

Industrial Engineering Journal ISSN: 0970-2555 Volume : 52, Issue 6, No. 4, June : 2023

FUZZY STRONGLY (GSP)*-CLOSED SETS IN FUZZY TOPOLOGICAL SPACE

Dr. S. Kamali, Assistant professor of Mathematics, University College of Engineering, Thirukkuvalai. 610 204.

ABSTRACT

In this paper we have introduced a new class of fuzzy sets called fuzzy strongly (gsp)*-closed sets, and fuzzy strongly (gsp)*-continuous mappings are investigated its characterization in Fuzzy topological spaces.

Keywords:

fuzzy Strongly $(gsp)^*$ -closed sets , fuzzy Strongly $(gsp)^*$ -continuous maps , fuzzy Ts $(gsp)^*$ -space, fuzzy gTs $(gsp)^*$ -space and fuzzy g*Ts $(gsp)^*$ -space.

I PRELIMINARIES:

Let X be a non-empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The null fuzzy set 0 is the mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from X on to I which takes the values 1 only. The union (resp. intersection) of a family {A α : $\in \alpha \Lambda$ } of fuzzy sets of X is defined by to be the mapping sup A α (resp. inf A α). A fuzzy set A of X is contained in a fuzzy set B of X if A(x) \leq B(x) for each x \in X. A fuzzy point x β in X is a fuzzy set defined by x β (y) = β for y=x and x(y)=0 for y $\neq \Box x$, $\beta \in [0,1]$ and y $\in \Box X$. A

fuzzy point $x\beta$ is said to be quasi-coincident with the fuzzy set A denoted by $x\beta qA$ if and only if $\beta + A(x) > 1$. A fuzzy set A is quasi –coincident with a fuzzy set B denoted by AqB if and only if there exists a point $x \in X$ such that A(x) + B(x) > 1. $A \leq B$ if and only if (AqBc). A family $\tau \Box$ of fuzzy sets of X is called a fuzzy topology on X if 0,1 belongs to $\tau \Box$ and $\tau \Box$ is closed with respect to arbitrary union and finite intersection. The members of $\tau \Box$ are called fuzzy open sets and their complement are fuzzy closed sets. For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy open sets of A and the interior of A (denoted by int(A)) is the union of all fuzzy open subsets of A.

Throughout this paper (X, τ) , (Y, σ) represent non-empty fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a fuzzy space (X, τ), cl(A) and int(A) denote the fuzzy closure and the fuzzy interior of A respectively.

Definition 1.1: A fuzzy Subset A of fuzzy topological space (X, τ) is called

1. fuzzy semi-open set if $A \subseteq cl(int(A))$ and a fuzzy semi-closed set if $int(cl(A)) \subseteq A$.

2. fuzzy semi-pre open set if A cl(int(cl(A)) and a fuzzy semi-pre closed set if int(cl(int(A))) A 3. fuzzv regular -open if int(cl(A))=Aand a fuzzy regular set -closed. Definition **1.2:**A fuzzy Subset А of fuzzy topological space (X τ , is called 1. fuzzy generalized closed set (briefly fuzzy g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is fuzzy open in (X, τ)

2. fuzzy g*-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g open in (X, τ)

3. fuzzy g**-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g* open in (X, τ)

4. fuzzy wg - closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X,τ)

5. fuzzy regular generalized closed set (briefly fuzzy rg-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy regular open in (X,τ)

6. fuzzy sg**-closed set if scl(A) \subseteq U whenever A \subseteq U and U is fuzzy g** open in (X, τ)

7. fuzzy sg*-closed set if scl(A) \subseteq U whenever A \subseteq U and U is fuzzy g* open in (X, τ)

Industrial Engineering Journal ISSN: 0970-2555 Volume : 52, Issue 6, No. 4, June : 2023

8. fuzzy generalized semi-closed set (briefly fuzzy gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X,τ)

9. fuzzy gsp - closed set if spcl(A) \subseteq U whenever A \subseteq U and U is fuzzy open in (X, τ)

