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ABSTRACT 

In the power industry, Economic Load Dispatch (ELD) operates the running generators at 

economical cost of operation under certain operational constraints for a specific load. The 

combinations of best generations are evaluated for economical operations of the plant. In this 

context, Genetic Algorithm (GA) is widely used to determine the optimal combination of the 

generators output in order to minimize plant cost. In this work, ELD of 3 generator system and 6 

generator system have been determined using GA. Additionally, the effect of population size on the 

performance of GA for solving ELD has also been analyzed. For this, five populations (50, 100, 200, 

500 and 1000) have been used in GA simulation for both the systems. Various operational cost 

(average, best, worst, and standard deviation), average power losses, average iteration, average 

computational time and number of trial runs hitting best operational cost in 20 trial runs have been 

analyzed for each population size. The study found that the population size, 1000 gives optimum 

results in terms of minimum operational cost, consistent result, précised result and takes less 

iterations to give result for both the system. 
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I. Introduction 

The world’s energy demand is growing day-by-day. Due to which, the complexity of existing power 

system (PS) is expanding in terms of planning and operation. Economic load dispatch (ELD) deals 

with such problems of complex PS in context of supplying required load demand at economical fuel 

cost by distributing load among participating generating units under certain constraints [1]. 

Generally, the fitness function of ELD involves quadratic cost function of each generating units and 

the loss function of the system [2]. Various methods are adopted for analysing the ELD problems [3], 

[4]. These methods are classified into two broad categories, first is traditional techniques like 

Gradient methods, Newton’s methods, Lagrangian method, Lembda method and Dynamic 

programing. The second method is the metaheiristics techniques such as linear programming, 

Genetic algorithm (GA), Particle swarm optimization (PSO), Ant colony optimization, Bee colony 

optimization, chemical reaction optimization etc. [5]-[7]. Among various metaheiristics methods GA 

and PSO are the most popular evolutionary technique for solving ELD problems [8], [9]. 

GA simulate the evolution process by applying genetic operator to the population. These operators 

include selection, crossover, and mutation [8]-[15]. GA has three main advantages over other 

optimization techniques. First, it encodes the control variables in the string. Secondly, it uses several 

search point. Finally, there is no need to know anything about the fitness function beforehand while 

using GAs. [8]. 

Various parameters that affect the performance and behaviour of GA are population sizes, selection 

methods, crossover rate, mutation rate etc. Choosing appropriate values for these parameters and 

understanding their effects on the optimization process is crucial for the success of GA in solving 

complex optimization problems [9]. Among these control parameters, the population size is a crucial 

parameter in GA as it directly impacts the diversity, exploration, and convergence characteristics of 
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the algorithm [10]. A larger population size typically leads to greater diversity within the population. 

With more individuals, there is a higher chance of covering a broader range of the solution space. 

This increased diversity helps prevent premature convergence by ensuring that a wide variety of 

potential solutions is explored. Moreover, larger population favours exploration as it allows for more 

individuals to be simultaneously evaluated and promotes the discovery of new regions of the solution 

space. However, larger populations tend to slow down the convergence process because more 

individuals need to be evaluated and selected at each generation [10]-[15]. Therefore, selecting an 

appropriate population size requires careful consideration of the specific problem domain, 

computational resources, and desired balance between exploration and exploitation. 

In the present study, ELD problems of 3 generators and 6 generators systems have been analysed 

using GA. Additionally, the effect of population size has also been analysed. The rest of the sections 

of the work has been organised as follows: Section II deals the formulation of the fitness function of 

the ELD. Section III describes the basics of GA. In Section IV, simulation results and analysis of the 

results have been presented. In Section V, conclusions and future directions of the study have been 

described. 

 

II. Fitness function 

The ELD is optimization problems that aims to optimize a particular power system objective taking 

into account its physical limitations. ELD controls the power flow of the generating units, vary 

within the certain limits and fulfils the load demand with less fuel cost. It distributes the load among 

the generating unit which is parallel to the system in such a manner as to reduce the total cost of 

supplying. It also fulfils the minute to the minute requirement of the system [16], [17]. 

The production cost of each generating unit is generally expressed in terms of the quadratic equation 

of output power of generating units. The total production cost of the plant is given by the sum of 

production cost of each individual units of the plant. Mathematically it can be represented as, 

Fi(Pi) = aiPi
2 + biPi + ci                                                      (1) 

Where Fi(Pi) is the generating unit’s operational cost, Pi is the generating unit’s output power and 

(ai,bi,ci) are the generating unit’s cost coefficient of ith unit of the plant. 

