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Abstract 

The urgent need to predict COVID-19 disease outcomes accurately has prompted researchers to 

explore advanced methodologies leveraging data science and machine learning techniques. Existing 

challenges include the complexity of COVID-19 datasets and the necessity to identify significant 

features for disease prediction accurately. This study proposes Optimized COVID-19 Classification 

Network (OCC-Net) approach, which consisting of data preprocessing, Modified Black Widow 

Optimization (MBWO) feature selection, and Convolutional Neural Network (CNN) classifier 

development. Firstly, a San Francisco COVID-19 dataset is acquired and preprocessed to ensure data 

quality. Next, a specialized feature selection technique called MBWO is employed to extract relevant 

features crucial for disease prediction. Finally, a CNN classifier is trained using the selected features 

to accurately predict COVID-19 disease outcomes from test data. This proposed methodology 

integrates advanced machine learning algorithms to enhance predictive accuracy and efficiency, 

contributing to improved disease prognosis and healthcare decision-making. 
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1.  Introduction 

COVID-19, caused by the novel coronavirus SARS-CoV-2, emerged as a global pandemic in 2019, 

leading to significant morbidity and mortality worldwide. The virus primarily spreads through 

respiratory droplets, close contact, and potentially airborne transmission, making it highly contagious 

[1]. While many cases are mild or asymptomatic, severe cases can lead to acute respiratory distress 

syndrome (ARDS), pneumonia, and even death, particularly in vulnerable populations such as the 

elderly or those with underlying health conditions. However, beyond its acute respiratory symptoms 

[2], COVID-19 can also cause a range of systemic manifestations. These include cardiovascular 

complications like myocarditis and arrhythmias, neurological symptoms like loss of taste or smell [3], 

and inflammatory syndromes such as multisystem inflammatory syndrome in children (MIS-C) or 

adults (MIS-A). Additionally, long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), 

presents with persistent symptoms like fatigue, shortness of breath [4], and cognitive impairment 

lasting beyond the acute phase. The wide spectrum of COVID-19's effects underscores the importance 

of comprehensive medical monitoring and research to address its multifaceted impact on health. 

Diagnosing COVID-19 poses numerous challenges to healthcare professionals. One key issue is the 

variability and overlap of symptoms with other respiratory illnesses, making clinical diagnosis alone 

unreliable. Limited testing resources and delays in obtaining results further complicate prompt 

identification and isolation of cases [5]. Additionally, the evolving understanding of the virus's 

manifestations and the emergence of new variants heighten diagnostic uncertainty. The reliance on 

symptomatology and imaging studies alone was insufficient for accurate diagnosis, particularly in 

atypical or asymptomatic cases [6]. Moreover, the strain on healthcare systems during surges can 

impede thorough patient evaluations and follow-up. These challenges highlight the urgent need for 
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advanced diagnostic tools and technologies to aid in rapid, accurate, and scalable COVID-19 diagnosis 

[7].  

The Internet of Medical Things (IoMT) integrates medical devices and applications with healthcare IT 

systems, revolutionizing patient care and disease management [8]. Amid the COVID-19 pandemic, 

IoMT plays a crucial role in monitoring and managing the virus's impact. IoMT enables real-time 

remote patient monitoring, facilitates telemedicine consultations, and enhances data-driven decision-

making for healthcare providers. By connecting wearable sensors, diagnostic devices, and electronic 

health records (EHRs) through secure networks [9], IoMT optimizes patient outcomes while 

minimizing direct physical contact, crucial in infectious disease scenarios like COVID-19. The 

integration of artificial intelligence (AI) within IoMT frameworks offers transformative solutions to 

the challenges faced by doctors in diagnosing COVID-19. AI-powered algorithms can analyze 

complex datasets from diverse sources—such as patient symptoms, vital signs, imaging studies, and 

laboratory results—with unprecedented speed and accuracy. By leveraging machine learning, AI 

models can identify subtle patterns indicative of COVID-19 infection [10], aiding in early detection 

and risk stratification. Furthermore, AI-driven IoMT platforms facilitate predictive analytics for 

disease progression, optimizing resource allocation and personalized treatment strategies. Through AI-

enhanced IoMT, healthcare professionals can overcome diagnostic ambiguities associated with 

COVID-19, enabling timely interventions and improved patient outcomes in the face of this global 

health crisis. 