10. fuzzy (gsp)*- closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U gsp is fuzzy open in (X, τ)

Definition 1.3: A fuzzy function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called;

1. fuzzy g– continuous if $f^{-1}(V)$ is a fuzzy g-closed set of (X, τ) for every fuzzy closed set V of (Y, σ) 2. fuzzy g*–continuous if $f^{-1}(V)$ is a fuzzy g*-closed set of (X, τ) for every fuzzy closed set V of (Y, σ) 3. fuzzy g**–continuous if $f^{-1}(V)$ is a fuzzy g**-closed set of (X, τ) for every fuzzy closed set V of (Y, σ)

4. fuzzy rg–continuous if $f^{-1}(V)$ is a fuzzy rg -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)

5. fuzzy wg-continuous if $f^{-1}(V)$ is a fuzzy wg -closed set of (X,τ) for every fuzzy closed set V of (Y,σ) 6. fuzzy $(gsp)^*$ -continuous if $f^{-1}(V)$ is a fuzzy $(gsp)^*$ -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)

Definition 1.4: A fuzzy topological space (X,τ) is said to be

1. fuzzy $T_{1/2}$ * space if every fuzzy g*-closed set in it is fuzzy closed.

2. fuzzy T_d space if every fuzzy gs -closed set in it is fuzzy g- closed.

2. Basic properties of fuzzy strongly (gsp)* - closed sets in fuzzy topological Space

We introduce the following definition

Definition 2.1: A subset A of a fuzzy Topological space (X,τ) is said to be a fuzzy strongly $(gsp)^*$ -closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy gsp-open.

Proposition 2.1: Every fuzzy closed set is fuzzy strongly (gsp)*-closed.

Proof: Let A be a fuzzy closed. Then cl(A)=A. Let us prove that A is fuzzy strongly $(gsp)^*$ - closed. Let A \subseteq U and U be fuzzy gsp-open. Then $cl(A)\subseteq$ U. Since A is fuzzy closed . $cl(int(A))\subseteq\Box cl(A)\subseteq$ U. Then $cl(int(A))\subseteq$ U whenever A $\subseteq\Box$ U and U is fuzzy gsp - open. so $\Box\Box$ A is fuzzy strongly $(gsp)^*$ - closed. The converse of the above proposition need not be true in general .**Proposition 2.2:** Every fuzzy g-closed set is fuzzy strongly $(gsp)^*$ -closed.

Proof:Let A be fuzzy g-closed. Then $cl(A) \subseteq U$ Whenever $A \subseteq \Box U$ and U is fuzzy open in (X, τ) . To prove A is fuzzy strongly $(gsp)^*$ -closed. Then $A \subseteq U$ and U be fuzzy (gsp) open .We have $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is fuzzy open in (X, τ) . Since every fuzzy open set is (gsp) –open .We have $cl(A) \subseteq U$ Whenever $A \subseteq \Box U$ and U is fuzzy (gsp)-open in (X, τ) . But $cl(int(A)) \subseteq cl(A) \subseteq \Box U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . But $cl(int(A)) \subseteq cl(A) \subseteq \Box U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . So $\Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . So A is fuzzy strongly $(gsp)^*$ -closed. The converse of the above proposition need not be true in general as seen in the following example.

Proposition 2.3: Every fuzzy g*-closed set is fuzzy strongly (gsp)* - closed

The converse of the above proposition need not be true in general as seen in the following example. **Proposition 2.4:** Every fuzzy rg–closed set is fuzzy strongly (gsp)*-closed

Proof: Let A be fuzzy rg-closed set. Then $cl(A) \subseteq \Box U$ Whenever $A \subseteq U$ and U is fuzzy regular-open in (X,τ) . To prove A is fuzzy strongly $(gsp)^*$ -closed. Let $A \subseteq U$ and U be fuzzy (gsp) open. Since every fuzzy regular-open set is fuzzy (gsp)-open .We have $cl(A) \subseteq U$ Whenever $A \subseteq \Box U$ and U is fuzzy (gsp)-open in (X, τ) . But $cl(int(A)) \subseteq cl(A) \subseteq \Box U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) .

