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Abstract:  Resource management is a strategy of the elastic cloud to provide availability of service for 

the end-users. It improves the runtime performance of services; two aspects of technical issues need 

to be addressed. The first one is the balancing of a large amount of data on existing resources and the 

second is resource provisioning which can adjust the number of resources optimally to adapt the time-

varying workload. As the growth of data is increasing tremendously, efficient resource management 

is the need in cloud computing. This paper proposes a cloud framework Resource Provisioning 

framework through workload prediction to process data in automation with adaptive resource and 

workload management strategy. The proposed architecture is intended to provide resources 

dynamically and efficiently satisfying the demands of the user. To achieve this objective of efficient 

resource provisioning, algorithms are developed for workload prediction which helps in deciding 

optimum resource provisioning. Our system uses a proactive approach resource management and 

deployment of the adaptive cloud system. In traditional systems, resources are managed based on 

demand, availability and the strategy of scheduling which results in delayed response time at large. 

We configured the ARIMA model to predict the future workload for provisioning the resources 

dynamically and remove the problem of over-provisioning and under-provisioning in a cloud 

environment. Finally, results are drawn, and conclusions are presented. 

 

 

1. Introduction 

 

Cloud computing is a service that provides customers with access to resources such as CPU, software, 

hardware, information, and devices over the Internet. This technology employs utility mechanisms, 

such as autoscaling and on-demand service deployment, which are widely acknowledged by analysts 

[1]. Utilizing virtualization, the cloud computing system establishes an environment encompassing 

both homogeneous and heterogeneous operating systems [2-4]. 

 

Various cloud providers cater to the Quality of Service (QoS) needs of IT sector end-users, responding 

to their changing demands over time. However, this dynamic user behavior can lead to inefficient 

resource management, causing fluctuations in the number of users accessing the services. 

Consequently, users might experience periods of resource abundance and scarcity, resulting in subpar 

service quality and increased costs. Many researchers have proposed different strategies to address this 

challenge, aiming to optimize resource utilization while minimizing expenses. 

 

This study introduces an innovative approach to building an adaptive cloud that addresses resource 

provisioning in cloud computing. The focus is on efficiently provisioning resources to end-users, 

enhancing performance, and ensuring user satisfaction through a QoS-based approach. To handle the 
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exponential growth of data, a cloud architecture with an adaptive resource management method is 

developed, enabling automated data processing. 

 

The system design progresses through several stages, including data synchronization between cloud 

services, cloud creation for resource management, integration of user data, resource management, and 

service delivery with performance optimization. To anticipate resource demands effectively, a 

prediction model is proposed based on historical database observations. The Enhanced ARIMA for 

Resource Provisioning (E-ARIMA) model is employed for resource allocation to end-users according 

to their specific needs. A user demand-based framework and method for workload prediction in cloud 

computing are suggested and implemented. This includes constructing a prediction mechanism and 

applying it to calculate the workload for various time periods based on historical data, specifically 

employing the E-ARIMA model for assessment. 

 

This paper proposes Resource Provisioning framework to predict workload for effective resource 

provisioning in an adaptive cloud. The prototype leverages a prediction model and integrates machine 

learning and cloud platform to efficiently provide resources. The utilization of a best-fit algorithm for 

prediction techniques in resource management stands out as a key finding in this study. 

 

The rest of the paper is organized as follows. Section 2 describes the related work for the proposed 

approach. Section 3 explains prediction mechanism applied for proposed approach. In Sect. 4, 

experimental setup is described. Section 5 presents results with discussion. Finally, proposed work is 

concluded with future work. 

 

 

2 Literature review 

 

To ensure effective allocation of resources, the utilization of a predictive approach holds substantial 

importance [5]. As delineated in Figure 1, this predictive methodology can be segmented into two 

distinct parts: anticipation of application behavior and prediction of host load. Accurately predicting 

the load on hosts within cloud systems is a critical stride towards attaining service-level agreements. 

Employing a Bayesian model, a technique for forecasting precise host load over extended time frames 

has been identified [6]. This approach to host load prediction is subsequently categorized based on 

considerations of workload and performance. 

