

Industrial Engineering Journal ISSN: 0970-2555 Volume : 52, Issue 6, No. 3, June : 2023

STUDY OF NEW CLASS USING SALAGEAN DIFFERENTIAL OPERATOR WITH SOME MISSING COEFFICIENTS

¹Rahulkumar D Katkade^{*}, ²S.M.Khairnar, ³Shobha V.Rupanar & ⁴Bhagwat B. Gidhad

Department of Engineering Sciences ^{1, 2, 3}Ajeenkya D Y Patil School of Engineering, Pune-411047, Maharashtra, India. rkdkatkade@gmail.com, smkhairnar2007@gmail.com
 ⁴Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, Maharashtra, India.

Abstract

In this paper, we study a new class $\phi_n(\alpha, \beta, \gamma, \lambda)$ using the Salagean differential operator. Also obtained various properties of given class such as coefficient estimates, convex linear combination, extreme points and their related results.

Keywords: Analytic functions, Univalent functions, Salagean derivative AMS Subject Classification: 30C45, 30C50.

Introduction

Let A_{uf} denote the class of analytic univalent functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_{2k} z^{2k}$$
(1)

defined in the unit disc $U = \{z : |z| < 1\}.$

Let φ_n denote the subclass of A_{uf} in U, consisting of analytic functions whose non-zero coefficients from the second onwards are negative. That is, an analytic function $f \in \varphi_n$, if it has a Taylor expansion of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}, \qquad (a_{2k} \ge 0)$$
(2)

which are univalent in the open disc U.

For $f \in A_{uf}$, Salagean [1], introduced the following operator D^n which is called the Salagean differential operator.

$$D^{0}f(z) = f(z), \quad D'f(z) = f'(z)$$

 $D^{n}f(z) = D(D^{n-1}f(z)), \quad n \in N.$

We note that,

$$D^{n}f(z) = z + \sum_{k=2}^{\infty} (2k)^{n} a_{2k} z^{2k}, \qquad n \in N_{0}.$$
(3)

Now by Salagean differential operator, we describe the following subclass of φ_n . Let $\varphi_n(\alpha, \beta, \gamma, \lambda)$ be the subclass of φ_n consisting of functions which satisfy the conditions

$$R\left\{\frac{1-z(D^{n}f)'}{1-z(D^{n}f)'+(1-\lambda)(D^{n}f)-(\alpha-\beta)}\right\} > \gamma$$
(4)

for some $0 \le \alpha < 1, 0 \le \beta < 1, 0 \le \gamma < 1, 0 \le \lambda < 1$ and $n \in N_0$.

Industrial Engineering Journal ISSN: 0970-2555 Volume : 52, Issue 6, No. 3, June : 2023

Coefficient Estimates

Theorem 2.1: A function f defined by (2) is in the class $\phi_n(\alpha, \beta, \gamma, \lambda)$ if and only if

$$\sum_{k=2}^{\infty} (2k)^n a_{2k} [2k\gamma - 2k + \gamma\lambda - \gamma] < \gamma(\alpha - \beta + \lambda - 1)$$
Where $0 \le \alpha < 1, 0 \le \beta < 1, 0 \le \gamma < 1, 0 \le \lambda < 1$ and $n \in N_0$.
$$(2.1)$$

Proof: Suppose $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. Then

$$R\left\{\frac{1-z(D^{n}f)'}{1-z(D^{n}f)'+(1-\lambda)(D^{n}f)-(\alpha-\beta)}\right\} > \gamma$$

$$\left(1-z+\sum_{k=1}^{\infty}(2k)^{n}2ka_{2k}z^{2k}\right)$$

$$R\left\{\frac{1-z+\sum_{k=2}^{\infty}(2k)^{n}2ka_{2k}z^{2k}}{1-z+\sum_{k=2}^{\infty}(2k)^{n}2ka_{2k}z^{2k}+(1-\lambda)(z-\sum_{k=2}^{\infty}(2k)^{n}2ka_{2k}z^{2k})-(\alpha-\beta)}\right\} > \gamma.$$

)