Remark 2.1: fuzzy Strongly $(gsp)^*$ - closedness is independent of fuzzy semi-closedness **Proposition 2.5:** Every fuzzy $(gsp)^*$ - closed set is fuzzy strongly $(gsp)^*$ - closed set **Proof:** Let A be fuzzy $(gsp)^*$ -closed set. Then $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is fuzzy gsp-open in (X, τ) . To prove A is fuzzy strongly $(gsp)^*$ - closed. Let $A \subseteq U$ and U be fuzzy (gsp) open. Since every

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 4, June : 2023

fuzzy $(gsp)^*$ - open set is fuzzy (gsp)-open .We have $cl(A) \subseteq U$ Whenever $A \subseteq \Box U$ and U is fuzzy (gsp)-open in (X, τ) .But $cl(int(A)) \subseteq cl(A) \subseteq U$ whenever $A \subseteq \Box U$ and U is fuzzy (gsp)-open in (X, τ) i.e. $\Box \ cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . A is fuzzy strongly $(gsp)^*$ -closed. The converse of the above proposition need not be true in general.

Theorem 2.1: Every fuzzy g** -closed set is fuzzy strongly (gsp)* -closed. The converse of the above proposition need not be true in general.

Remark 2.2: fuzzy Strongly (gsp)*-closedness is independent of fuzzy sg**closedness

Remark 2.3: fuzzy Strongly (gsp)*-closedness is independent of fuzzy sg* -closedness

proposition 2.6: Every fuzzy wg-closed set is fuzzy strongly (gsp)* - closed.

Proof: Let A be fuzzy wg-closed .Then $cl(int(A)) \subseteq \Box U$ Whenever $A \subseteq U$ and U is fuzzy open in (X, τ) . To prove A is fuzzy strongly $(gsp)^*$ -closed. Let $A \subseteq U$ and U be fuzzy (gsp) open. Since every fuzzy wg-open set is fuzzy (gsp)-open .We have $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\therefore \Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\therefore \Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . $\therefore \Box cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . \therefore A is fuzzy strongly $(gsp)^*$ -closed.

Proposition 2.7: If A and B are fuzzy strongly (gsp)* -closed sets, then AUB is also fuzzy strongly (gsp)* -closed.

Proof: Let A and B be fuzzy strongly $(gsp)^*$ -closed. Let $AUB \subseteq \Box U$ and U be fuzzy (gsp)-open. Then $A \subseteq U$ and $B \subseteq U$ where U is fuzzy (gsp)-open, $cl(int(A)) \subseteq \Box U$, whenever $A \subseteq U$ and U is fuzzy (gsp)-open and $cl(int(B)) \subseteq \Box U$, whenever $B \subseteq \Box U$ and U is fuzzy (gsp)-open Since A and B are fuzzy strongly $(gsp)^*$ -closed. $cl(int(A)Uint(B))=cl(int(A))Ucl(int(B)) \subseteq \Box U$ whenever $AUB \subseteq \Box U$ and U is fuzzy (gsp)-open. Therefore AUB is also fuzzy strongly $(gsp)^*$ -closed.

proposition 2.8: If A is a fuzzy strongly $(gsp)^*$ -closed set of (X,τ) such that $A \subseteq \Box B \subseteq \Box cl(int(A))$, then B is also fuzzy strongly $(gsp)^*$ -closed set of (X,τ)

Proof: Let U be a fuzzy (gsp) –open set in (X,τ) such that B \subseteq U.Then A \subseteq U, Since A is fuzzy strongly (gsp)* -closed ,cl(int(A)) \subseteq \Box U. Now cl(int(B)) \subseteq \Box cl(int(A)), since B \subseteq \Box cl(int(A)). Therefore cl(int(B)) \subseteq cl(int(A)) \subseteq \Box U cl(int(B)) \subseteq \Box U whenever B \subseteq U and U is fuzzy (gsp)-open.=> B is fuzzy strongly (gsp)* -closed

The above results can be represented in the following figure:

Where A B represents A implies B and B need not imply A

A B represents A and B are independent.