 

The capability of a cloud workload analyzer extends to forecasting the load on hosts, drawing insights 

from a variety of factors including incoming requests, resource usage patterns, and resource 

requirements. The assessment of host load prediction effectiveness can be carried out by monitoring 

performance indicators such as response time, CPU usage, data throughput, and memory utilization. 

Another essential aspect of achieving resource efficiency in the cloud environment is the anticipation 

of application behavior to forecast upcoming resource needs. This application prediction process 

encompasses various facets, including performance expectations, quality of service attributes, 

workload projections, and SLA metrics. Within the context of performance prediction, specific 

parameters like response time, CPU utilization, data throughput, and memory usage are estimated 

subsequent to the allocation of resources [7]. 

 

Larsen et al. [26] have focused on resource prediction within cloud computing. This patent delineates 

methodologies for forecasting processing resources within a cloud computing module, rooted in 
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predefined tasks. The approach is employed to predict resource allocation by considering the dataset 

and input parameters. Similarly, Daniel et al. [27] have contributed a patent introducing a predictive 

auto-scaling engine that utilizes prediction models to scale distributed applications. This involves the 

analysis of historical performance data, which is then amalgamated through monitoring and the 

identification of scaling patterns for the application [28–30]. In comparison with the existing 

methodology, our approach has exhibited superior performance in terms of accurate prediction. The 

underlying architectural proposal is designed to dynamically and efficiently provision resources, 

catering to user demands. In pursuit of this objective of streamlined resource allocation, algorithms 

have been devised for workload prediction, thereby aiding in the identification of optimal resource 

provisioning strategies. 

 

Our methodology embraces a proactive approach to resource management and the establishment of an 

adaptive cloud system. In contrast, conventional systems rely on demand, the availability of resources, 

and scheduling tactics, often leading to significant delays in response times [31]. In this regard, Kumar 

et al. [32] have introduced a tailored scheduling algorithm for workflows, aiming to enhance the 

utilization of resources and minimize the processing duration (make-span) within the cloud 

environment. Furthermore, Tyagi et al. [33] have outlined a scenario involving real-time soil 

monitoring through cloud computing with sensor-based technology. Their work introduces a 

hierarchical architectural framework that clusters both sensors and cloud resources, specifically 

designed for agricultural applications. These principles are visually elucidated in Figure 2, where 

considerations regarding prediction prerequisites, evaluation parameters, and the attributes of 

prediction are expounded within the context of application prediction strategies. 

 

The evaluation of performance parameters for application prediction involves the assessment of 

estimates, success rates, error rates, and cost/profit considerations. The success rate delineates the 

precision of predicting future behavior using the employed prediction method. This metric can be 

calculated by comparing the number of accurate predictions to the total number of predictions made 

[34]. 

 

The assessment of predictive properties involves the scrutiny of accuracy, adaptability to resource 

needs, proactiveness, and the establishment of resource mapping within the cloud environment. The 

accuracy of a prediction model could potentially qualify it as a best-fit model based on its precision. 

To effectively cater to the evolving user requirements, the prediction model assumes a pivotal role in 

anticipating future resource demands. Resource adaptation functions to dynamically allocate resources 

in response to changing requirements. In contrast to reactive models, predictive models must possess 

a proactive nature to foresee future resource demands accurately. Prasad et al. [35] have elucidated the 

necessity of resource allocation in cloud computing, exploring diverse methodologies. They have also 

delved into various policies and scheduling algorithms within resource allocation models, discerning 

performance benchmarks for resource scheduling and allocation. To ensure the appropriate 

provisioning of resources, it is imperative to establish a connection between resource prediction and 

resource provisioning strategies through resource mapping. 