Letting $z \rightarrow 1$, then we get

$$\left\{\frac{\sum_{k=2}^{\infty} (2k)^n 2ka_{2k}}{\sum_{k=2}^{\infty} (2k)^n 2ka_{2k} + (1-\lambda)(1-\sum_{k=2}^{\infty} (2k)^n a_{2k}) - (\alpha-\beta)}\right\} > \gamma.$$

$$\sum_{k=2}^{\infty} (2k)^n 2ka_{2k} > \gamma \sum_{k=2}^{\infty} (2k)^n 2ka_{2k} + \gamma - \gamma \sum_{k=2}^{\infty} (2k)^n a_{2k} - \gamma\lambda + \gamma\lambda \sum_{k=2}^{\infty} (2k)^n a_{2k} - \gamma(\alpha-\beta)$$

$$\sum_{k=2}^{\infty} (2k)^n a_{2k} [\gamma 2k - \gamma + \gamma\lambda - 2k] < \gamma(\alpha-\beta) - \gamma + \gamma\lambda$$

$$\sum_{k=2}^{\infty} (2k)^n a_{2k} [2k\gamma - 2k + \gamma\lambda - \gamma] < \gamma(\alpha-\beta+\lambda-1).$$

Conversely assume that (2.1) be true, we have to show that (4) is satisfied or equivalently,

$$\left(\frac{1-z(D^n f)'}{1-z(D^n f)'+(1-\lambda)(D^n f)-(\alpha-\beta)}\right)-1 \left| < 1-\gamma \right|.$$

But

$$\left\{ \frac{1 - z + \sum_{k=2}^{\infty} (2k)^n 2k a_{2k} z^{2k}}{1 - z + \sum_{k=2}^{\infty} (2k)^n 2k a_{2k} z^{2k} + (1 - \lambda)(z - \sum_{k=2}^{\infty} (2k)^n 2k a_{2k} z^{2k}) - (\alpha - \beta)} \right\} - 1$$

$$\leq \frac{\sum_{k=2}^{\infty} (2k)^n a_{2k} (1 - \lambda) - (\lambda - 1) - (\alpha - \beta)}{\sum_{k=2}^{\infty} (2k)^n a_{2k} (2k - 1 + \lambda) + (1 - \lambda - (\alpha - \beta))}.$$

The last expression is bounded above by $1-\gamma$ if

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 6, No. 3, June : 2023

$$\sum_{k=2}^{\infty} (2k)^n a_{2k} (1-\lambda) - (\lambda-1) - (\alpha-\beta)$$

$$\leq (1-\gamma) \left[\sum_{k=2}^{\infty} (2k)^n a_{2k} (2k-1+\lambda) + (1-\lambda-(\alpha-\beta)) \right]$$

Or

$$\sum_{k=2}^{\infty} (2k)^n a_{2k} [2k\gamma - 2k + \gamma\lambda - \gamma] < \gamma(\alpha - \beta + \lambda - 1)$$

which is true by hypothesis. This completes the assertion of Theorem 2.1. **Corollary 2.2:** If $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$ then

$$|a_{2k}| \leq \frac{\gamma(\alpha - \beta + \lambda - 1)}{(2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma]}.$$

Proof: From the Theorem 2.1,

$$\sum_{k=2}^{\infty} (2k)^{n} [2k\gamma - 2k + \gamma\lambda_{2} - \gamma]a_{2k}$$

$$\leq \sum_{k=2}^{\infty} (2k)^{n} [2k\gamma - 2k + \gamma\lambda_{1} - \gamma]a_{2k}$$

$$\leq \gamma(\alpha - \beta + \lambda - 1)$$

For $f(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda_2)$.

Hence $f(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda_1)$.

Theorem 2.3: Let $f(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. Define $f_1(z) = z$ and

$$f_{2k}(z) = z + \frac{\gamma(\alpha - \beta + \lambda - 1)}{(2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma]} z^{2k}, \ k = 2, 3, ...$$

for some $0 \le \alpha < 1, 0 \le \beta < 1, 0 \le \gamma < 1, 0 \le \lambda < 1$ and $n \in N_0$ and $z \in U$, $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$

if and only if f can be expressed as $f(z) = \sum_{k=1}^{\infty} u_{2k} f_{2k}(z)$ where $u_{2k} \ge 0$ and $\sum_{k=1}^{\infty} u_{2k} = 1$. **Proof:** If $f(z) = \sum_{k=1}^{\infty} u_{2k} f_{2k}(z)$ with $\sum_{k=1}^{\infty} u_{2k} \ge 0$, then

Proof: If
$$f(z) = \sum_{k=1}^{\infty} u_{2k} f_{2k}(z)$$
 with $\sum_{k=1}^{\infty} u_{2k} = 1, u_{2k} \ge 0$, then

$$\sum_{k=2}^{\infty} \frac{(2k)^{n} [2k\gamma - 2k + \gamma\lambda - \gamma] u_{2k}}{(2k)^{n} [2k\gamma - 2k + \gamma\lambda - \gamma]} (\gamma [\alpha - \beta + \lambda - 1])$$