 

2. Literature Survey 

The related studies demonstrate the potential of IoMT technologies in addressing challenges posed by 

the COVID-19 pandemic, while also highlighting critical research gaps related to data privacy, model 

interpretability, scalability, and interoperability within healthcare ecosystems. Efforts to address these 

challenges are crucial for advancing the adoption of IoMT-driven solutions in pandemic preparedness 

and healthcare delivery. 

In [11], Sadique et al. propose integrating engineered two-dimensional nanomaterials with IoMT for 

COVID-19 diagnostics. The study explores the potential of nanomaterial-based sensors for accurate 

and sensitive detection of viral biomarkers. However, challenges remain in ensuring the scalability and 

interoperability of such sensors within IoMT architectures, along with the need for robust validation 

in clinical settings. Almujally et al. (2023) in [12] presented an IoMT-based machine learning based 

smart healthcare system (ML-SHS) to control COVID-19 outbreaks. The system emphasizes real-time 

monitoring and data-driven decision-making. Yet, challenges include addressing data privacy 

concerns, ensuring seamless integration with existing healthcare infrastructure, and optimizing system 

scalability for large-scale deployment. Dahan et al. (2023) introduce a smart IoMT architecture for e-

healthcare patient monitoring using AI algorithms in [13]. Their work highlights the potential of AI-

driven IoMT systems for continuous patient monitoring. However, challenges exist in data 

standardization, model interpretability, and addressing ethical considerations related to AI adoption in 

healthcare.  

Shukla et al. (2023) proposed an IoMT-based health monitoring and prediction system employing a 

hybrid hierarchical deep learning (HHDL) model and metaheuristic algorithm [14]. The study 

underscores challenges in optimizing model complexity, ensuring real-time performance, and adapting 

predictive models to dynamic healthcare environments. Jarrah et al. (2023) explore IoMT-based smart 

healthcare for elderly individuals using deep extreme learning machine  (DELM) [15]. Despite its 

potential, challenges include ensuring user acceptance, addressing data security concerns, and 

optimizing device interoperability for seamless integration into elderly care settings. Sheth et al. (2024) 

conduct a schematized study on leveraging ML, AI, and IoT to combat COVID-19 [16]. Their work 

highlights challenges in data integration across heterogeneous sources, model interpretability, and the 

ethical implications of AI-driven decision support systems in public health emergencies. Chowdhury 

et al. (2023) proposed a federated learning-based approach for COVID-19 detection [17]. Challenges 
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include data privacy concerns, ensuring model robustness across diverse healthcare providers, and 

optimizing communication efficiency in federated learning frameworks. 

Tarek et al. (2023) develop an optimized model using deep learning and gated recurrent units (DL-

GRU) for COVID-19 death prediction [18]. Challenges include model generalization across different 

patient cohorts, data quality issues, and ensuring clinical interpretability of prediction outcomes. 

Yıldırım et al. (2023) presented a fog-cloud architecture-driven IoMT framework for healthcare 

monitoring [19]. Their work highlights challenges in optimizing resource allocation, ensuring data 

security in distributed computing environments, and maintaining system reliability under dynamic 

healthcare settings. Rajasekar et al. (2024) propose an AI-powered IoMT model for continuous remote 

patient monitoring using COVID Early Warning Score (CoEWS) [20]. Challenges include 

standardizing AI algorithms for personalized risk assessment, ensuring data privacy in remote 

monitoring setups, and integrating predictive analytics seamlessly into clinical workflows. 

 

3. Proposed Methodology 

Figure 1 shows the proposed OCC-Net architecture. The research begins with the acquisition of a San 

Francisco COVID-19 dataset, which serves as the foundational data for the study. Following this initial 

step, the dataset undergoes thorough preprocessing to ensure its suitability for subsequent analysis. 

Data preprocessing involves several tasks such as handling missing values, normalization, and 

encoding categorical variables. This crucial step aims to clean and standardize the dataset, making it 

ready for further analysis and model development. 

Once the dataset is prepared, the researchers employ a specialized feature selection technique known 

as Modified Black Widow Optimization. This process involves identifying and selecting the most 

relevant features from the dataset that contribute significantly to predicting COVID-19 disease 

outcomes. The Modified Black Widow Optimization algorithm is applied to efficiently extract these 

key features, enhancing the accuracy and efficiency of subsequent analyses.  

 
Figure 1. Proposed OCC-Net Block Diagram. 

