𝑃𝑖,𝑗(𝑡) + 𝜆𝑃𝑖−1,𝑗(𝑡) + 𝜇1 𝑃𝑖+1,,𝑗+1(𝑡), 𝑖 < 𝑚, 𝑗 = 𝑛  (8) 

𝑑𝑃𝑚,𝑛(𝑡)

𝑑𝑡
 = −(𝜇1 + 𝜇2)𝑃𝑚,𝑛(𝑡) + 𝜆𝑃𝑚−1,𝑛(𝑡), 𝑖 = 𝑚, 𝑗 = 𝑛     (9) 

                            

In this study Average Queue Length, Blocking Probability of mappers and reducers, and Waiting 

time , performance measures are computed based on the above transitional differential equations.  

3.4 Performance Measures 

1. Expected length of the system =(𝐿𝑆
(𝑡)

) = ∑ ∑ (𝑚 + 𝑛) ∗ 𝑝𝑖,𝑗
(𝑡)𝑛

𝑗=1
𝑚
𝑖=1                        (10) 

2. Mean waiting time (𝑊𝑆
(𝑡)

) =
𝐿𝑆

(𝑡)

𝜆′
 , 𝑤ℎ𝑒𝑟𝑒 𝜆′ = 1 − 𝑝0,0             (11) 

3. 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀𝑎𝑝𝑝𝑒𝑟𝑠 = ∑ 𝑝𝑚,𝑗
(𝑡)𝑛

𝑗=1              (12) 

4. 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 𝑝ℎ𝑎𝑠𝑒 = ∑ 𝑝𝑖,𝑛
(𝑡)𝑚

𝑖=1             (13) 

4. NUMERICAL ILLUSTRATION 

In this section the numerical evaluation is carried out to investigate the effect of performance of TQ-

MR for various combinations of input parameters λ, m and n where µ1and µ2 depend on the sizes of  

m,n. On the lines of Khaled Ssalah et al [3]  the service time x for executing a single MapReduce  

job  is the sum of the mapper phase service time and reducer phase service time. The mean service 

time of mapper phse (i.e 1/β) is depends on the speed of the slave node and the number of splits 

created for that  MapReduce job. Let us assume 500 ms to execute the MapReduce job on single 

mapper and 100 ms to execute on single reducer. So the single mapper and single reducer mean 

service times can be computed as 1/ β =  500/m ms and 1/r =100/n ms respectively. The service time 

x is calculated using the below formula. 

                                                    𝑥 =
1

𝛽
∑

1
𝑖

+
1

𝑟
∑

1

𝑖

𝑛
𝑖=1  𝑚

𝑖=1                                                         (14) 

In this study the number of mappers and reducers are taken as witha a  ratio of m:n i.e 2:1.   The  

transient values of ‘t’ from 0.5 to 2(number of intervals 4). With the help of the MATLAB numeric 

computing platform the above  performance measures are calculated. MATLAB software is used to 

explore various probabilities and constants by developing a computational programme to solve the 
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system of differential equations. The influence of various parameters on system constants is studied 

and they are shown in Tables 1 and 2 which are presented in Annexure I and Annexure II.  

 

 

 

 

(i) Effect of 𝝀: For the numerical illustrations to show the effect of 𝜆, the model parameters  

are considered with the values λ = 0.25,    μ1 =  0.0059, μ2 = 0.0192, m = 8 and n = 4.The time 

instances are taken as t1 = 0.5, t2 = 1.0, t3 = 1.5, t4 = 2.0. 

 

  

  
 

 

Figure 1: Effect of 𝜆 

 

 (ii) Effect of 𝒎, 𝒏:  For the numerical illustrations to show the effect of 𝑚, 𝑛, the model parameter 

𝜆  is considered as “1” and   𝜇1  𝑎𝑛𝑑 𝜇2 values are changed with the changes in m,n The time 

instances are taken as follows: 𝑡1 = 0.5, 𝑡2 = 1.0, 𝑡3 = 1.5, 𝑡4 = 2.0 
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Figure 2: Effect of m, n 

 

5.RESULTS AND DISCUSSION 

 

The aforementioned section presents some results from the Matlab simulation setup described in 

previous sections.  To explore the various performance measures for conducting  numerical 

experiments the total completion time of the mapreduce job is assumed. It includes both mappers + 

shuffling and reducer phases completion times.  This completion time is chosen  from  the SLA.   