 

3. System architecture 

 

Utilizing a machine-learning technique, the prediction approach is notably more suitable for a 

proactive strategy than alternative methods such as control theory or queuing models. The objective is 

to establish an adaptive cloud system capable of autonomously supplying applications with necessary 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, June : 2024 
 

UGC CARE Group-1,                                                                                                         193 

resources, eliminating the need for manual intervention. The detailed architectural flow is depicted in 

Figure 3. Within this proposed framework, various phases are concurrently described, focusing on the 

processing of extensive data applications within the Hadoop ecosystem. The Hadoop ecosystem cluster 

is established within the cloud environment. For efficient resource provisioning and optimal resource 

utilization, the realm of cloud computing is of paramount significance. It orchestrates resource 

allocation to specific applications in accordance with their requirements [36, 37]. 

 

In this study, an ARIMA-based workload prediction is executed by assimilating workload data from 

both past and present time periods. The workload analyzer is responsible for promoting and storing 

updated information to facilitate the prediction model. During instances of commissioning or 

decommissioning virtual machines (VMs) as part of the service, the workload analyzer communicates 

with the VM manager to allocate or release resources from the resource pool, thereby mitigating 

instances of under or over-provisioning. Any unexecuted requests within the system architecture are 

buffered for consideration in subsequent iterations. The system architecture is delineated across four 

distinct phases, providing a comprehensive overview. 

 

Phase 1: Data synchronization across cloud services 

Phase 2: Formation of cloud for resource management 

Phase 3: Integration of cloud with user data and resource management 

Phase 4: Service provisioning with improvement of performance. 

 

The above-mentioned phases are systematically depicted in Figure 1. In the initial phase (Phase 1), a 

continuous stream of user requests is generated. These requests are collected during the data 

acquisition stage and subsequently stored within the cloud database. Following each data acquisition 

stage, historical databases are updated for offline analysis. The stored database is then relayed to the 

data repository to be extracted in the required format. In the subsequent iteration, this data is 

transformed and distributed into a suitable format, enabling the generation of tasks intelligible to the 

task dispatcher. The task dispatcher stage oversees the distribution of tasks, forwarding them to the 

workload manager for workload details and subsequent arrangement in the scheduled queue. As 

depicted in Equation (1), criteria are captured to compare the allocated resources with the actual 

demand. 

 
m(w) = r.   (1) 

 

In this equation, "m" represents the matching function, "w" signifies workload intensity, and "r" 

denotes the quantity of resources. The matching function yields the minimal amount of resources "r" 

corresponding to a specific resource type. For a given workload intensity "w," the workload units are 

quantified as the number of requests. The consumption of resources ("r") is gauged during fluctuations 

in workload intensity ("w"), which, in turn, directs the allocation or deallocation of resources. This is 

contingent upon changes in the workload intensity value, either an increase or decrease. The system 

requires an adequate time span to effectively allocate or deallocate resources for each workload 

intensity value. 

 

During the cloud resource management phase, cloud resources are commissioned or decommissioned 

from the resource pool based on various resource features such as name, type, configuration, 

availability, utilization, usage, and cost. In order to facilitate the accurate provisioning or de-

provisioning of resources based on workload information, a prediction model is implemented to predict 
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the precise resources necessary for identified workloads. The QoS (Quality of Service) metrics are 

evaluated by the CloudWatch monitoring event within the QoS manager stage. The QoS manager 

assesses and evaluates these metrics during the integration phase. Depending on the outcomes of 

resource management deployment and integration phases, services are provisioned to users in the form 

of responses tailored to their specific requirements. 

 

 
Fig: 1: E-ARIMA model 

 

 
4. Prediction mechanism for resource management 

 

The system involves sending web requests to cloud servers to verify and retrieve the necessary 

resources from specified regions. These continuous logs contain the count of HTTP requests for each 

resource within the time interval "t - 1" and "t". Leveraging the current and historical database, the 

workload for the time intervals "t - 1" and "t" is computed. To observe request patterns during these 

intervals, we analyzed the arrival of requests from the years 2003 to 2014. This span serves as the 

original time series data, utilized in the training phase to predict the subsequent intervals. To 

incorporate the requests, they are integrated with the time series values of ARIMA for parameters "p," 

"d," and "q." 

