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ABSTRACT Botnet-assisted attacks 

remain a persistent and damaging threat to 

organizations, leading to billions of dollars 

in financial loss and long-term reputational 

damage. Botnets consist of compromised 

devices (bots) controlled remotely by a 

botmaster through command-and-control 

(C2) channels. These bots are frequently 

used for malicious activities such as 

Distributed Denial-of-Service (DDoS) 

attacks, largescale spamming, and identity 

theft. While machine learning (ML)-based 

detection using network flow features has 

been widely explored, these approaches 

often suffer from high computational 

overhead and fail to capture the full scope 

of communication patterns between hosts. 

To address these challenges, this research 

introduces a hybrid bot detection 

framework that integrates unsupervised 

learning, graph-based feature extraction, 

and supervised classification. Initially, K-

means clustering is applied to partition the 

dataset into clusters representing benign 

and bot-related traffic, based on request 

frequency. Clusters with high request 

volumes are labeled as potential bot 

activity.Next, a graph is constructed where 

each IP address is treated as a node, and 

communication links form the edges. Edge 

weights are computed using metrics such as 

betweenness centrality, alpha centrality, 

and directional edge weights. From this, 

features including in-degree, out-degree, 

clustering coefficient, and centrality 

measures are extracted. These graph-based 

features are normalized and used to train a 

Decision Tree Classifier. The resulting 

model can accurately classify future 

network traffic as benign or malicious, 

offering a more scalable and effective 

solution to bot detection. This integrated 

approach leverages structural network 

insights and behavioral patterns to improve 

detection accuracy and reduce false 

positives in dynamic network 

environments.  

Keywords: Bot detection, Graph-based 

analysis, Decision tree classifier, 

Unsupervised learning, Network security. 

1.INTRODUCTION Undoubtedly, 

organizations are constantly under security 

threats, which not only costs billions of 

dollars in damage and recovery, it often also 

detrimentally affects their reputation. A 

botnet-assisted attack is a widely known 

threat to these organizations. According to 

the U.S. Federal Bureau of Investigation, 

“Botnets caused over $9 billion in losses to 

U.S. victims and over $110 billion globally. 

Approximately 500 million computers are 

infected each year, translating into 18 

victims per second.” The most infamous 

attack, called Rustock, infected 1 million 

machines, sending up to 30 billion spam 

emails a day [1]. Hence, it is imperative to 

defend against these botnet-assisted attacks. 

A botnet is a collection of bots, agents in 

compromised hosts, controlled by 
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botmasters via command and control (C2) 

channels. A malevolent adversary controls 

the bots through botmaster, which could be 

distributed across several agents that reside 

within or outside the network. Hence, bots 

can be used for tasks ranging from 

distributed denial-of-service (DDoS), to 

massive-scale spamming, to fraud and 

identify theft. While bots thrive for 

different sinister purposes, they exhibit a 

similar behavioral pattern when studied up-

close. The intrusion kill-chain [2] dictates 

the general phases a malicious agent goes 

through in-order to reach and infest its 

target. Anomaly-based methods are widely 

used in both detection [3], [4]. They first 

establish a baseline of normal behavior for 

the protected system and model a decision 

engine. The decision engine determines and 

alerts any divergence or statistical 

deviations from the norm as a threat. 

Machine learning (ML) [3] is an ideal 

technique to automatically capture the 

normal behavior of a system. The use of ML 

has boosted the scalability and accuracy of 

anomaly-based IDSs [4]. The most widely 

employed learning paradigms in ML 

include supervised and unsupervised. 

Supervised learning uses labeled training 

datasets to create models. It is employed to 

learn and identify patterns in the known 

training data. However, labeling is non-

trivial and typically require domain experts 

to manually label the datasets [3]. This can 

be cumbersome and prone to error, even for 

small datasets. On the other hand, 

unsupervised learning uses unlabelled 

training datasets to create models that can 

discriminate between patterns in the data 

2.LITERATURE SURVEY An important 

step prior to learning, or training a ML 

model, is feature extraction. These features 

act as discriminators for learning and 

inference, reduce data dimensionality, and 

increase the accuracy of ML models. The 

most commonly employed features in bot 

detection are flow-based (e.g., source and 

destination IPs, protocol, number of packets 

sent and/or received, etc.). However, these 

features do not capture the topological 

structure of the communication graph, 

which can expose additional aspects of 

malicious hosts. In addition, flowlevel 

models can incur a high computational 

overhead, and can also be evaded by 

tweaking behavioral characteristics e.g., by 

changing packet structure [5]. Graph-based 

features, derived from flow-level 

information, which reflect the true structure 

of communications, interactions, and 

behavior of hosts, are an alternate that 

overcome these limitations. We show that 

incorporating graph-based features into ML 

yields robustness against complex 

communication patterns and unknown 

attacks. Moreover, it allows for cross-

network ML model training and inference. 