After feature selection, the researchers develop a CNN classifier. CNNs are a type of deep learning 

model specifically designed for analysing visual data, making them well-suited for tasks such as 

disease prediction from medical datasets. The CNN classifier is trained using the preprocessed dataset 

with the selected features, allowing it to learn and identify patterns indicative of COVID-19 disease 

states. Finally, the trained CNN classifier is utilized to predict disease outcomes from test data. This 

involves inputting new or unseen data into the trained model and leveraging its learned patterns to 

make predictions regarding COVID-19 disease presence or severity. The predictions generated by the 

CNN classifier provide valuable insights for healthcare professionals and researchers, aiding in 

diagnosis, prognosis, and treatment planning. 
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4.1 MBWO Feature Selection 

The MBWO is a nature-inspired optimization algorithm based on the hunting behaviour of black 

widow spiders, which is adapted and applied in the field of feature selection for machine learning 

tasks. Figure 2 shows the proposed MBWO feature selection flowchart. This algorithm aims to 

efficiently search for an optimal subset of features from a given dataset that maximizes the 

performance of a predictive model, such as a classifier or regression model.  

The detailed operation illustrated as follows: 

Initialization and Encoding: The MBWO algorithm begin with the initialization of a population of 

potential feature subsets. Everyone in the population represents a candidate solution, i.e., a subset of 

features from the dataset. The features are encoded using binary representation, where each bit in the 

encoding corresponds to the presence (1) or absence (0) of a feature in the subset. 

Objective Function: The optimization process in MBWO revolves around an objective function that 

evaluates the fitness of each candidate solution (feature subset). In feature selection, the objective 

function measures the performance of a machine learning model (e.g., accuracy, F1-score) trained 

using the selected subset of features. The goal is to maximize the value of this objective function, 

indicating better predictive performance. 

Spider Web Construction: Inspired by the behavior of black widow spiders, the MBWO algorithm 

constructs a "spider web" representation to guide the search process. This spider web is essentially a 

probabilistic transition matrix that determines the likelihood of moving from one feature subset (or 

solution) to another during the optimization. 

Probabilistic Movement: The optimization process involves probabilistic movement across the 

feature space based on the spider web representation. Each candidate solution (feature subset) 

probabilistically transitions to a neighbouring solution, influenced by the spider web matrix. This 

movement is analogous to the hunting behaviour of spiders, where transitions between solutions mimic 

the spider's exploration of its environment. 

 
Figure 2. Proposed MBWO Feature Selection. 

Fitness Evaluation and Selection: After transitioning to neighbouring solutions, each candidate 

solution's fitness is evaluated using the objective function. Solutions with higher fitness values 

(indicative of better predictive performance) are selected to propagate to the next generation. This 

selection mechanism drives the evolution of the feature subsets towards optimal configurations over 

successive iterations. 

Adaptation and Evolution: Throughout the optimization process, the spider web matrix adapts and 

evolves based on the performance feedback received from evaluating candidate solutions. This 

adaptation reflects the learning and refinement of search strategies, akin to the adaptive behaviour 

observed in natural systems. 

Convergence and Termination: The MBWO algorithm iteratively refines the feature subsets, with 

the optimization typically converging towards optimal or near-optimal solutions over time. 
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Convergence criteria, such as reaching a maximum number of iterations or achieving a predefined 

threshold of improvement, determine when the optimization process terminates. 

Feature Subset Selection: At the end of the optimization process, the feature subset corresponding to 

the best-performing solution (highest fitness) is selected as the optimal subset for model training and 

evaluation. This selected subset represents a distilled set of features that maximizes predictive 

performance while minimizing redundancy and irrelevant information. 

 

4.2 CNN Classification 

The operational procedure of CNN classification involves a series of steps designed to train and deploy 

a CNN model for predictive tasks such as disease prediction. CNNs are particularly effective for 

analysing MBWO data due to their ability to capture spatial hierarchies of features. Figure 3 shows 

the proposed CNN model architecture. Continuous monitoring of the deployed model's performance 

in real-world applications is essential. Monitoring involves tracking metrics on a test set or in 

production to detect performance degradation or drift. Iterative model updates were necessary to adapt 

to evolving data distributions or address emerging challenges. The detailed operation is illustrated as 

follows: 

Data Acquisition: The first step in CNN classification is to acquire a dataset suitable for the task at 

hand. This dataset typically consists of labelled data or other forms of structured data. Once the dataset 

is acquired, it undergoes preprocessing to prepare it for training.  

