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ABSTRACT: Automatic segmentation of water bodies from high-resolution satellite images is of great importance 

in various fields, including environmental monitoring, urban planning, and disaster management. Traditional 

techniques for water body segmentation often rely on manual or semi-automatic methods, which are time-

consuming and prone to human errors. Recently, deep learning approaches have shown remarkable success in 

computer vision tasks, leading to their adoption for water body segmentation. This study presents a 

comprehensive investigation into the development of a deep learning framework for automatically segmenting 

water bodies from high-resolution satellite images. The proposed framework leverages convolutional neural 

networks (CNNs) to learn distinctive features and achieve precise segmentation outcomes. To assess the 

framework's performance, a diverse dataset is employed, and the obtained results are compared with state-of-the-

art methods. The experimental findings demonstrate the efficacy and efficiency of the proposed approach, 

offering encouraging possibilities for automating water body segmentation from high-resolution satellite images. 

Keywords: automatic segmentation, deep learning, convolutional neural networks, high-resolution satellite 

images, water-body segmentation. 

I. INTRODUCTION 

1.1 Background: 

In this section, the background of the research 

topic is presented to provide context and rationale for 

conducting the study on automatic water-body 

segmentation from high-resolution satellite images via 

deep networks. The increasing availability of high-

resolution satellite imagery has opened up new 

possibilities for various applications, including 

environmental monitoring, urban planning, and disaster 

management. Accurate identification and segmentation 

of water bodies within these images are crucial for 

analyzing changes in water resources, understanding 

urban development patterns, and responding effectively 

to natural disasters. Traditional methods for water-body 

segmentation often rely on manual or semi-automatic 

techniques, which are labor-intensive and prone to 

errors. Therefore, there is a need for automated 

approaches that can handle the analysis of large-scale 

satellite images efficiently and accurately. 

1.2 Problem Statement: 

 

Within this section, a precise articulation of the 

targeted issue addressed by the research is provided. The 

problem statement elucidates the constraints and 

obstacles entailed by conventional methodologies 

employed in water-body segmentation, emphasizing the 

necessity for an automated approach utilizing advanced 

deep learning techniques. The problem statement may 

encompass factors such as the intricacy inherent in 

satellite imagery, the imperative for precise demarcation 

of water boundaries, and the potential repercussions 

arising from erroneous segmentation in subsequent 

applications. 

 

1.3 Objectives: 

The objectives of the research are outlined in 

this section. The main objective is to develop a deep 

learning-based framework for automatic water-body 

segmentation from high-resolution satellite images. The 

sub-objectives may include: 

1.3.1 Investigating state-of-the-art deep learning 

techniques for image segmentation. 

Image segmentation plays a crucial role in 

various computer vision tasks, including object 

detection, image recognition, and scene understanding. 

With the rapid advancements in deep learning, 

particularly convolutional neural networks (CNNs), there 

has been significant progress in achieving accurate and 

efficient image segmentation. In this section, we delve 

into the investigation of state-of-the-art deep learning 

techniques for image segmentation, highlighting their 

key concepts, methodologies, and contributions. U-Net, 

DeepLab, Mask R-CNN, PSPNet, FCN. 

II. LITERATURE REVIEW 

2.1 Overview of Water-Body Segmentation: 

In this section, an overview of water-body 

segmentation is provided. It discusses the significance of 

water-body segmentation in various applications such as 
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environmental monitoring, urban planning, and disaster 

management. The section also highlights the challenges 

involved in water-body segmentation, including the 

complexity of satellite imagery, variability in water body 

appearances, and the need for accurate boundary 

delineation. 

2.2 Traditional Methods for Water-Body 

Segmentation: 

This section focuses on the traditional methods 

that have been used for water-body segmentation. It 

provides an overview of different techniques, such as 

thresholding, region-growing, and edge-based methods, 

which have been commonly employed for water-body 

segmentation. The strengths and limitations of these 

traditional methods are discussed, emphasizing their 

reliance on handcrafted features and the need for manual 

intervention. 