 

The ARIMA (Autoregressive Integrated Moving Average) model is a commonly employed technique 

in time series analysis and forecasting. Typically denoted as ARIMA (p, d, q), where "p" represents 

the autoregressive components' order, "d" is the differencing duration, and "q" corresponds to the 

moving average term's order. Each of these components aims to minimize the residuals produced in 

the final step of ARIMA modeling. This entails passing time series data through these components 

sequentially to achieve the smallest residual. Caglan et al. [38] have patented a System for the 

allocation of network resources using an autoregressive integrated moving average method, predicting 

future network parameter values through resource allocation. For improved performance, the ARIMA 

model is adopted. The Mean Square Error (MSE) is used to quantify the disparity between actual and 

predicted values. David et al. [39] have patented a rapid and automated ARIMA model initialization 
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process. ARIMA is employed to generate time series data, involving the determination of the 

difference order for the time series data. 

 

The class diagram depicting prediction-based resource management is showcased in Figure 5. The 

Resource Manager class contains resource attributes that provide insights into the status of virtual 

machine (VM) instances. The VM Info class offers information about available VMs to the Resource 

Manager class. VM Info class is linked to two subclasses: VM Provisioner and VM Destroyer. These 

subclasses handle creation and termination operations, respectively, guided by feedback from the 

Workload Analyzer class. The Data Acquisition class is responsible for storing the extracted input 

data. It forwards this input as a task to the Resource Manager class to obtain the requisite resources. 

The QoS Manager class oversees the workload status and utilizes it to predict future workload, 

facilitating advanced resource allocation. The IaaS Services class initiates AWS Cloud to provision or 

deprovision cloud services [40, 41]. To evaluate predictions, the best fit ARIMA model algorithm is 

outlined through the following steps; 

 

Step 1: Test dataset is iterated for each time interval. 

Step 2: For each iteration, a new ARIMA model is trained for all historical data. 

Step 3: Prediction is done for the next time interval. 

Step 4: Predicted data is saved for next iteration to use as a historical data and 

steps 1–4 are repeated for next interval. 

Step 5: Selection of best-fit model is done by calculating the root mean squared 

error (RMSE) and maximum likelihood. RMSE [42] measures the average magnitude 

of the error using quadratic scoring rule. It is the square root of the average 

of squared differences between prediction and actual observation as shown in the 

Eq. (1). 

 

𝑅𝑆𝑀𝐸 = √
1

𝑁
 ∑ (𝑌𝑡 − 𝑌1𝑡)2𝑛

𝑡=1

3
            (1) 

 

 

Where “N" represent the number of observations, "Yt" signify the actual value, and "Y1t" denote the 

predicted value. To anticipate the workload for a specified period, we seek to identify the best-fitting 

prediction model within the ARIMA framework through the utilization of the maximum likelihood 

function. To achieve this, we employed the maximum log likelihood method [43], which we will 

succinctly outline below to elucidate the most suitable prediction model. For expeditious likelihood 

estimation, the Kalman filter algorithm serves as a recursive procedure for computing one-step-ahead 

prediction errors and their respective variances. The computation of the likelihood function employs 

the Kalman filter algorithm [44] through three main steps: (1) forecasting future states based on current 

state information, (2) predicting new observations, and (3) updating state estimations when new 

observations are incorporated into the system. In this context, we have made an assumption regarding 

the series' stationarity, denoted as {W}, which guides the parameter estimation for an ARIMA model. 

𝔉(𝑥, 𝑦) = 𝔉(𝑥)𝔉(𝑦|𝑥)     (2) 

 

By taking 𝑥 = 𝒲1𝑎𝑛𝑑 𝑦 = 𝒲2, … . , 𝒲𝑇 Eq. (3) can be written as, 

 

𝔉(𝒲𝑇) = 𝔉(𝒲1)𝔉(𝒲2, … , 𝒲𝑇|𝒲1) 
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To minimize the prediction error , let t as prediction error for 𝒲𝑇 which is presented in Eq. (4) 

𝑡 = 𝒲𝑇 − 𝒲𝑇|𝑇−1 

For AR(1), assume series of zero mean and size T by known parameter  as defined in the Eq. (5), 

 

𝒲𝑇 = ∞𝒲𝑇−1 + 𝑎𝑇 

Where T=2……..n and aT is the innovation model for step ahead prediction error as shown in the Eq. 