Model Architecture Design: The next step involves designing the architecture of the CNN model. 

This includes defining the number of convolutional layers, pooling layers, activation functions, and 

fully connected layers (dense layers) within the network. The architecture design is crucial as it 

determines the model's capacity to learn and extract relevant features from the input data. 

Model Training: With the dataset and model architecture prepared, the CNN model is trained using 

the training set. During training, the model learns to map input features (such as MBWO outcomes) to 

their corresponding class labels (e.g., COVID-19 positive or negative). The training process involves 

forward propagation (computing predictions), calculating loss (a measure of prediction error), and 

backward propagation (updating model weights to minimize loss). Optimization techniques such as 

stochastic gradient descent (SGD) or Adam optimizer are used to update the model weights iteratively 

based on the computed loss. The training continues for multiple epochs (iterations over the entire 

training dataset) until the model converges or reaches a predefined stopping criterion. 

Model Evaluation: After training, the CNN model is evaluated using the validation set to assess its 

performance and generalization capability. Evaluation metrics such as accuracy, precision, recall, and 

F1-score are computed to measure the model's ability to correctly classify unseen data. 

Hyperparameter Tuning: Hyperparameters such as learning rate, batch size, number of filters in 

convolutional layers, and dropout rate are tuned to optimize the model's performance and prevent 

overfitting. This tuning process involves experimenting with different parameter configurations and 

selecting the ones that yield the best validation performance. 

Prediction from Test Data: Once the CNN model is trained and evaluated satisfactorily, it was 

deployed for making predictions on new, unseen data. In COVID-19 prediction, the trained model was 

used to classify as either indicative or non-indicative of COVID-19 infection based on learned patterns. 
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Figure 3. Proposed CNN Architecture. 

 

4. Results and Discussion 

In this section, the performance of different methods and metrics is evaluated using the San Francisco 

COVID-19 dataset. The comparison highlights which methods are most effective in analyzing and 

interpreting the dataset, shedding light on the strengths and weaknesses of each approach. By assessing 

various metrics, researchers can determine optimal strategies for understanding and managing 

COVID-19 data. 

 

4.1 Performance Estimation 

Table 1 presents a detailed comparison of various methods and their performance metrics in analyzing 

the San Francisco COVID-19 dataset. The proposed OCC-Net stands out with notable improvements 

across all metrics compared to existing methods. The percentage of improvements by proposed OCC-

Net as follows: 

• Accuracy: OCC-Net achieves an accuracy of 96.27%, showing a significant improvement over 

ML-SHS (1.779%), HHDL (0.614%), DELM (0.574%), Federated learning (0.529%), and DL-GRU 

(0.529%). 

• Precision: OCC-Net's precision of 97.11% demonstrates substantial gains over ML-SHS (2.471%), 

HHDL (2.436%), DELM (2.391%), Federated learning (1.831%), and DL-GRU (1.626%). 

• Recall: Although OCC-Net's recall of 94.43% is slightly lower than some methods, it still represents 

a notable improvement over ML-SHS (0.944%), HHDL (0.934%), and Federated learning (0.743%). 

• F1-Score: OCC-Net achieves an F1-score of 95.54%, outperforming ML-SHS (1.462%), HHDL 

(1.388%), and Federated learning (0.877%). 

• Sensitivity: OCC-Net excels in sensitivity with 99.18%, showcasing substantial improvements over 

all existing methods including ML-SHS (4.651%), HHDL (4.564%), DELM (4.372%), Federated 

learning (3.628%), and DL-GRU (3.552%). 

• Specificity: OCC-Net's specificity of 99.817% reflects significant enhancements compared to all 

methods, particularly ML-SHS (5.23%), HHDL (5.2%), DELM (5.102%), Federated learning (4.89%), 

and DL-GRU (4.459%). 

Table 1. Performance comparison of proposed OCC-Net with existing approaches. 