Therefore total fuel/production cost (FT) of the plant having n units will be, 

FT = 
=

n

i 1

Fi(Pi)  = 
=

n

i 1

( aiPi
2 + biPi + ci )                        (2) 

The equality constraint has been introduced for power mismatch i.e. the sum of load demand and 

losses must be equal to power generated by the plant. Mathematically the power balance equation is 

given by, 

PD + PL – 
=

n

i 1

Pi = 0                                                        (3) 

Where PD and PL are the load demand and losses of the plant respectively. 

The losses of the plant can be calculated from generating unit’s outputs and loss coefficients as, 

PL=
=

n

i 1

(
=

n

j 1

(Pi BijPj)) +
=

n

i 1

(Bi0Pi) + B00                   (4) 

Where Bij is the ijth element of the loss coefficient square matrix, Bi0 is the ith element of the loss 

coefficient vector, and B00 is the loss coefficient constant. 

The inequality constraint has been also introduced for each generating units of the plant i.e. the 

output power of each generating unit must be laid between its minimum and maximum generation 

limit [16] and it is represented mathematically as, 

Pi
min  <  Pi  <  Pi

max                                                            (5) 

Where Pi
min and Pi

max are the minimum and maximum generation limit of ith unit of the plant 

respectively. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, No.1, June : 2024 
 

UGC CARE Group-1                                                                                                                     110 

The objective/fitness function (F) of ELD is defined as the sum of fuel/production cost given in 

equation 2 and penalized equality constraint given in equation 3. The ELD problem states as follows, 

Minimize the fuel cost, 

      F =
=

n

i 1

( aiPi
2 + biPi + ci ) + K*(PD + PL – 

=

n

i 1

Pi )        (6)     

Subjected to inequality constraints given in equation 5. 

Where K is the penalty coefficient for the plant due to not fulfilling the load demands to consumer 

and chosen carefully for a feasible solution. 

 

III. Basics of genetic algorithms 

Genetic algorithms (GAs) are a type of optimization algorithm inspired by the principles of natural 

selection and genetics. They are used to find solutions to optimization and search problems by 

mimicking the process of natural evolution [8]-[15]. Genetic algorithm process involve following 

process: 

1. Generate Initial Population: Start by creating a population of potential solutions to the 

optimization problem. This population usually consists of randomly generated individuals, each 

representing a potential solution. The size of the population is a parameter that needs to be defined 

based on the problem's complexity and other factors. 

2. Fitness Function Evaluation: Evaluate the fitness of each individual in the population. The 

fitness function quantifies how well an individual solves the optimization problem. It provides a 

measure of the individual's quality or suitability for the given task. The fitness function is problem-

specific and needs to be defined based on the problem's objectives and constraints. 

3. Selecting Parents: Choose individuals from the current population to serve as parents for the 

next generation. The probability of selection is typically proportional to an individual's fitness; 

individuals with higher fitness values have a greater chance of being selected. Various selection 

techniques can be employed, including roulette wheel selection, tournament selection, or rank-based 

selection. 

4. Generating Offspring: Perform crossover or recombination to create offspring from the 

selected parent individuals. Crossover involves exchanging genetic material between two parents to 

produce one or more offspring. The crossover point and method depend on the representation of 

individuals (binary, real-valued, etc.). Common crossover techniques include one-point crossover, 

two-point crossover, and uniform crossover. 

5. Introducing Variation: Apply mutation to introduce random changes in the offspring's genetic 

material. Mutation helps maintain genetic diversity within the population and prevents premature 

convergence to suboptimal solutions. Mutation operators randomly alter certain genes or parameters 

in individual solutions. The mutation rate determines the probability of mutation occurring in each 

gene or parameter. 

6. Fitness Evaluation: Evaluate the fitness of the newly generated offspring using the fitness 

function. This step is crucial to assess the quality of the offspring solutions and compare them with 

the parent solutions. 

7. Selecting Survivors: Determine how the new offspring population will replace the old parent 

population. There are different replacement strategies, including generational replacement and 

steady-state replacement. In generational replacement, the entire parent population is replaced by the 

offspring population. In steady-state replacement, only a subset of the parent population is replaced 

by the offspring. 

8. Check Termination: Determine whether the termination criteria are met to stop the algorithm. 

Termination criteria can include reaching a maximum number of generations, finding a satisfactory 

solution, or stagnation in the population's fitness improvement. If the termination criteria are not met, 

the algorithm repeats steps 3-7 to create a new generation of solutions. 
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Once the termination criteria are met, the algorithm returns the best solution found throughout the 

evolutionary process. This solution represents the optimal or near-optimal solution to the 

optimization problem based on the defined fitness function. By iteratively evolving populations of 

solutions through selection, crossover, and mutation, genetic algorithms efficiently search for 

optimal or near-optimal solutions to a wide range of optimization problems. 