A. Mean Queue Length Analysis 

 

To observe the  behaviour of the mean queue length, to find out that the  queue length is maintain 

stable average queue length or not  for the peak arrival rates and the change rate is stable when the 

time is in progress. From the Table-I and Fig 1 it is observed that the mean queue length is increased 

when λ increases, this phenomena will be follows, when the time is in progress. The Table-II and Fig 

2 shows that the queue length is all most all same for the increment of m,n ratio for fixed values of  λ 

and job completion times, but when the time is progress from 0.5 to 2 the queue length is 
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significantly increased. For constant or minute variations of λ there is no need to scaling the mappers 

and reducers. Without aware of the job arrival pattern to scaleing the mappers and reducers it is a 

over burden for the system resource consumption like a memory ,CPU utilization and network 

bandwidth consumption etc.,. It  leads to decrease of the total performance and the response time will 

be increased. Finally it is conclude that the queue length will not be effect for the almost all static 

values of  λ ,  even though the increasing of  mappers and reducers are not yield any further benefits.  

 

B. Waiting Time 

 

Waiting Time is key performance measure to identify the how much system response time will be 

effected. When the time is in progress it is observed in a two fold for satisfying the SLO (i)  the 

various values  of  λ  for the given configuration values m and n, (ii) the various values of m,n ratio 

for given  λ. In order to obtain the results of Table II and Fig() the waiting time exhibits at any given 

point of time, little bit of variation when λ increases for constant values m,n. But the time is in 

progress (from 0.5 to 2),  it will be significantly increased. If the m,n ratio will be increased the 

waiting time will not much effected for given λ to meet the required SLO and it yields opposite 

results i.e it increases noticeably when time is in progress. After keen observe the results of these 

scenarios, to find that the changes in  waiting time is negligible for fixed point of time with the 

variations of  λ and m,n ratio. The system operation time will be progressive the waiting time will be 

increased for fixed values of  λ and m,n ratio. This will be true for various combination of fixed 

values of  λ and m,n ratio to reach the SLO.   

 

C.   Blocking Probability of Mappers 

 

Blocking Probability of Mappers is an important measure, that the configured number of mappers is 

enough for accepting the incoming job requests or not. It plays key role to take a decision for scaling 

the mappers. As per the Table I and II and graphs () the measure is low initially and gradually 

increased when the job arrival rates are increased for fixed values of mappers and reducers with a 

constant service rates of both mappers and reducers.  This same line of behaviour exhibits when the 

time is in progress. The Blocking Probability of Mappers is always greater than Waiting Probability 

of Shuffle Phase for the static number of mappers and reducers with fixed service rates of mappers 

and reducers. For fixed job arrival rates and  
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constant service rates with increasing of mappers and reducers the Blocking  Probability of Mappers 

is decreases and it is move to zero. This will be  happened because of two reasons i) the mappers are 

double in size of reducers or in some configuration it should be higher than number of reducers, ii) 

the tasks should be completed by the mappers first subsequently to be completed by the reducers. In 

view of this reasons the Blocking Probability of Mappers should be optimized more than Waiting 

Probabilities of Shuffle Phase. 

 

D) Waiting Probabilities of Shuffle Phase  

 

By observing Table I the Waiting Probabilities of Shuffle Phase values are gets zero, when    λ 

increasing, with constant values of m,n and service rates of two stages. From the Table II and the 

Fig()  the values are decreasing and tends to zero when the m,n ratio is increasing for the constant job 

arrival rates and service rates of stage 1  and stage 2. This means that the more number of reducers 

are configured the waiting probability of shuffle phase is tends to zero, this situation leads to job 

completion times  are minimized. But more number reducers configured, will causes to more 

consumption of computational resources, This scenario degrade the performance of mapreduce 

model.  