(6), 

  
𝑎1 = 𝒲1 + ∞𝒲𝑇−1 

 
In the one step ahead prediction error, innovation model for a1 is defined as,  
 

𝑎1 = 𝒲1 + ∞𝒲0 

 

So that for T=2………n the variance of the one step ahead prediction error is 2 as defined in the Eq. 

(7), 

 

𝑣𝑎𝑟(𝒲𝑇|𝒲𝑇−1, … . . 𝒲1) = 2𝑉𝑇|𝑇−1   (7) 

Where AR (1): 

 

VT|T-1=1 for T=2……n= (1-2)-1 for T=1 

 

Based on the prediction error decomposition joint density function for general ARIMA process [36] 

can be written as defined in the Eq. (8); To evaluate the likelihood function to reduce the problem of 

one step ahead. 

 

𝔉(𝒲𝑇) =  ∏ 𝜎−1𝑛
𝑇=1 ⋁ (2𝜋)2𝑒𝑥𝑝 (

1

2𝜎2  ∑
(𝒲𝑇−𝒲𝑇|𝑇−1)

2

𝒱𝑇|𝑇−1

𝑛
𝑇=1 )

−1/2
𝑇|𝑇−1

    (8) 

 

In order to consider the provisioning/deprovisioning of resources, proactive prediction approach is the 

key feature. Prediction based proactive approach might work optimally to manage the resources in the 

cloud environment for varying workload [45]. Using the best-fit workload model, workload for next 

interval might be predicted accurately by getting minimum residual and maximum log likelihood 

value. Log likelihood function and root mean squared error is evaluated using the Eqs. (9) and (2). 

Used notations in the equations are described in the Table 1. 

 

Table 1: Notations 

 

Notations Descriptions 

yt Original time series 

t Prediction error 

ꞵ Likelihood 

𝒲𝑇 Stationary series 

aT Innovation model 
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6 Results and discussion 

 

The ARIMA(1, 1, 1) model has been identified as the most fitting model among various ARIMA 

models, determined based on considerations such as Akaike's Information Criterion (AIC), corrected 

AICC, and Bayesian Information Criterion (BIC) values. These values undergo continuous updates 

upon the arrival of new requests, while old values are relocated from the current database to a historical 

database for future training phases. Through training this database, the predicted future demand for the 

upcoming year is derived. The outcomes stemming from these projected values for diverse metrics are 

presented in Table 3. A forecast unit is established by employing the number of requests, with a total 

of 145 observations utilized to generate forecasts for different ARIMA models employing distinct 

series. 

 

The evaluation summary of the forecast models encompasses a total of 36 forecasts, each associated 

with varying metric values aligned with their configured estimates. The forecast model summaries for 

ARIMA (1, 1, 1), ARIMA (1, 0, 1), ARIMA (5, 0, 2), and ARIMA (5, 0, 0) are defined and 

subsequently juxtaposed in Table 3 in relation to error metrics. Extending the database's training to the 

upcoming period of 2015–2017, predictions for various standard errors are documented in Table 4. 

Upon analyzing the prediction accuracy calculations, it becomes evident that the proposed prediction 

approach yields more precise results compared to conventional methods. 

 

Table 2: Estimation summery of ARIMA model 
 

Metrics Estimation 

ARIMA (1,1,1) 

Estimation 

ARIMA (1, 0,1) 

Estimation 

ARIMA (5, 0, 2) 

Estimation 

ARIMA (5,0,0) 