2.3 Deep Learning Techniques for Image 

Segmentation: 

Within this section, attention is redirected 

towards the utilization of advanced deep learning 

methodologies for image segmentation. The segment 

commences with an elucidation of deep learning, with a 

specific emphasis on convolutional neural networks 

(CNNs), which have brought about a transformative shift 

in the realm of computer vision. The foundational 

principles underlying CNNs, encompassing 

convolutional layers, pooling layers, and fully connected 

layers, are comprehensively explicated. Furthermore, 

prominent architectures employed for image 

segmentation, including U-Net and Fully Convolutional 

Networks (FCNs), are thoroughly examined and 

discussed. 

2.4 Deep Learning for Water-Body Segmentation: 

This section delves into the application of deep 

learning techniques specifically for water-body 

segmentation. It highlights recent research studies and 

methodologies that have used deep learning for 

automatic water-body segmentation. The section 

discusses the advantages of deep learning approaches, 

such as their ability to learn discriminative features from 

large amounts of data, their flexibility in handling 

complex image characteristics, and their potential for 

achieving high segmentation accuracy. Various 

strategies employed in deep learning for water-body 

segmentation, including data augmentation, transfer 

learning, and ensemble methods, are also explored. 

The detection of water bodies using remote sensing 

imagery holds significant importance in urban 

hydrological studies [1]. The field of urban hydrology 

has emerged as a crucial area of research, aiming to 

enhance and manage urban water systems in order to 

address environmental challenges arising from rapid 

urbanization. It plays a vital role in facilitating effective 

flood protection planning, water quality control, and 

ensuring public safety and health [2]. To gain 

comprehensive insights into water systems within cities, 

accurate and automated detection of water bodies serves 

as the initial and fundamental stage, enabling pixel-level 

identification of water regions [3], [4]. 

 

Ever since its inception in 2015, the Sentinel-2 satellite 

has bestowed the scientific community with unrestricted 

access to a plethora of multispectral imagery, garnering 

extensive employment in land-cover applications [5]–

[7]. The accessibility of Sentinel-2 data presents one of 

the most fitting resources for prompt surveillance and 

examination of urban hydrological processes. This is 

predominantly owing to its nearly daily refresh rate, 

surpassing that of more detailed remote sensing data like 

very high spatial resolution (VHR) imagery [8] and 

synthetic aperture radar (SAR) data [4]. The utilization 

of Sentinel-2 imagery enables researchers and 

hydrologists to leverage its frequent revisit rate, allowing 

for timely detection and monitoring of water bodies 

within urban areas. This is particularly crucial in urban 

hydrological studies, where up-to-date information is 

essential for understanding the dynamic nature of water 

systems in response to various factors such as rainfall, 

land use changes, and infrastructure development. By 

harnessing the multispectral capabilities of Sentinel-2, 

which capture information across different parts of the 

electromagnetic spectrum, accurate identification and 

delineation of water bodies can be achieved. 

Accurate water body detection using Sentinel-2 imagery 

not only provides valuable insights into urban 

hydrological processes but also contributes to the 

development of effective strategies for water resource 

management, flood risk assessment, and urban planning. 

The availability of near-daily updates from the Sentinel-

2 satellite ensures that the hydrological conditions can be 

continuously monitored, allowing for the identification 

of potential risks and the implementation of proactive 

measures to mitigate flooding and maintain water 

quality. In this study, our focus is on exploring the 

potential of 10-meter-resolution multispectral data from 

the Sentinel-2 satellite for urban hydrological 

applications that require frequent data updates. 