=
$$\sum_{k=2}^{\infty} u_{2k} \gamma (\alpha - \beta + \lambda - 1)$$

=
$$(1 - u_{2}) \gamma (\alpha - \beta + \lambda - 1)$$

$$\leq \gamma (\alpha - \beta + \lambda - 1) .$$

Hence $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. Conversely, let

$$f(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k} \in \varphi_n(\alpha, \beta, \gamma, \lambda)$$

define

$$u_{2k} = \frac{(2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] |a_{2k}|}{\gamma(\alpha - \beta + \lambda - 1)}, \quad k = 2, 3, \dots$$

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 3, June : 2023

and define $u_2 = 1 - \sum_{k=2}^{\infty} u_{2k}$. From Theorem 2.1, $\sum_{k=1}^{\infty} u_{2k} \le 1$ and so $u_2 \ge 0$. Since $u_{2k} f_{2k}(z) = u_{2k} f + a_{2k} z^{2k}$

$$\sum_{k=1}^{\infty} u_{2k} f_{2k}(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k} = f(z).$$

Theorem 2.4: The class $\varphi_n(\alpha, \beta, \gamma, \lambda)$ is closed under convex linear combination. **Proof:** Let $f, g \in S_n(\alpha, \beta, \gamma, \lambda)$ and let

$$f(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}$$
$$g(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k}.$$

and

For ξ such that $0 \le \xi \le 1$, it suffices to show that the function define by $h(z) = (1-\xi)f(z) + \xi g(z)$,

 $z \in U$ belongs to $\varphi_n(\alpha, \beta, \gamma, \lambda)$. Now,

$$h(z) = z - \sum_{k=2}^{\infty} [(1-\xi)a_{2k} + \xi b_{2k}]z^{2k}.$$

Apply Theorem 2.1, for $f, g \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. We have,

$$\begin{split} &\sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] [(1 - \xi)a_{2k} + \xi b_{2k}] \\ &= (1 - \xi) \sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma]a_{2k} \\ &\quad + \xi \sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma]b_{2k} \\ &\leq (1 - \xi)\gamma(\alpha - \beta + \lambda - 1) + \xi\gamma(\alpha - \beta + \lambda - 1) \\ &= \gamma(\alpha - \beta + \lambda - 1) . \end{split}$$

This implies that $h \in \varphi_n(\alpha, \beta, \gamma, \lambda)$.

Corollary 2.5: If $f_1(z)$, $f_2(z)$ are in $\varphi_n(\alpha, \beta, \gamma, \lambda)$ then the function defined by

$$g(z) = \frac{1}{2} [f_1(z) + f_2(z)]$$

is also in $\varphi_n(\alpha,\beta,\gamma,\lambda)$.

Theorem 2.6: Let $f_j(z) = z - \sum_{k=2}^{\infty} a_{2k,j} z^{2k}$ belongs to $\varphi_n(\alpha, \beta, \gamma, \lambda)$, for j = 1, 2, ..., 2k and $0 < \lambda_j < 1$ such that $\sum_{j=1}^{2k} \lambda_j = 1$, then the function F(z) defined by $F(z) = \sum_{j=1}^{2k} \lambda_j f_j(k)$ is also in $\varphi_n(\alpha, \beta, \gamma, \lambda)$. **Proof:** For each $j \in \{1, 2, 3, ..., 2k\}$, we obtain

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 3, June : 2023

$$\sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] |a_{2k}| < \gamma(\alpha - \beta + \lambda - 1)$$
$$F(z) = \sum_{j=1}^{2k} \lambda_j \left(z - \sum_{k=2}^{\infty} a_{2k,j} z^{2k} \right)$$