3. FUZZY STRONGLY (gsp)* -CONTINUOUS MAPS

We introduce the following definitions:

Definition 3.1: A fuzzy function $f:(X,\tau) \to (Y,\sigma)$ is called fuzzy Strongly (gsp)* -continuous if $f^{-1}(V)$ is a fuzzy strongly (gsp)* -closed set in (X,τ) for every fuzzy closed set V of (Y,σ) .

Theorem 3.1: Every fuzzy continuous map is fuzzy strongly (gsp)* -continuous

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy continuous map. Let us prove that f is fuzzy strongly $(gsp)^*$ - continuous. Let F be a fuzzy closed set in (Y,σ) .Since f is fuzzy continuous f⁻¹(F) is fuzzy closed in (X,τ) and f⁻¹(F) is fuzzy strongly $(gsp)^*$ -closed . i.e., f is fuzzy strongly $(gsp)^*$ -continuous. The converse of the above Theorem is not true

Theorem 3.2Every fuzzy g-continuous map is fuzzy strongly (gsp)* -continuous

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g-continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy g-continuous $f^{-1}(F)$ is fuzzy g-closed in (X,τ) . By theorem (3.1), $f^{-1}(F)$ is fuzzy strongly (gsp)* -closed. i.e. f is fuzzy strongly (gsp)* -continuous closed fuzzy g**-closed fuzzy g-closed fuzzy wg-closed fuzzy sg**-closed fuzzy g*-closed, fuzzy Strongly (gsp)*-closed (gsp)*-closed

Semi-closed, sg*-closed, sg-closed

The converse of the above Theorem is not true

Industrial Engineering Journal ISSN: 0970-2555 Volume : 52, Issue 6, No. 4, June : 2023

Theorem 3.3: Every fuzzy g* -continuous map is fuzzy strongly (gsp)* -continuous

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g^* -continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy g^* -continuous f⁻¹(F) is fuzzy g^* -closed in (X,τ) .By Theorem (3.1),f⁻¹(F) is fuzzy strongly $(gsp)^*$ -closed. i.e. f is fuzzy strongly $(gsp)^*$ -continuous The converse of the above Theorem is not true

Theorem 3.4: Every fuzzy g** -continuous map is fuzzy strongly (gsp)* -continuous

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g^{**} -continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy g^{**} -continuous, $f^{-1}(F)$ is fuzzy g^{**} -closed in (X,τ) so $f^{-1}(F)$ is fuzzy strongly $(gsp)^*$ - closed $\therefore f$ is fuzzy strongly $(gsp)^*$ -continuous The converse of the above Theorem is not true

Theorem 3.5: Every fuzzy rg-continuous map is fuzzy strongly (gsp)* -continuous

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy rg-continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy rg-continuous f⁻¹(F) is fuzzy rg-closed in (X,τ) . then, f⁻¹(F) is fuzzy strongly (gsp)* -closed..f is fuzzy strongly (gsp)* -continuous

Theorem 3.6: Every fuzzy (gsp)* -continuous map is fuzzy strongly (gsp)* -continuous

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy (gsp)* -continuous . Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy (gsp)* -continuous f⁻¹(F) is fuzzy (gsp)* -closed in (X,τ) then f⁻¹(F) is fuzzy strongly (gsp)* -closed so f is fuzzy strongly (gsp)*-continuous The converse of the above Theorem is not true **Theorem 3.7:**Every fuzzy wg-continuous map is fuzzy strongly (gsp)* -continuous

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy wg-continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy wg-continuous f⁻¹(F) is fuzzy wg-closed in (X,τ) then (3.22)f⁻¹(F) is fuzzy strongly (gsp)* - closed. f is fuzzy strongly (gsp)* - continuous The above results can be represented in the following figure :g Where AB represents A implies B and B need not imply A

4. APPLICATIONS OF fuzzy STRONGLY (gsp)* - CLOSED SETS

In this section application of fuzzy strongly $(gsp)^*$ -closed sets, new fuzzy spaces, called as fuzzy $Ts(gsp)^*$ space , fuzzy gT_s - $(gsp)^*$ space , fuzzy g^*T_s - $(gsp)^*$, fuzzy g^*T_s (gsp)*space are introduced. **DEFINITION 4.1:** A fuzzy space (X, τ) is called a fuzzy $T_s(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - closed set is closed.