Traditional methods for detecting water bodies rely on 

handcrafted statistical features extracted from 

multispectral imagery, specifically near infrared (NIR) 

and short-wave infrared (SWIR) bands. These features 

include widely known indices such as the Normalized 

Difference Water Index (NDWI) [9], Normalized 

Difference Moisture Index (NDMI) [10], modified 

Normalized Difference Water Index (MNDWI) [11], 

Automated Water Extraction Index (AWEI) [12], and 

Pixel Region Index (PRI) [13]. While these methods 

demonstrate satisfactory performance in controlled 

datasets, their applicability in real-world conditions for 

water body detection is limited. 
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In our investigation, we aim to assess the 

effectiveness of utilizing Sentinel-2's multispectral data 

with its 10-meter resolution in urban hydrological 

applications. The advantage of Sentinel-2 lies in its 

capability to provide frequently updated data, which is 

crucial for monitoring dynamic urban water systems. By 

exploiting the temporal dimension of the data, we can 

gain valuable insights into the temporal variability of 

water bodies, capturing changes that occur over time due 

to rainfall, urban development, and other factors. Our 

research aims to contribute to the advancement of urban 

hydrological studies by providing improved 

methodologies for water body detection. By leveraging 

the frequent updates and high-resolution multispectral 

data from Sentinel-2, we anticipate that our proposed 

approach will enhance the accuracy and reliability of 

water body detection in real-world scenarios. This will 

enable better understanding and management of urban 

water systems, facilitating effective flood protection 

planning, water quality control, and urban development 

strategies. 

Over the past few years, deep convolutional 

neural network (DCNN) architectures have garnered 

significant acclaim for their remarkable proficiency in 

detecting water bodies [3], [4], [14]–[16]. Prominent 

examples of such models include fully convolutional 

networks (FCNs) [17], upsampling pyramid networks 

[4], and DenseNet [18], which have proven their efficacy 

in urban hydrological applications by facilitating 

semantic segmentation of remotely sensed images and 

precise identification of water bodies. In comparison to 

conventional water index features, DCNN models 

possess a distinct advantage of extracting more 

distinctive and discriminative representations, thereby 

enhancing the accuracy of water body detection. 

The use of multispectral imagery in water body 

segmentation has the potential to further enhance the 

performance compared to using only RGB channels. 

Multispectral data captures information from additional 

bands across a wider range of the electromagnetic 

spectrum, providing valuable contextual information. 

However, recent studies [4], [20] have shown that the 

use of multiple bands does not always yield significant 

improvements. For instance, in the Kaggle Satellite 

Imagery Feature Detection challenge [20], methods 

incorporating all 20 available channels (including 

panchromatic, RGB, multispectral, and SWIR bands) 

achieved only marginal enhancements compared to 

models utilizing RGB bands alone. 

III. PROPOSED MC-WBDN NETWORK MODEL 

In this research paper, we present a novel 

approach called the Multichannel Water Body Detection 

Network (MC-WBDN). The main objective of MC-

WBDN is to leverage the capabilities of multispectral 

imagery in order to enhance the performance of existing 

state-of-the-art deep convolutional neural network 

(DCNN) models for accurate water body segmentation. 

By incorporating multispectral data, MC-WBDN aims to 

capture a wider range of spectral information, beyond 

the traditional RGB channels, to improve the 

discrimination of water bodies from other land features. 

This additional spectral information can provide valuable 

cues for distinguishing water pixels based on their 

unique reflectance properties in different parts of the 

electromagnetic spectrum. 

MC-WBDN builds upon the advancements made in 

DCNN models and extends them to exploit the rich 

information available in multispectral imagery. By 

integrating multiple channels into the network 

architecture, MC-WBDN enables the model to learn and 

utilize more comprehensive feature representations, 

resulting in enhanced accuracy and robustness in water 

body segmentation. Through the utilization of MC-

WBDN, we aim to address the limitations of existing 

approaches and push the boundaries of water body 

detection. By leveraging the full potential of 

multispectral imagery, we anticipate significant 

improvements in the identification and delineation of 

water regions, which can have wide-ranging applications 

in fields such as hydrology, environmental monitoring, 

and urban planning. 

The development and evaluation of MC-

WBDN will involve extensive experiments and 

comparative analyses against state-of-the-art DCNN 

models and other existing methods. The performance of 

MC-WBDN will be assessed using various datasets and 

evaluation metrics to validate its effectiveness and 

potential for advancing the field of water body 

segmentation. Overall, the proposed MC-WBDN 

represents an innovative and promising approach to 

leverage multispectral imagery for improved water body 

detection. Through this research project, we aim to 

contribute to the advancement of accurate and reliable 

water body segmentation techniques, ultimately 

supporting various applications in water resource 

management and environmental studies. 