 

IV. Computatioal results and discussions 

In this work, ELD problems of two test system have been analysed using GA and the effect of 

population size on the performance of GA has also been discussed. Test system 1 comprises of 3 

generators while Test system 2 comprises of 6 generators. The load demand of Test system 1 is 150 

MW whereas for Test system 2 is 700 MW. The cost and loss coefficients data for Test system 1 [17] 

and Test system 2 have been presented in Table 1 and 2 respectively. For analysing the effect of 

population size, five population sizes (50, 100, 200, 500 and 1000) have been considered in the GA 

for both systems. 20 trial runs have been performed using MATLAB simulations [18] for each 

population and for both systems. 

Table 1:  Cost coefficients of the systems 

  a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW) 

T
es

t 

S
y
st

em
 1

 

G1 0.008 7 200 10 85 

G2 0.009 6.3 180 10 80 

G3 0.007 6.8 140 10 70 

T
es

t 

S
y
st

em
 2

 

G1 0.007 7 240 100 500 

G2 0.0095 10 200 50 200 

G3 0.009 8.5 220 80 300 

G4 0.009 11 200 50 150 

G5 0.008 10.5 220 50 200 

G6 0.0075 12 120 50 120 

Table 2:  Loss coefficients of the systems 

T
es

t 

S
y
st

em
 1

 B =  [
0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179

] 

B0 = ⌈0.0003    0.0031    0.0015⌉ 
B00 = 0.00030523 

T
es

t 

S
y
st

em
 2

 

B = 10−4  ×

[
 
 
 
 
 
0.14 0.17 0.15 0.19 0.26 0.22
0.17 0.6 0.13 0.16 0.15 0.2
0.15 0.13 0.65 0.17 0.24 0.19
0.19 0.16 0.17 0.71 0.3 0.25
0.26 0.15 0.24 0.3 0.69 0.32
0.22 0.2 0.19 0.25 0.32 0.85]

 
 
 
 
 

 

The best result of 20 trial runs for different population have been presented in Table 3 for Test 

system 1 and Table 5 for Test system 2. Further, the fuel cost (best, average, worst and standard 

deviation), average power losses, average iteration performed, average computational time and 

number of trial runs attaining best result in 20 trial runes have been summarised for different 

population sizes have been displayed in Table 4 for Test system 1 and Table 6 for Test system 2. The 

convergence characteristics of GA for different populations and for both system have been shown in 

Fig. 1. 

The best fuel cost of 1599.98 $/hr for Test system 1 has been obtained when population size is 1000 

(also same for population size 500) with individual generators (G1, G2, and G3) output as 33.52 

MW, 63.55 MW, and 55.59 MW respectively in 52 iteration (minimum among all population sizes). 

However, best fuel cost is 1599.99 $/hr for other population sizes i.e.50, 100, and 200 (see Table III). 
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Similar observation can be seen for Test system 2 in which the best fuel cost is 8353.22 $/hr when 

population size is 1000 with individual generators (G1, G2, G3, G4, G5 and G6) output as 325.49 

MW, 75.55 MW, 160.19 MW, 50.21 MW, 51.51 MW, and 50.31 MW respectively in 76 iteration 

(minimum among all population sizes). 

From Table 4, it has been seen that for test 1 in 20 trial runs, the best cost is 1599.99 $/hr, the 

average fuel cost is 1600.39 $/hr, and the worst fuel cost is 1602.99 $/hr for a population size of 50. 

The calculated standard deviation is 0.73 $/hr. However, the average power loss is 2.67 MW, the 

average iteration performed is 104, and the average computational time is 4.76 seconds. Moreover, 

the minimum best cost is 1599.98 $/hr (for population size 500 and 1000), the minimum average cost 

is 1599.99 $/hr (for population size 1000), minimum worst cost is 1600.05 $/hr (for population size 

500), minimum standard deviation cost is 0.02 $/hr (for population size 500), minimum average 

power loss is 2.66 MW (for population size 100), least average iteration performed is 52 (for 

population size 1000), least average computational time is 4.76 sec (for population size 50), and the 

highest number of trial runs attaining best result is 7 (for population size 1000). Similarly, for Test 

system 2 as shown in Table 6, the minimum best cost is 8353.22 $/hr (for population size 1000), the 

minimum average cost is 8354.79 $/hr (for population size 1000), minimum worst cost is 8358.74 

$/hr (for population size 1000), minimum standard deviation cost is 1.47 $/hr (for population size 

1000), minimum average power loss is 10.75 MW (for population size 500), least average iteration 

performed is 121 (for population size 1000), and least average computational time is 7.25 sec (for 

population size 50). Hence, overall it can be seen that the population size of 1000 can be regarded as 

the one having the best fuel cost because it provides best, consistent and precise result too as iteration 

performed is also very less. 