DEFINITION 4.2: A fuzzy space (X, τ) is called a fuzzy $gT_s(gsp)^*$ - space if every fuzzy strongly $(gsp)^*$ - closed set is fuzzy g-closed.

DEFINITION 4.3: A fuzzy space (X, τ) is called a fuzzy $g^*T_s(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - closed set is fuzzy g^* -closed

DEFINITION 4.4: A fuzzy space (X, τ) is called a fuzzy $g^{**}T_s(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - closed set is fuzzy g^{**} -closed.

THEOREM 4.1: Every fuzzy T_s(gsp)* -space is fuzzy T_{1/2}* -space.

PROOF: Let (X, τ) be a fuzzy $T_s(gsp)^*$ - space.Let us prove that (X, τ) is a fuzzy $T_{1/2}^*$ - space. Let A be a fuzzy g* -closed set. Since every fuzzy g* - closed set is fuzzy strongly $(gsp)^*$ -closed, A is fuzzy strongly $(gsp)^*$ -closed. Since (X, τ) is a fuzzy $T_s(gsp)^*$ - space , A is fuzzy closed. (X, τ) is a fuzzy $T_{1/2}^*$ - space. The converse is not true. Fuzzy Strongly $(gsp)^*$ - continuous g**-continuous continuous fuzzy $(gsp)^*$ -continuous fuzzy g*-continuous

fuzzy wg-continuous fuzzy g-continuous fuzzy rg-continuous

THEOREM 4.2: Every fuzzy T_s(gsp)* -space is fuzzy gT_s(gsp)*-space.

PROOF: Let A be a fuzzy strongly (gsp)*-closed set. Then A is fuzzy closed. Since the space is fuzzy $T_s(gsp)^*$ -space. And Every fuzzy closed set is fuzzy g-closed .Hence A is fuzzy g- closed. $\therefore(X,\tau)$ is a fuzzy $gT_s(gsp)^*$ - space.

The converse is not true.

Theorem 4.3:Every fuzzy g*T_s(gsp)* -space is fuzzy gT_s(gsp)* -space

UGC CARE Group-1,

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 4, June : 2023

Proof: Let A be a fuzzy strongly $(gsp)^*$ -closed. Then A is fuzzy g^* -closed, since the fuzzy space is a fuzzy $g^*T_s(gsp)^*$ -space. SinceEvery fuzzy g^* -closed set is fuzzy g-closed. Hence A is fuzzy g-closed so (X,τ) is a fuzzy $gT_s(gsp)^*$ -space but the converse is not true.

Theorem 4.4: Every fuzzy $g^*T_s(gsp)^*$ -space is fuzzy $g^**T_s(gsp)^*$ -space **Proof:** Let A be a fuzzy strongly (gsp)*-closed set . Then A is fuzzy g^* -closed, since the space is a fuzzy $g^*T_s(gsp)^*$. Since Every fuzzy g^{**} -closed set is fuzzy g^* -closed .Hence A is fuzzy g^{**} -closed ... $\Box(X,\tau)$ is a fuzzy $g^{**}T_s(gsp)^*$ -space.