3.1 Data Preprocessing and Data Augmentation 

Prior to training the model, several 

preprocessing and data augmentation techniques are 

employed to optimize the effectiveness and 

computational efficiency of the model. The following 

procedures are applied: 

3.1.1. Image splitting 

To ensure efficient computation and memory 

usage while enabling parallel processing, the raster 

imagery is divided into manageable image blocks. This 

partitioning approach helps avoid the burden of handling 

large datasets and facilitates parallelization. Our 

proposed model operates on input sizes of 512 × 512 

pixels for the NIR and RGB channels and 256 × 256 

pixels for the SWIR channel. 
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Rather than directly splitting the entire 

multispectral image into patches of the required size, we 

initially divide it into blocks of 1024 × 1024 pixels for 

NIR and RGB, and 512 × 512 pixels for SWIR. This 

configuration allows for the implementation of distinct 

splitting strategies for training and testing purposes. In 

the training phase, a greater number of samples are 

necessary to address potential issues of overfitting. 

Therefore, we introduce an overlapping split of image 

blocks to generate additional training samples. This 

overlapping split strategy helps diversify the training 

dataset and improve the model's ability to generalize. 

During the testing phase, patches are extracted from 

randomly sampled, non-overlapping blocks and used as 

input to our proposed model.  

3.1.2 Cloud filtering and color normalization: 

After conducting an initial examination of the spectral 

information in each band, we determine a heuristic 

threshold of 3000 to filter out cloudy areas with values 

exceeding this threshold. To ensure consistency, any 

values surpassing the threshold are capped.  

To normalize the intensities (Xi) in each 

channel, we employ a normalization technique using the 

mean (μ) and standard deviation (σ) of the channel. This 

normalization process aids in standardizing the 

intensities across different channels, allowing for a more 

meaningful comparison and analysis. By dividing each 

intensity value by its corresponding mean and standard 

deviation, we bring the intensities to a common scale, 

facilitating subsequent computations and interpretation. 

The normalization formula can be expressed as follows, 

considering the intensities Xi in each channel: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑁𝑖)  =  (𝑋𝑖 −  𝜇) / 𝜎 

This normalization procedure ensures that the 

intensities within each channel are centered around zero 

with a standard deviation of one. By applying this 

normalization step, we can effectively account for 

variations in intensity levels and promote more reliable 

and accurate analysis of the data. 

𝑋𝑖 =
𝑋𝑖 − 𝜇(𝑋𝑖)

𝜎(𝑋𝑖)
 

 

 

 

 
Figure 2: Pixel intensity distributions of the used bands. 

3.1.3 Image augmentation  
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In conjunction with the initial patches acquired 

from the division stage, we incorporate the subsequent 

techniques during the training phase to augment the data: 

1) a stochastic horizontal or vertical mirroring with a 

probability of 0.5; 2) a clockwise rotation of 90 degrees 

with a probability of 0.5; and 3) a fortuitous alteration of 

the HSV color space within a narrow spectrum, with a 

probability of 0.25. 

 

 

3.2 MC-WBDN MODEL 

3.2.1 Model Architecture 

The architecture of our proposed MC-WBDN 

(Multichannel Water Body Detection Network) model is 

visually depicted. Our model takes three input images: 

the RGB channels, NIR channel, and SWIR channel. 

These channels are then processed by specific 

convolution kernels within the multichannel fusion 

module. This module generates feature maps of the same 

size for each channel, which are subsequently 

concatenated. The resulting fused feature maps serve as 

the input for our backbone encoder-decoder network, 

responsible for performing pixeXl-level labeling. 