    

6.CONCLUSION 

 

The presented analytical model based on transient queueing theoretical approach is used to 

investigate the performance of mapreduce model when time is in progress state. Performance 

measures are derived based on transitional differential equations. The measures Queue Length, 

Waiting Time, Blocking probability of Mappers and waiting probability of shuffle phase are 

computed for given input values of the job arrival rate, job completion time of the mappers and 

reducers with different combinations of configured mappers and reducers. The numerical 

experiments are conducted for various input parameters with time ‘t’. From the obtained results, key 

observations drawn are  i) when the time is progress and the job arrival rate also increases the queue 

length will increases i.e the indication of  number of jobs in process state in two stages of mapper , 

shuffle and reducer phases. ii) The waiting time will focus on how much time the jobs can wait in the 

system. The waiting time will not exhibit noticeable change while increasing job arrival rates, 

mappers and reducers ratios, but it will take opposite direction when time is in progress. iii) To 
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identify how many minimum number of mappers are needed for accepting the incoming job requests 

with out rejecting due to overload. iv) To identify whether it is a suitable combination of mappers 

and reducers to meet the current workload conditions and also explores the number of reducers if 

they are busy or idle. Finally the authors have concluded that the presented TQ-MR model and the  

performance measures will be given birds-eye-view guidance for developing new job scheduling 

algorithms, performance optimization models and derive the auto tuning models for various 

mapreduce configurable parameters. The current work can be extended by enhancing the TQ-MR 

model with buffer queue for job arrivals and to suggest the suitable job scheduling algorithms that 

will help in reducing the costs for cloud service providers and also users by providing minimum 

resources with minimum job completion times.   
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A

nnex

ure I 

 

T

able 

1: 

Effect 

of 𝜆 

  

Parameter(𝜆) 

Values T 0.5 1 1.5 2 

0.25 

Length 0.124999 0.249996 0.374986 0.499967 

waiting time 0.499998 0.999982 1.499943 1.999873 

Blocking probability of 

Mappers 0 1.03E-10 5.47E-09 5.71E-08 

Waiting probability of 

Shuffling Phase 0 4.49E-16 2.51E-14 2.69E-13 

0.5 

Length 0.249999 0.499992 0.749974 0.99994 

waiting time 0.499998 0.999984 1.499967 2.000033 

Blocking probability of 

Mappers 0 2.65E-08 1.07E-06 9.70E-06 

Waiting probability of 

Shuffling Phase 0 7.19E-15 3.29E-13 3.20E-12 

0.75 

Length 0.374998 0.749988 1.124961 1.499891 

waiting time 0.499998 0.999994 1.500167 2.001369 

Blocking probability of 

Mappers 0 6.79E-07 2.08E-05 0.000164 

Waiting probability of 

Shuffling Phase 0 3.64E-14 1.37E-12 1.21E-11 

1.0 

Length 0.499998 0.999985 1.49993 1.999627 

waiting time 0.499998 1.00004 1.501059 2.006483 

Blocking probability of 

Mappers 0 6.78E-06 0.000156 0.001081 

Waiting probability of 

Shuffling Phase 0 1.15E-13 3.54E-12 2.85E-11 

1.25 

Length 0.624998 1.249982 1.874797 2.498452 

waiting time 0.499998 1.00018 1.503579 2.018574 

Blocking probability of 

Mappers 0 4.04E-05 0.000697 0.004236 

Waiting probability of 

Shuffling Phase 0 2.81E-13 7.07E-12 5.23E-11 

1.5 

Length 0.749997 1.49998 2.249334 2.994704 

waiting time 0.499998 1.000446 1.508818 2.039491 

Blocking probability of 

Mappers 0 0.000174 0.002232 0.011965 

Waiting probability of 

Shuffling Phase 0 5.82E-13 1.20E-11 8.22E-11 
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Annexure II 