Table 3: Best results for test system 1 in 20 trial runs 

Population 

Size 

Fuel 

Cost 

(in $/hr.) 

Power Generation (in MW) Power 

losses 

(in MW) 

Iteration 

Performed 

Computational 

Time 

(in second) 
G1 G2 G3 

50 1599.99 32.64 64.52 55.52 2.67 145 5.75 

100 1599.99 33.27 63.85 55.55 2.66 54 3.81 

200 1599.99 32.89 61.66 58.08 2.63 55 5.21 

500 1599.98 33.58 63.92 55.17 2.67 60 10.65 

1000 1599.98 33.52 63.55 55.59 2.66 52 17.61 

 

Table 4: Summarized results for test system 1 in 20 trial runs 

Population 

Size 

Fuel Cost (in $/hr.) Average 

Power 

losses 

(in MW) 

Average 

Iteration 

Performed 

Average 

Computational 

Time 

(in second) 

Number of 

trial runs 

attaining 

best result 

Best Average Worst Std 

Dev 

50 1599.99 1600.39 1602.99 0.73 2.67 104 4.76 1 

100 1599.99 1600.20 1601.30 0.35 2.66 68 4.90 1 

200 1599.99 1600.03 1600.23 0.07 2.67 72 7.26 6 

500 1599.98 1600.00 1600.05 0.02 2.67 59 11.18 2 

1000 1599.98 1599.99 1600.11 0.03 2.67 52 17.64 7 
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Table 5: Best results for test system 2 in 20 trial runs 

Population 

Size 

Fuel 

Cost 

(in 

$/hr.) 

Power Generation (in MW) Power 

losses 

(in 

MW) 

Iteration 

Performed 

Computational 

Time 

(in second) 
G1 G2 G3 G4 G5 G6 

50 8359.29 335.65 59.91 159.07 51.89 52.85 51.33 10.70 270 10.90 

100 8355.69 327.13 70.36 156.66 51.52 53.29 52.39 10.74 280 19.28 

200 8353.67 322.04 75.75 161.09 50.12 51.19 50.57 10.77 205 31.32 

500 8353.41 323.77 76.01 155.93 50.46 51.22 50.50 10.69 160 22.98 

1000 8353.22 325.49 75.55 160.19 50.21 51.51 50.31 10.71 76 22.72 

 

Table 6: Summarized results for test system 2 in 20 trial runs 

Population 

Size 

Fuel Cost (in $/hr.) Average 

Power 

losses 

(in MW) 

Average 

Iteration 

Performed 

Average 

Computational 

Time 

(in second) 

Number of 

trial runs 

attaining 

best result 

Best Average Worst Std 

Dev 

50 8359.29 8440.87 8687.41 86.31 11.19 156 7.25 1 

100 8355.69 8392.17 8601.61 54.78 10.98 153 9.89 1 

200 8353.67 8373.54 8578.39 48.43 10.82 146 14.15 1 

500 8353.41 8355.54 8362.59 2.63 10.75 145 22.73 1 

1000 8353.22 8354.79 8358.74 1.47 10.76 121 38.56 1 
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Figure 1:  Convergence characteristics of GA for different populations 
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Table 7: Best population size on different basis 

System Best Result Consistent 

Result 

Précised 

Result  

Less 

Iteration 

Recommendations 

Test System 1 500, 1000 500, 1000 200, 1000 500, 1000 1000 

Test System 2 500, 1000 500, 1000 ------ 500, 1000 1000 

In Table 7, two best population sizes of the GA for both Test system have been selected on different 

basis. The population size 500 and 1000 has been qualified on the basis of obtaining best results 

(having minimum best cost), consistent results (having minimum standard deviation cost), least 

iterations. However, population size 200 and 1000 for Test system 1 gives précised results (having 

highest number of trial runs attaining best results). Based on obtained results, population size of 1000 

can be recommended for enhancing the performance of GA in context of obtaining best results, 

consistent results, and précised results in least iterations. 

 

V. Conclusion 

ELD are key optimization problem of the power industry and can be efficiently solved by GA 

technique. The population size in the GA has remarkable control on the performance of the 

technique. In this work, ELD of two systems have been solved by GA and the effect of population 

size on the performance of the GA has also analysed. Out of five considered population (50, 100, 

200, 500, and 1000), the population of 1000 in the string provides efficient results in terms of 

optimal result, consistent result, précised and less iteration. Additionally, it can be also concluded 

that the higher the population in the GA algorithm gives better result in relatively less iteration. 

However, higher population increases the computation effort/time. 

The effect of various parameters like crossover rate, mutation rate etc. on the GA performance can 

also be analyses in the future scope of the study. Moreover, the fitness function of the ELD can 

include some physical aspects such as valve point effects, emission costs etc. The renewable 

generators can also be considered for ELD operations. 
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