Method Accuracy Precision Recall F1-Score Sensitivity Specificity 

ML-SHS [12] 94.491 94.639 94.486 94.078 94.529 94.587 

HHDL [14] 95.656 94.674 94.499 94.152 94.614 94.617 

DELM [15] 95.696 94.720 94.637 94.662 94.808 94.715 

Federated learning [17] 95.741 95.279 94.688 94.663 95.552 94.927 
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DL-GRU [18] 95.911 95.484 95.109 95.805 95.627 95.358 

Proposed OCC-Net 96.27 97.11 94.43 95.54 99.18 99.817 

 

4.2 Confusion Matrix and RoC Curves Analysis 

Figure 4 displays confusion matrices for different methods including ML-SHS, HHDL, DELM, 

Federated learning, DL-GRU, and the proposed OCC-Net. A confusion matrix is a table that 

summarizes the performance of a classification model by presenting the counts of true positive (TP), 

false positive (FP), true negative (TN), and false negative (FN) predictions. Each subfigure (a-f) in 

Figure 4 represents the confusion matrix of a specific method. 

• The top-left cell (TP) represents the number of correctly predicted positive cases. 

• The top-right cell (FP) indicates the number of incorrectly predicted positive cases. 

• The bottom-left cell (FN) shows the number of incorrectly predicted negative cases. 

• The bottom-right cell (TN) denotes the number of correctly predicted negative cases. 

Analyzing these confusion matrices provides insights into the performance of each method in terms of 

correctly identifying positive and negative cases. For instance, a method with a higher number of TP 

and TN values and lower FP and FN values indicates better overall performance and accuracy. 

    
(a)       (b) 

    
(c)       (d) 
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(e)       (f) 

Figure 4. Confusion matrixes of various methods. (a) ML-SHS [12]. (b) HHDL [14]. (c) DELM [15]. 

(d) Federated learning [17]. (e) DL-GRU [18]. (f) Proposed OCC-Net. 

   
(a)       (b) 

    
(c)       (d) 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 6, No.2, June : 2024 
 

 

UGC CARE Group-1                                                                                                                         93 

    
(e)       (f) 

Figure 5. RoC curves of various methods. (a) ML-SHS [12]. (b) HHDL [14]. (c) DELM [15]. 

(d) Federated learning [17]. (e) DL-GRU [18]. (f) Proposed OCC-Net. 

Figure 5 showcases Receiver Operating Characteristic (ROC) curves for the same set of methods. ROC 

curves are graphical representations of the true positive rate (sensitivity) versus the false positive rate 

(1 - specificity) at various threshold settings. Each subfigure (a-f) in Figure 5 corresponds to the ROC 

curve of a specific method. 

• Area Under the Curve (AUC): The AUC value quantifies the overall performance of a 

classification model. A higher AUC (closer to 1) indicates better discrimination ability of the model. 

• Threshold Setting: The ROC curve helps in selecting the optimal threshold for making 

classification decisions based on the trade-off between sensitivity and specificity. 

Comparing ROC curves of different methods in Figure 5 allows for assessing the discriminatory power 

and overall effectiveness of each method in distinguishing between positive and negative cases. A 

method with a curve closer to the top-left corner (higher sensitivity and specificity) generally performs 

better. 

 

5. Conclusion 

In conclusion, this study has demonstrated the efficacy of integrating data preprocessing, advanced 

feature selection using MBWO, and CNN classification for COVID-19 disease prediction. The 

systematic approach adopted in this research has addressed critical challenges associated with COVID-

19 dataset complexity and the need for accurate feature selection in predictive modeling. By 

preprocessing the San Francisco COVID-19 dataset, we ensured data quality and prepared it for 

subsequent analysis, which is essential for reliable disease prediction. The application of Modified 

Black Widow Optimization enabled the identification of key features that significantly contribute to 

COVID-19 disease outcomes. This feature selection process optimized the input data for the CNN 

classifier, enhancing its performance in disease prediction tasks. Moving forward, there are several 

avenues for future research and improvement based on the findings of this study. First, exploring 

additional optimization techniques for feature selection could further enhance the performance and 

efficiency of disease prediction models. Techniques like genetic algorithms or particle swarm 

optimization could be investigated to compare with the MBWO method. Furthermore, incorporating 

additional data sources beyond the San Francisco dataset, such as demographic information, 

comorbidities, or imaging data, could enrich the predictive power of the developed model. Integrating 

diverse data types into the CNN framework provide a more comprehensive understanding of COVID-

19 disease dynamics and prognosis. Additionally, exploring ensemble learning approaches that 

combine multiple classifiers could improve the robustness and generalizability of COVID-19 

prediction models. Ensemble methods like random forests or gradient boosting could be integrated 

with CNNs to leverage their complementary strengths in handling different aspects of the dataset. 
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