

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 6, June : 2024

UGC CARE Group-1, 139

FROKER CS PORTAL

Souvik Halder , Robis Kumar

Computer Science & Engineering, Gandhi Institute For Technology, Odisha, India

souvik.halder2020@gift.edu.in; robis.kumar2020@gift.edu.in

Abstract—

Froker is a sophisticated mobile app revolutionizing food delivery services, boasting over 10,000

downloads and 3,000 weekly active users. Its success lies in meticulously crafted backend

infrastructure, ensuring robustness and security. Dedicated engineers have architected a system for

optimal performance and data protection. Beyond food delivery, Froker's innovative Shots section

offers short videos, allowing users to earn Furos for exclusive discounts. With a focus on technology

and user experience, Froker leads the competitive food delivery app landscape, promising convenience

and trust for users and partner restaurants alike.

Keywords—

Fullstack development, MERN,App development, Backend, Frontend

I. INTRODUCTION

Froker, a leading food delivery platform in India, innovatively blends technology and user- centric

design for a revolutionary experience. Its comprehensive app simplifies ordering, enhances

engagement, and fosters loyalty. Through strategic partnerships, Froker ensures expanded offerings

and timely fulfillment. Prioritizing user experience with intuitive interfaces and personalized

recommendations, it maintains leadership through continuous evolution.

A. Authentication and Authorization :

II. SYSTEM DEVELOPMENT

The form for user authentication within the Froker platform is designed with a singular focus on

phone number entry, adhering to international formatting standards for phone numbers. Upon inputting

their phone number, users can initiate a verification process by clicking on a designated button, such

as "Verify OTP." A brief message accompanying the button informs users that a verification code will

be sent to the provided phone number for confirmation. This streamlined approach not only simplifies

the authentication process but also enhances security and user experience by leveraging phone numbers

as a unique identifier for user verification.

Fig 1. Sign In page for the portal

B. Assign Order To Admin :

In Froker platform, users can conveniently assign themselves to specific orders from the "All

Orders" page, facilitating efficient order management. Additionally, users have access to options

for tracking orders and updating their status, enhancing transparency and control. The "Assign Order

mailto:souvik.halder2020@gift.edu.in
mailto:robis.kumar2020@gift.edu.in

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 6, June : 2024

UGC CARE Group-1, 140

To Me" frontend table enables users to easily claim ownership of orders, streamlining workflow. In

the backend, clicking the "Assign" button triggers a corresponding function to process the assignment,

ensuring seamless integration and execution. Furthermore, the platform offers comprehensive tracking

capabilities, accessible by clicking on individual orders. This feature displays detailed information

such as order ID, customer details, billing and shipping addresses, enhancing user visibility and

understanding of order status. Integrated tracking functionalities provide real-time updates on order

progress, including carrier information and tracking numbers, with links to carrier websites for detailed

tracking, if available. This comprehensive approach ensures efficient order management and enhances

user experience on both the frontend and backend of the Froker platform.

Fig 2. Assign Order To Admin From Order Table

C. Update Order Status :

For updating order statuses on the Froker platform, the frontend presents users with a dropdown

menu containing available order statuses within the order details page. Clear labels accompany each

status option, facilitating user understanding (e.g., "Pending Payment", "Processing", "Shipped",

"Delivered", "Cancelled"). Upon selection, users can submit the updated status using a dedicated

button. In the backend, when an admin selects a new order status and submits the change, the system

retrieves the selected order ID and the updated status from the frontend. Subsequently, it updates the

corresponding order record in the database to reflect the new status, ensuring accurate and real-time

tracking of order progress. This seamless coordination between frontend and backend components

enhances efficiency and transparency in order management on the Froker platform.

Fig 3. Update Order Status

III. IMPLEMENTATION

A. Project Setup and Initial Configuration :

To begin your project, first, install Node.js and npm for package management. Ensure MongoDB

is installed and running. Set up a GitHub repository using Git. Choose an IDE, like Visual Studio Code.

Then, initialize your project with npm init in a new directory and set up a Git repository. Install core

dependencies: express, mongoose, react, and react-dom. For the backend, add body-parser, cors,

dotenv for environment variables, and nodemon for hot reloading using npm. These steps establish the

project environment and install necessary dependencies for development.