REFERENCES

- [1]. A. Bhattacharya and M.N. Mukherjee, on fuzzy δ -almost continuity and δ *-almost continuous functions. Jour.Tripura Math. Soc.2(2000) 45-58.
- [2]. A.S. Bin Shahana, On fuzzy strong semi continuity and fuzzy pre continuity. Fuzzy Sets and Systems. 44(1991),303-308.
- [3]. Axad K.K. On fuzzy semi continuity fuzzy almost continuity and fuzzy weakly continuity , J.Math. Anal. Appl.82(1981),14, 14-32.
- [4]. Bin Sahana A. S. Mapping in fuzzy topological spaces fuzzy sets and systems, 61(1994), 209-213.
- [5]. Bin Sahana A. S. on fuzzy strongly semi continuity and fuzzy pre continuity, fuzzy sets and systems 44(1991),303-308.
- [6]. Chang C.L. Fuzzy topological spaces .J. Math Anal. Appl..24(1968), 182-190.
- [7]. D.Andrijevic, Semi preopen sets, Mat. Vesnik 38(1986),24-32.
- [8]. George J. Klir and Bo Yuan, Fuzzy sets and fuzzy logic theory and applications Prentice Hall of India New Delhi 2003.
- [9]. K.K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl.82(1981), 14-32.
- [10]. L.A. Zadeh, Fuzzy Sets, Inform and control. 8(1965), 338-35.
- [11]. Lin.Y. M and Lou. K.M., Fuzzy topology, World Scientific Publication Singapore(1997).
- [12]. Livine N. Generalized closed sets in topology Rand. Circ Mat. Palermo, 19(2)(1970) ,571-599.
- [13]. Livine N. Semi Open Sets and semi continuity in topological spaces Amer. Math. Mothly,70(1963),36-41.
- [14]. Lowen R. A comparison of different compactness notion on fuzzy topological spaces, J. Math. Anal. Appl. 64(1978), 446-454.
- [15]. Lowen R. Fuzzy topological Spaces and fuzzy compactness in fuzzy J. Math, Anal. Appl. 56(1976),621-633.
- [16]. Mahashwari S. N. and Prasad R. on s-regular spaces Glasnik Mat. Ser.III 10(3),(1975),347-350.
- [17]. Mahashwari S. N. and Prasad R. Some new separation axioms Ann. Soc. Sci. Bruxelles T.-89III(1975),395-402.
- [18]. Mashour A. S., M.F. Abd. Monsef. EI., Deeb S.N. on ptre continuous and weak precontinious mappings, Proc. Math and Phys. Soc, Egypt53(1982), 47-53.
- [19]. Mishra M.K., Shukla M. "Fuzzy Regular Generalized Super Closed Set" International Journal of Scientific and Research Publication ISSN2250-3153. July December 2012.
- [20]. Mukerjee M.N. And Sinha S.P. Almost compact fuzzy topological spaces Mat Vasnik 41(1989),89-97.
- [21]. Nanda S. On fuzzy topological Spaces fuzzy sets and systems 19(2),(1986),193-197.
- [22]. P.M. Pu and Y.M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and moore smith convergence.J.Math. Anal. Appl. 76(1980),571-599.

UGC CARE Group-1,

Industrial Engineering Journal ISSN: 0970-2555

Volume : 52, Issue 6, No. 4, June : 2023

- [23]. Palaniappan n. and Rao K.C. Regular Generalized closed sets Kyungpook Math. J.33(2),1993,211-219.
- [24]. Prasad R. ,Thakur S.S. and Saraf R.K. Fuzzy α -irresoulate mapping J. Fuzzy Math 2(1994),No,2,335-339.
- [25]. Pu. P.M. and Lin.Y.M., Fuzzy topology II. Product Quotient spaces. J.Math. Anal. Appl. 77(1980)20-27.
- [26]. Pu.P.M. and Lin.Y.M., Fuzzy topology, I.Neighbourhood structure of a Fuzzy point Moore Smith

convergence.J.Math.Anal.Appl.76(1980)571-599.

- [27]. Wong C.K on fuzzy points and local properties of fuzzy topology J. Math Anal. Appl 46(1974)316-328.
- [28]. Yalvac T.H.Fuzzy Sets and functions in fuzzy Spaces J. Math Anal. Appl 126 (1987),409-423.
- [29]. Zadeh I.H on Fuzzy sets information and control 8(1965),38-353