Since

$$= z - \sum_{k=2}^{\infty} \left(\sum_{j=1}^{2k} \lambda_j a_{2k,j} \right) z^{2k}$$

$$= \sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] \left[\sum_{j=1}^{2k} \lambda_j a_{2k,j} \right]$$

$$= \sum_{j=1}^{2k} \lambda_j \left[\sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] \right]$$

$$< \sum_{j=1}^{2k} \lambda_j \gamma (\alpha - \beta + \lambda - 1)$$

$$< \gamma (\alpha - \beta + \lambda - 1) .$$

$$\therefore F(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda).$$

Theorem 2.7: Let $f(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. Komato operator of f is well-defined by

$$k(z) = \int_{0}^{1} \frac{(c+1)^{\phi}}{\Gamma(\phi)} t^{c} \left(\log \frac{1}{t} \right)^{\phi-1} \frac{f(tz)}{t} dt, \quad c > -1, \phi \ge 0$$

then $k(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda)$. **Proof:** We have

$$\int_{0}^{1} t^{c} \left(\log \frac{1}{t} \right)^{\phi-1} dt = \frac{\Gamma(\phi)}{(c+1)^{\phi}}$$

$$\int_{0}^{1} t^{2k+c-1} \left(\log \frac{1}{t} \right)^{\phi-1} dt = \frac{\Gamma(\phi)}{(c+1)^{\phi}}, \quad k = 2, 3, \dots$$

$$k(z) = \frac{(c+1)^{\phi}}{\Gamma(\phi)} \left[\int_{0}^{1} t^{c} \left(\log \frac{1}{t} \right)^{\phi-1} z dt - \sum_{k=2}^{\infty} z^{2k} \int_{0}^{1} a_{2k} t^{2k+c-1} \left(\log \frac{1}{t} \right)^{\phi-1} dt \right]$$

$$= z - \sum_{k=2}^{\infty} \left(\frac{c+1}{c+2k} \right)^{\phi} a_{2k} z^{2k}.$$
In (c, B, x, \lambda) and since $\left(\frac{c+1}{c+2k} \right)^{\phi} < 1$, we have

Since $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$ and since $\left(\frac{c+1}{c+2k}\right)^{\varphi} < 1$, we have

$$\sum_{k=2}^{\infty} (2k)^{n} [2k\gamma - 2k + \gamma\lambda - \gamma] \left(\frac{c+1}{c+2k}\right)^{\phi} a_{2k}$$

< $\gamma(\alpha - \beta + \lambda - 1)$.

Theorem 2.8: Let $f \in \varphi_n(\alpha, \beta, \gamma, \lambda)$ then for every $0 \le \delta < 1$ the function

$$\Psi_{\delta}(z) = (1-\delta)f(z) + \delta \int_{0}^{z} \frac{f(t)}{t} dt \, .$$

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 3, June : 2023

Proof: We have

$$\begin{split} \psi_{\delta}(z) &= z - \sum_{k=2}^{\infty} \left(1 + \frac{\delta}{2k} - \delta \right) a_{2k} z^{2k} \,. \\ \text{Since, } \left(1 + \frac{\delta}{2k} - \delta \right) < 1, k \ge 2, \text{ so by Theorem 2.1} \\ &\sum_{k=2}^{\infty} \left(1 + \frac{\delta}{2k} - \delta \right) (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] a_{2k} \\ &< \sum_{k=2}^{\infty} (2k)^n [2k\gamma - 2k + \gamma\lambda - \gamma] a_{2k} \\ &< \gamma(\alpha - \beta + \lambda - 1) \,. \end{split}$$

Therefore $\psi_{\delta}(z) \in \varphi_n(\alpha, \beta, \gamma, \lambda)$.

References

[1] Pall-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502.

[2] Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α . AIMS Math. 2021, 6, 5421–5439.

[3] Salagean G. S., Subclass of univalent functions, Lecture Notes inMathe., Springer Verlag, (1983), 362-372.

[4] Silverman H., Univalent functions with varying arguments, Houston Journal of Math., 7(2) (1981).
[5] Latha S. and Dileep L., A note on Salagean type functions, Global Journal of Mathematical Sciences : Theory and Practical, 2(1) (2010), 29-35.

[6] Eker S. S., Owa S., Certain classes of analyting functions involving Salagean operator, J. Inequal. Pure Appl. Math., 10(1) (2009), 1-22.

[7] Rahulkumar Katkade, Certain Subclasses of Analytic and Univalent Function by Ruscheweyh Derivative, International Journals of Pure and Engg. Maths (IJPEM) ISSN 0973-9424, Volume 1 No. I (Dec., 2013), pp.93-102.

[8] Rahulkumar Katkade, A Linear Operator of a New Class of Univalent Functions With Missing Second Coefficient, International Journals of Maths Sci. & Engg. Appl. (IJMSEA) ISSN 0973-9424, Vol. 8 No. II (March, 2014), pp. 257-269.

[9] Mostafa A. O., A study on starlike and convex properties for hypergeometric functions, JIPAM, 10 (Issue 3, Article 87) (2009), 8pp.