The major contributions of this paper are as 

follows: We propose BotChase, an 

anomaly-based bot detection system that is 

protocol agnostic, robust to zeroday attacks, 

and suitable for large datasets. We employ 

a two-phased ML approach that leverages 

both supervised and unsupervised learning. 

The first phase filters presumable benign 

hosts. This is followed by the second phase 

on the pruned hosts, to achieve bot 

detection with high precision. We propose 

feature normalization (F-Norm) on top of 

graph-based features in BotChase and 

evaluate various ML techniques. Our 

graph-based features, inspired from the 

literature and derived from network flows, 
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undergo F-Norm to overcome severe 

topological effects. These effects can skew 

bot behavior in different networks, 

exacerbating ML prediction. Furthermore, 

these features allow to combine data from 

different networks and promote spatial 

stability [6] in the ML models. We compare 

the performance of our graph-based 

features with flow-based features from 

BotMiner [7] and BClus [8] in a prototype 

implementation of BotChase. Furthermore, 

we compare BotChase with BotGM [9] and 

the end-to-end system proposed for BClus. 

We evaluate the BotChase prototype system 

in an online setting that recurrently trains 

and tests the ML models with new data. We 

also leverage the Hoeffding Adaptive Tree 

(HAT) [10] classifier for incremental 

learning. This is crucial to account for 

changes in network traffic and host 

behavior. Botnet detection has been an 

active area of research that has generated a 

substantial body of work. Common botnet 

detection approaches are passive. They 

assume successful intrusions and focus on 

identifying infected hosts (bots) or 

detecting C2 communications, by analyzing 

system logs and network data, using 

signature- or anomaly-based techniques. 

Signature-based techniques have 

commonly been used to detect pre-

computed hashes of existing malware in 

hosts and/or network traffic. They are also 

used to isolate IRC-based bots by detecting 

bot-like IRC nicknames [12], and to 

identify C2-related DNS requests by 

detecting C2-like domain names [13]. 

Metadata such as regular expressions based 

on packet content and target IP occurrence 

tuples [14] is an example of what could be 

employed in a signature and pattern 

detection algorithm. More generally, 

signature-based techniques have been 

employed to identify C2 by comparison 

with known C2 communication patterns 

extracted from observed C2 traffic, and 

infected hosts by comparison with static 

profiles and behaviours of known bots [15]. 

However, they can be easily subverted by 

unknown or modified threats, such as zero-

day attacks and polymorphism [15], [16]. 

This undermines their suitability to detect 

sophisticated modern botnets. 

3.PROPOSED METHODOLOGY The 

CTU-13 is a dataset of botnet traffic that 

was captured in the CTU University, Czech 

Republic, in 2011. The goal of the dataset 

was to have a large capture of real botnet 

traffic mixed with normal traffic and 

background traffic. The CTU-13 dataset 

consists in thirteen captures (called 

scenarios) of different botnet samples. On 

each scenario we executed a specific 

malware, which used several protocols and 

performed different actions. Each scenario 

was captured in a pcap file that contains all 

the packets of the three types of traffic. 

These pcap files were processed to obtain 

other type of information, such as 

NetFlows, WebLogs, etc. 

 

3.1 DECISION TREE ALGORITHM 

Decision Tree is a supervised learning 

technique widely used for classification 

problems, although it can also be applied to 

regression tasks. It functions as a tree-

structured classifier where internal nodes 
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represent the features of a dataset, branches 

denote decision rules, and each leaf node 

signifies an outcome. A decision tree 

comprises two types of nodes: decision 

nodes, which make decisions and have 

multiple branches, and leaf nodes, which 

represent the final output and contain no 

further branches. The decision-making 

process is based on the features of the 

dataset and is structured to explore all 

possible solutions to a problem under given 

conditions. The model starts from a root 

node and expands into branches, forming a 

tree-like structure. Typically, the tree is 

constructed using the CART (Classification 

and Regression Tree) algorithm, where 

each split is based on answers to feature-

specific questions. This process continues 

until the tree reaches its leaf nodes, which 

deliver the final classification or prediction. 