To construct our model, we utilize a ResNet-34 

model that has been pretrained on the ImageNet dataset 

[26] as the encoder network. This choice allows us to 

leverage the prelearned weights and robust feature 

extraction capabilities of the ResNet architecture. For the 

decoder network, we employ an enhanced version of the 

DeepLabV3+ network. This decoder network 

incorporates fine-grained feature maps generated by the 

EASPP (Enhanced Atrous Spatial Pyramid Pooling) and 

S2D/D2S (Spatial-to-Depth and Depth-to-Spatial) 

modules. 

The table outlines the kernel width, kernel height, and 

the number of kernels in each convolutional layer. 

Additionally, it presents the output sizes of the feature 

maps produced by these layers. This information 

provides crucial insights into the network's structure and 

serves as a reference for understanding the underlying 

design choices of our MC-WBDN model. 

Our proposed model introduces two distinct 

features that differentiate it from a traditional backbone 

encoder-decoder architecture: 

Instead of using bilinear upsampling operations, 

we employ D2S (Depth-to-Spatial) operations in our 

decoder. This modification enhances the information 

exchange between channels, drawing inspiration from 

successful techniques employed in SENet [40] and 

ShuffleNet [41]. By incorporating D2S operations, we 

improve the preservation of fine-grained context and 

achieve more effective upsampling. 

In addition to the standard encoder-decoder 

connections, we incorporate two extra bypasses from 

lower layers of the encoder. These bypasses are 

concatenated with dense feature maps provided by an 

EASPP (Enhanced Atrous Spatial Pyramid Pooling) 

module. This fusion of bypasses and dense feature maps 

further enhances the preservation of fine-grained context 

and allows for more comprehensive feature 

representation. To ensure numerical stability and enable 

non-linear representation, we utilize Swish activation 

functions [42] in both the fusion head and the decoder. 

Swish activation functions, defined as f(x) = x • 

sigmoid(x), exhibit differentiability when handling 

negative gradients. In contrast, ReLU activation 

functions (f(x) = max(0, x)) are employed in the encoder 

section to preserve the representative features transferred 

from the pretrained deep learning model. 

During the testing phase, we employ a sliding 

window prediction mechanism. This mechanism 

involves sliding a window along the satellite imagery, 

and the result is determined by the central area of the 

window. This approach allows us to make predictions at 

different spatial locations while efficiently leveraging the 

model's capabilities. By incorporating these 

modifications and strategies, our proposed model 

achieves improved information exchange, preserves fine-

grained context, and ensures numerical stability, leading 

to enhanced performance in water body detection tasks. 
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Table 1: Layer configuration of employed network architecture 

 

3.2.2 Multichannel Fusion Head: 

To integrate the RGB channels with the NIR 

and SWIR channels, we incorporate a fusion step at the 
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initial stage of our processing pipeline. Specifically, for 

the RGB and NIR channels that share the same 

resolution, we utilize 7x7 convolution kernels to expand 

the receptive field. Additionally, we employ a stride of 2 

to ensure the output size aligns with that of the SWIR 

channel. In the case of the lower-resolution SWIR band, 

we employ 1x1 convolution kernels to increase the 

density of its feature maps. The outputs from these 

operations are then concatenated, followed by a 1x1 

convolutional operation. This final convolutional 

operation yields the combined channel representation 

that is utilized by the context encoder module. By 

performing these steps, we effectively fuse the RGB, 

NIR, and SWIR channels, enabling the subsequent 

stages of the model to leverage the complementary 

information from each channel. 

3.2.3 EASPP Module 

In order to capture distinctive characteristics 

from a variety of receptive fields, we propose an 

enhancement to the Atrous Spatial Pyramid Pooling 

(ASPP) technique [36]. Our innovative approach, termed 

Enhanced ASPP (EASPP) module, introduces a 

modification to the original ASPP method. Instead of 

relying on upsampling operations, we employ 1x1 

convolution operations followed by local max pooling 

on the feature maps derived from preceding layers. This 

modification establishes a direct connection from the 

previous layers, thereby amplifying the effectiveness of 

the trainable weights. By incorporating the EASPP 

module, we successfully extract dense features from 

diverse scales within the input feature maps [36]. This is 

achieved through the utilization of individual dilated 

convolutions [35], [43], [44] at varying scales, each scale 

representing a distinct region size that can be activated 

within the feature maps. The hierarchical arrangement of 

the receptive fields facilitates the aggregation of 

contextual information from the input, resulting in a 

comprehensive and informative feature representation. 