ME 0.01166989 0.01173753 -0.01631024 0.00019176 

RMSE 0.07450627 0.07476611 0.07465462 0.110378 

MAE 0.05526755 0.05564004 0.05641946 0.08351552 

MPE 0.4306297 0.4306297 2.351555 50.55343 

MAPE -54.28284 2.351555 104.1008 144.0441 

MASE  0.6783021 0.6109884 0.3806085  144.0441 

ACFI 0.003732132 0.004404706 0.02803195 0.005862 

2 -0.1121943 0.005669 0.005869 0.01263 

vT Variance 

Ar Autoregressive term 

Ma Moving average term 

 Standard deviation 

Xt Partial autocorrelation 

coefficient (PACE) 

P Prediction function 

N Number of observation 

T Time 

d Square difference 

R Number of resources 

W Workload intensity 

M Matching Function 
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Log likelihood 167.42 166.42 163.42 108.66 

AIC 328.83 -328.83 -310.84 205.32 

AICc 328.66 -328.66 309.75 204.7 

BIC 319.94 -319.94 287.19 187.63 

 

 

Table 3: Standard error for ARIMA model (prediction) 

 

Year ARIMA (1,1,1) ARIMA (1,0,1) ARIMA (5,0,0) ARIMA (5,0,2) 

2015 0.084267686 0.088860657 0.24622095 0.144455569 

2016 0.094540256 0.0901684 0.264308967 0.151261095 

2017 0.103416887 0.0901684 0.2644302 0.1512611 

Average of SE 0.094074943 0.089732489 0.258320039 0.148992588 

 

 

 

 
 

Fig 3: Prediction Error Count 
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Fig 4: CPU Utilization 

 

 
Fig 5: Response Time 

 

As depicted in Figure 3, a comparison is drawn between the prediction error count for the quantity of 

resources per user request in both the conventional approach and the proposed approach. The 

heightened accuracy in prediction yields a reduction in the rejection rate of user requests. This, in turn, 

enhances the processing volume of requests and streamlines the execution time of processes. Notably, 

a decrease in the waiting time for new resource allocations contributes to the decline in rejected 

requests, subsequently fostering maximum resource utilization efficiency. 

 

To gauge the capacity of serving user requests per minute, the CPU utilization metric is employed. 

The CPU utilization observed during the proposed approach proves notably more efficient than that of 

the conventional approach, as evidenced in Figure 4. Our evaluation underscores that our approach 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, June : 2024 
 

UGC CARE Group-1,                                                                                                         200 

attains a remarkable 91.11% accuracy in prediction, aligning well with the goal of efficient resource 

utilization to meet demand workloads. 

 

When considering the execution time for processing requests and the subsequent receipt of 

acknowledgment in the form of responses to users, a crucial metric is the number of requests handled 

per second. The proposed approach emerges as superior, processing a larger volume of requests in 

comparison to the conventional approach. This distinction is visually portrayed in Figure 5 through the 

response time representation for the number of requests per second. 
 

7 Conclusion 

 

In this work, comprehensively addresses diverse facets of efficient resource provisioning within the 

domain of cloud computing. As a novel contribution, we have introduced an integrated methodology 

aimed at constructing an adaptive cloud system. This adaptive cloud system optimally allocates 

resources to end-users, culminating in enhanced performance. The architectural framework delineates 

various phases, encompassing data synchronization across cloud services, the establishment of a 

resource management cloud, integration of the cloud with user data, resource management, and service 

provisioning, all underscored by performance enhancement considerations. 

 

Our proposed approach involves the application of a prediction model, strategically forecasting 

resource demands in advance to facilitate efficient resource provisioning based on historical and 

observed databases. We have formulated the ARIMA Workload Prediction for Efficient Resource 

Provisioning (E-ARIMA) model, tailored to efficiently provision resources to end-users, catering to 

their specific requirements via accurate prediction strategies. Calculations concerning prediction 

accuracy underscore the superiority of our proposed prediction approach in comparison to 

conventional methods. The count of prediction errors for multiple resources per user request validates 

the efficacy of our proposed strategy. 

 

Future endeavors will delve into more in-depth mechanisms, exploring new proposals that incorporate 

emerging concepts such as the Internet of Things with cloud computing. Our trajectory will entail the 

development of a more adaptive system for end-users, potentially exploring alternative proactive 

machine learning approaches in subsequent studies. 
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