Parameters 

(m, n) Values 

                                t 
0.5 1.0 1.5 2.0 

2,1 Length 0.484388888 0.897182242 1.219967749 1.459921479 

waiting time 0.63316842 1.299261181 2.08500815 3.278941059 

Blocking probability of 

Mappers 0.091082609 0.264863394 0.44209864 0.593155518 

Waiting probability of 

Shuffling Phase 0.000288012 0.000992007 0.001946547 0.003051114 

4,2 Length 0.499999813 0.995586003 1.475728423 1.924989585 

waiting time 0.505160073 1.05522888 1.665811917 2.313336833 

Blocking probability of 

Mappers 0.002604167 0.019283804 0.065324213 0.142029142 

Waiting probability of 

Shuffling Phase 0.00000008 0.00000076 0.00000303 0.00000775 

6,3 

(1)  

Length 0.499998548 0.999921912 1.498876208 1.9940355030 

waiting time 0.499998573 1.00005231 1.519983179 2.0654470550 

Blocking probability of 

Mappers 0 0.000574818 0.004493893 
0.0165506760 

Waiting probability of 

Shuffling Phase 
0.0000000000 0.0000000004 0.0000000039 0.0000000167 

8,4 

(2)  

Length 0.499997942 0.999985165 1.499929515 1.999627119 

waiting time 0.499997978 1.000040353 1.501059445 2.006483299 

Blocking probability of 

Mappers 0 0.000007 0.000156329 0.001081158 

Waiting probability of 

Shuffling Phase 0.00E+00 1.15E-13 3.54E-12 2.85E-11 

10,5 

(3)  

Length 0.499997296 0.999980516 1.499940629 1.999865521 

waiting time 0.499997344 0.999982389 1.499983384 2.000283519 

Blocking probability of 

Mappers 0 0 2.65E-06 4.16E-05 

Waiting probability of 

Shuffling Phase 0 0 1.93E-15 3.59E-14 

12,6 

(4)  
Length 0.4999965770 1.0000000000 1.4999252050 1.9998396100 

waiting time 0.4999966380 1.0000000000 1.4999423600 1.9999184040 

Blocking probability of 

Mappers 
0.0000000000 0.0000000000 0.0000000177 0.0000009250 

Waiting probability of 

Shuffling Phase 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 

14,7 

(5) 
Length 0.5000000000 1.0000000000 1.4999080630 1.9998030910 

waiting time 0.5000000000 1.0000000000 1.4999289790 1.9998869460 

Blocking probability of 

Mappers 
0.0000000000 0.0000000000 0.0000000000 0.0000000106 

Waiting probability of 

Shuffling Phase 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 

16,8 

(6) 
Length 0.5000000000 1.0000000000 1.4999000000 1.9997825910 

waiting time 0.5000000000 1.0000000000 1.4999000000 1.9998844930 

Blocking probability 

of Mappers 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 

Waiting probability of 

Shuffling Phase 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 
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Table 2: Effect of (m, n) 
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Annexure III 

           

  (m,0)          µ2                                    µ2           (m,2) 

          λ (m-

1,0)                       (m,1) 

        λ          (n+1,0)         µ1                    

µ2                     λ                     µ1                     λ            

       (n,0)     µ2      µ1                                                                 

λ        (m-1,1)                (m-1,2) 

      λ                            (n,1)  (m-

2,1)        µ2                                                                                                                          µ2     

     (n-1,0)  (n-1,1)                                                                        

(m-2,2)                                                                         (m, n-1) 

             µ1                                                                                                                                                                                                                                                                                                      

µ1                          (m, n) 

  λ (2,0)  (n-2,1)  (n-k,k)      µ2 µ2                               

 λ (1,0)      µ2          µ1             µ1      λ        µ1         (n-k,k+1)                                                                                                                                                  

(m-1,n) 

(0,0)  µ1 (1,1)  (n-k,k-1) (n-k-1,k+1) 

      µ2               (0,1)               µ1        µ1         µ1 

  µ2          µ2                                                                               

µ2                                                                                                                           λ            

   (0,2)  (n-k-1,k) (1,n-1)    

           (m-n+1, n-1) 

             µ1       µ2                             µ1                            µ2 

    µ2           µ1                                                                                                      

µ2                                                      (m-n+1,n)  

     (0,n-1)    (1,n)     λ

  (m-n, n)         λ 

 µ2    λ 

 (0,n) 
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