Lastly, the multiscale feature pyramid is concatenated 

and refined through a 1x1 convolution operation, 

generating output feature maps that can be further 

processed. 

 

3.2.4. Space-to-Depth and Depth-to-Space 

In the traditional workflow of a DCNN, the 

inclusion of pooling operations in the encoder and 

upsampling operations in the decoder is prevalent. 

Nonetheless, these operations entail certain limitations. 

Pooling operations have a tendency to discard fine-

grained feature responses, while upsampling operations 

lack trainability. Although transposed convolution 

operations can serve as an alternative to upsampling, 

they significantly augment the parameter count within 

the DCNN [45]. To overcome these challenges, the 

adoption of S2D (Spatial-to-Depth) and D2S (Depth-to-

Spatial) operations has been proposed as a viable 

solution [46], [47]. 

The S2D operationinvolves moving pixels from 

their original spatial locations to the channel dimension. 

This operation enables the preservation of more local 

features for the subsequent decoder process. 

Additionally, the S2D operation can be viewed as an 

intramodel augmentationproviding different views of 

inputs with varying pixel shifts. On the other hand, the 

D2S operation serves as an alternative to transposed 

convolutions for upsampling and offers two advantages. 

Firstly, it is parameter-free while retaining all the 

responses from the previous layers. Secondly, it 

facilitates information fusion across feature map 

channels, enabling effective feature exchange instead of 

focusing solely on individual channels as in the case of 

transposed convolutions. 

IV. SIMULATION RESULS 

4.1 Experimental Setup 

To ensure an impartial assessment of the 

proposed methodology, the dataset is partitioned into 

distinct training, validation, and test sets. Initially, the 

satellite imagery undergoes division into 441 blocks, 

each with dimensions of 1024 × 1024. Consequently, 

nine patches are derived from every 1024 × 1024 block, 

yielding a cumulative count of 3969 image patches. For 

the purpose of training, a subset of 300 blocks, 

measuring 1024 × 1024, is employed, thereby resulting 

in 2700 training patches. The remaining 141 blocks are 

allocated for the formation of a validation set, 

comprising 33 blocks and encompassing 297 patches, 

while the remaining 108 blocks form the test set, 

encompassing 972 patches. 
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To assess the robustness of the proposed method, the 

training and validation sets are further divided into three 

folds. Each fold comprises 300 blocks for training and 

33 blocks for validation. This division allows for testing 

the proposed method on different subsets of the data and 

provides insights into its performance across multiple 

scenarios. The mIoU (mean Intersection over Union) 

results, expressed in terms of average and standard 

deviation, are reported on the test set when trained using 

the three trained models. This comprehensive evaluation 

provides a reliable measure of the model's performance 

and its consistency across different training instances. 

 

 
Figure 5: Input Image 

 
Figure 6: Binary Image 

 
Figure 7: Output segmented image 

 

 
Figure 8: Training progress 

 

 
Figure 9: Performance metrics 

V. CONCLUSION 

Driven by the remarkable achievements of deep 

learning techniques in various fields, including remote 

sensing, we propose a novel approach for satellite-based 

water body extraction. In this article, we introduce an 

effective DCNN model that incorporates several key 

contributions. While the RGB channel has been widely 

utilized in remote sensing applications, we demonstrate 

the value of incorporating additional wavelength bands, 

such as NIR and SWIR, to enhance the segmentation 

accuracy. By leveraging the multispectral information 

provided by Sentinel-2 satellite data, we effectively 

exploit the unique characteristics of each band to 

improve the network's ability to identify water areas 

accurately. 

In our future work, we aim to further explore 

the practical applications of our proposed method in 

hydrological studies. By leveraging the strengths of our 

MC-WBDN model, we anticipate enabling more 

accurate and reliable analysis of water bodies in various 

hydrological contexts. 
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