
 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 6, No. 3, June : 2023 

 

UGC CARE Group-1,                                                                                                                 106 

STUDY OF NEW CLASS USING SALAGEAN DIFFERENTIAL OPERATOR  WITH 

SOME MISSING COEFFICIENTS 

 
1Rahulkumar D Katkade*, 2S.M.Khairnar, 3Shobha V.Rupanar & 4Bhagwat B. Gidhad 

Department of Engineering Sciences 1, 2, 3Ajeenkya D Y Patil School of Engineering, Pune-411047, 

Maharashtra, India. rkdkatkade@gmail.com, smkhairnar2007@gmail.com 
4Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, Maharashtra, India. 

 

Abstract 

In this paper, we study a new class ( , , , )n     using the Salagean differential operator. Also obtained 

various properties of given class such as coefficient estimates, convex linear combination, extreme 

points and their related results. 
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Introduction 

Let ufA  denote the class of analytic univalent functions of the form: 

 2

2

2

( ) k

k

k

f z z a z


=

= +                                                                  (1) 

  defined in the unit disc { : 1}.U z z=   

Let n  denote the subclass of ufA  in U , consisting of analytic functions whose non-zero coefficients 

from the second onwards are negative. That is, an analytic function nf  , if it has a Taylor expansion 

of the form 
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which are univalent in the open disc U . 

For uff A , Salagean [1], introduced the following operator nD  which is called the Salagean 

differential operator. 
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We note that, 
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Now by Salagean differential operator, we describe the following subclass of n . 

Let ( , , , )n      be the subclass of n  consisting of functions which satisfy the conditions 
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Coefficient Estimates 

Theorem 2.1: A function f  defined by (2) is in the class ( , , , )n     if and only if 
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              0Where  0 <1,0 <1,0 <1,0 <1 and .n N          

Proof: Suppose ( , , , )nf      . Then 
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Letting 1z → , then we get 
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Conversely assume that (2.1) be true, we have to show that (4) is satisfied or equivalently, 
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The last expression is bounded above by 1−    if 
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Or 
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which is true by hypothesis. This completes the assertion of Theorem 2.1. 

Corollary 2.2: If ( , , , )nf      then 
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Proof: From the Theorem 2.1, 
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For 2( ) ( , , , )nf z      . 

Hence  1( ) ( , , , )nf z      . 

Theorem 2.3: Let ( ) ( , , , )nf z      . Define 1( )f z z=  and 
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and define 2 2
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From Theorem 2.1, 2
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Theorem 2.4: The class ( , , , )n     is closed under convex linear combination. 

Proof: Let , ( , , , )nf g S      and let 
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For   such that 0 1   , it suffices to show that the function define by 
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This implies that ( , , , )nh     . 

Corollary 2.5: If 1( )f z , 2 ( )f z are in ( , , , )n     then the function defined by 
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Proof:  For each {1,2,3,..., 2 },j k  we obtain 
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11

0

( 1) 1 ( )
( ) log ,   1, 0

( )

cc f tz
k z t dt c

t t

−+  
=  −   

   
  

then ( ) ( , , , )nk z      . 

Proof: We have 

 

11

0

1 ( )
log

( 1)

ct dt
t c

−



  
= 

+ 
  

 

11

2 1

0

1 ( )
log ,   2,3,...

( 1)

k ct dt k
t c

−

+ −



  
= = 

+ 
 . 

 

1 11 1

2 2 1

2

20 0

( 1) 1 1
( ) log log

( )

c k k c

k

k

c
k z t zdt z a t dt

t t

− − 
+ −

=

 +    
= −    

       
   

 
2

2

2

1

2

k

k

k

c
z a z

c k



=

+ 
= −  

+ 
 . 

Since ( , , , )nf      and since 
1

1
2

c

c k


+ 

 
+ 

, we have 

 

 2

2

1
(2 ) [2 2 ]

2

n

k

k

c
k k k a

c k



=

+ 
 − +  −   

+ 
  

 ( 1)   −+  − . 

Theorem 2.8: Let ( , , , )nf      then for every 0 1    the function 
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Proof: We have 
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