B. Testing and Deployment :

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 6, June : 2024

UGC CARE Group-1, 141

In testing, I have employed Jest and React Testing Library to write both unit tests and integration

tests, guaranteeing the reliability and functionality of the application across different components and

modules. For deployment, I have utilized MongoDB Atlas to host the database in the cloud, ensuring

seamless data management and accessibility from anywhere. This combination of testing with Jest and

React Testing Library, along with deployment on MongoDB Atlas, ensures thorough testing coverage

and efficient deployment, contributing to a robust and scalable application infrastructure.

IV. RESULT AND DISCUSSION

A. Data Visualization and Analytics (Retool and Google Analytics):

The data visualization and analytics component played a crucial role in converting raw data into

valuable insights and actionable intelligence, leveraging Retool and Google Analytics. Data collection

and aggregation were central to this process, involving the gathering of information from frontend

events, user interactions, and backend RESTful APIs. Subsequently, the collected data underwent

meticulous cleaning, validation, and transformation to guarantee its accuracy and relevance for

analysis. By systematically preparing the data, this component ensured that the insights derived were

not only meaningful but also actionable, enabling informed decision-making and driving business

growth.

Fig 4. Stas Provided by retool thorough Backend Api’s

B. Performance Optimization and Testing:

The application underwent a rigorous optimization process to achieve fast loading times,

smooth interactions, and optimal resource utilization. Techniques like code minification,

caching, lazy loading, and image optimization were employed to enhance performance across various

devices and network conditions. Additionally, a comprehensive testing strategy was implemented,

encompassing unit testing, integration testing, and end-to-end testing. Automated testing tools and

frameworks were utilized to identify and isolate bugs, issues, or performance bottlenecks, ensuring

consistent, reliable, and efficient testing processes. This meticulous approach to optimization and

testing guarantees a high-quality user experience and robust performance for the application, aligning

with our commitment to delivering excellence to our users.

Fig 5. fetching data from the events used in application

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 6, June : 2024

UGC CARE Group-1, 142

V. DATA FLOW DIAGRAM

Fig 6. Data flow diagram of the system

VI. CONCLUSIONS

In conclusion, the development of the customer service portal for Froker represents a significant

milestone in enhancing order management and user experience. The successful implementation of

features such as order status tracking, shot optimization, and adaptive bit rate streaming underscores

our commitment to innovation and efficiency. While challenges were encountered during the project,

such as ensuring seamless integration of complex features, our achievements in delivering a robust and

user-centric platform are notable. Moving forward, continuous monitoring and refinement will be

essential to uphold Froker's position as a leading food delivery app, catering to the evolving needs of

our users.

ACKNOWLEDGEMENT

We would like to express our sincere appreciation to the Institute of Electrical and Electronics

Engineers (IEEE) for providing a platform for sharing our research findings on Froker. We extend our

gratitude to the Froker team for their collaboration and dedication to innovation in the field of food

delivery and social networking. We also acknowledge the invaluable support and feedback received

from users, stakeholders, and industry experts, which have significantly contributed to the

development and refinement of Froker. Additionally, we thank the reviewers and editors affiliated with

IEEE for their rigorous evaluation and constructive feedback, which have enhanced the quality and

relevance of this publication. Finally, we acknowledge the academic and research institutions that have

provided resources and support, enabling us to conduct this research and disseminate our findings to

the scientific community.

REFERENCES

[1] NPM react-lazy-load-image-component packages of lazy loading the images.

https://www.npmjs.com/package/react-lazy-load-image-component

[2] Mux player mux-player-react documentation. https://docs.mux.com/guides/mux-player-web

http://www.npmjs.com/package/react-lazy-load-image-component

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 6, June : 2024

UGC CARE Group-1, 143

[3] Aos documentation for implementing animations https://www.npmjs.com/package/aos

[4] react-fast-marquee library implementing slider effect in two components

https://www.npmjs.com/package/react-fast-marquee

[5] react-icons package for same specific icons. https://www.npmjs.com/package/react-icons

[6] Material Ul mui/core for implementing pagination in blog pages

https://mui.com/x/react-data- grid/pagination/

[7] Cloudinary followed to host images and videos adjust the resolution as per the different screen

resolutions https://cloudinary.com/developers

[8] Data analytics tool-Google Analytics https://developers.google.com/analytics

[9] Retool to visualize the Data and Metrics https://retool.com/

[10] used Tailwind to build the UI design as per the PRD document provided https://tailwindcss.com/

http://www.npmjs.com/package/aos
http://www.npmjs.com/package/react-fast-marquee
http://www.npmjs.com/package/react-icons