Decision Tree learning is known for its 

simplicity, interpretability, and efficiency. It 

approximates discrete-valued functions, 

including boolean functions, and expresses 

learned functions as decision trees or if-

then-else rules. With a highly expressive 

hypothesis space, the method 

accommodates disjunctions of conjunctions 

based on attribute constraints. During 

classification, an instance traverses the tree 

from the root node through internal 

nodes—each representing an attribute 

test—until it reaches a leaf node that 

provides the final label. The approach is 

robust to noisy data and capable of handling 

both numerical and categorical features. It 

requires minimal data preparation, supports 

multi-output problems, and operates with a 

cost that scales logarithmically with the 

training data size, making it suitable for a 

wide range of real-world applications. 

 

 

RESULTS 

To run project double click on ‘run.bat’ file 

to get below screen 

 

In above screen click on ‘Upload CTU 

Dataset’ button and upload dataset 

In above screen uploading first capture file 

and now click on ‘Open’ button to upload 

and to get below screen 
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In above screen dataset contains total 

2824636 records and each record contain 

15 columns and below it I am displaying 

some dataset records. Now click on ‘Apply 

Supervised Learning (K-means) to separate 

Bot & Benign Data’ button to remove 

benign records In above screen we can see 

dataset size before removing benign records 

and after removing benign records. By 

removing some benign records we can 

reduce dataset size. Now click on ‘Run 

Flow Ingestion & Graph Transformation’ 

button to generate graph 

 

In above screen we can see progress bar 

which indicates graph-based features 

extraction and while applying this 

technique it will open 2 empty windows and 

you just close those 2 empty windows to get 

below screen 

 

In above screen we can see total nodes and 

edges generated and time taken to calculate 

between_ness, alpha centrality, and 

clustering. Now we generate graphs and 

now click on ‘Features Extraction & 

Normalization’ button to extract features 

and to perform normalization on extracted 

features. 
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In above screen after normalization, I am 

displaying few records with out_degree, in 

degree and weight details. In above screen 

‘bc’ refers to between_ness and ‘lcc’ refers 

to clustering and ‘ac’ refers to alpha 

centrality. All normalized records are saved 

inside ‘normalize_data.csv’ file and you can 

open and see that file from code folder. 

Now click on ‘Run Decision Tree 

Algorithm’ button to generate training 

model with decision tree classifier and to 

calculate metrics such as accuracy, 

precision etc. 

 

In above screen after normalization, we got 

total records as 3159 with 7 columns 

(in_degree, out_degree, weight etc.) and 

application split total records into train size 

as 2527 and test size as 632. After building 

train model we apply test records and got 

accuracy as 100%. Below screen showing 

normalization progressing steps 

CONCLUSION In this research, we 

proposed BotChase, a system capable of 

efficiently transforming network flows into 

an aggregated graph model for enhanced 

bot detection. The system leverages a two-

phase machine learning approach to 

differentiate bots from benign hosts. The 

second phase, which utilizes a Decision 

Tree (DT) classifier, demonstrates high true 

positive rates and low false positive rates, 

indicating reliable performance. BotChase 

is also effective in detecting bots that 

operate using various protocols and proves 

robust against unknown attacks, as well as 

in cross-network machine learning model 

training and inference. Our results show 

that flow-based features underperform 

compared to graph-based features, which 

provide better representation of 

communication patterns. BotChase 

outperforms traditional end-to-end systems 

that rely solely on flow-based features and 

performs competitively against existing 

graph-based systems such as BotGM. In an 

online setting, BotChase integrates the 

Hoeffding Adaptive Tree (HAT) algorithm 

for incremental learning, enabling real-time 

processing. Although the model takes 

longer to converge, it ultimately delivers 

superior classification performance. For 

implementation, we utilized the CTU-13 

dataset, which includes 13 scenarios. Each 

scenario provides PCAP files (containing 

raw network traffic) and corresponding 

capture files (containing extracted data such 

as source address, destination address, 

timestamp, and packet size). To construct 

the graph, we used the capture files instead 

of the PCAP files. Selected scenarios were 

downloaded and stored in the ‘CTU-13-

dataset’ folder for analysis. 
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