

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 199

A HYBRID UNSUPERVISED AND DECISION TREE APPROACH FOR BOT

DETECTION IN NETWORKS

MADHURI MAMILLAPALLI1, DR. A. RAMASWAMI REDDY2

PG SCHOLAR1, PRINCIPAL & DIRECTOR2

MALLA REDDY ENGINEERING COLLEGE, HYDERABAD

ABSTRACT Botnet-assisted attacks

remain a persistent and damaging threat to

organizations, leading to billions of dollars

in financial loss and long-term reputational

damage. Botnets consist of compromised

devices (bots) controlled remotely by a

botmaster through command-and-control

(C2) channels. These bots are frequently

used for malicious activities such as

Distributed Denial-of-Service (DDoS)

attacks, largescale spamming, and identity

theft. While machine learning (ML)-based

detection using network flow features has

been widely explored, these approaches

often suffer from high computational

overhead and fail to capture the full scope

of communication patterns between hosts.

To address these challenges, this research

introduces a hybrid bot detection

framework that integrates unsupervised

learning, graph-based feature extraction,

and supervised classification. Initially, K-

means clustering is applied to partition the

dataset into clusters representing benign

and bot-related traffic, based on request

frequency. Clusters with high request

volumes are labeled as potential bot

activity.Next, a graph is constructed where

each IP address is treated as a node, and

communication links form the edges. Edge

weights are computed using metrics such as

betweenness centrality, alpha centrality,

and directional edge weights. From this,

features including in-degree, out-degree,

clustering coefficient, and centrality

measures are extracted. These graph-based

features are normalized and used to train a

Decision Tree Classifier. The resulting

model can accurately classify future

network traffic as benign or malicious,

offering a more scalable and effective

solution to bot detection. This integrated

approach leverages structural network

insights and behavioral patterns to improve

detection accuracy and reduce false

positives in dynamic network

environments.

Keywords: Bot detection, Graph-based

analysis, Decision tree classifier,

Unsupervised learning, Network security.

1.INTRODUCTION Undoubtedly,

organizations are constantly under security

threats, which not only costs billions of

dollars in damage and recovery, it often also

detrimentally affects their reputation. A

botnet-assisted attack is a widely known

threat to these organizations. According to

the U.S. Federal Bureau of Investigation,

“Botnets caused over $9 billion in losses to

U.S. victims and over $110 billion globally.

Approximately 500 million computers are

infected each year, translating into 18

victims per second.” The most infamous

attack, called Rustock, infected 1 million

machines, sending up to 30 billion spam

emails a day [1]. Hence, it is imperative to

defend against these botnet-assisted attacks.

A botnet is a collection of bots, agents in

compromised hosts, controlled by

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 200

botmasters via command and control (C2)

channels. A malevolent adversary controls

the bots through botmaster, which could be

distributed across several agents that reside

within or outside the network. Hence, bots

can be used for tasks ranging from

distributed denial-of-service (DDoS), to

massive-scale spamming, to fraud and

identify theft. While bots thrive for

different sinister purposes, they exhibit a

similar behavioral pattern when studied up-

close. The intrusion kill-chain [2] dictates

the general phases a malicious agent goes

through in-order to reach and infest its

target. Anomaly-based methods are widely

used in both detection [3], [4]. They first

establish a baseline of normal behavior for

the protected system and model a decision

engine. The decision engine determines and

alerts any divergence or statistical

deviations from the norm as a threat.

Machine learning (ML) [3] is an ideal

technique to automatically capture the

normal behavior of a system. The use of ML

has boosted the scalability and accuracy of

anomaly-based IDSs [4]. The most widely

employed learning paradigms in ML

include supervised and unsupervised.

Supervised learning uses labeled training

datasets to create models. It is employed to

learn and identify patterns in the known

training data. However, labeling is non-

trivial and typically require domain experts

to manually label the datasets [3]. This can

be cumbersome and prone to error, even for

small datasets. On the other hand,

unsupervised learning uses unlabelled

training datasets to create models that can

discriminate between patterns in the data

2.LITERATURE SURVEY An important

step prior to learning, or training a ML

model, is feature extraction. These features

act as discriminators for learning and

inference, reduce data dimensionality, and

increase the accuracy of ML models. The

most commonly employed features in bot

detection are flow-based (e.g., source and

destination IPs, protocol, number of packets

sent and/or received, etc.). However, these

features do not capture the topological

structure of the communication graph,

which can expose additional aspects of

malicious hosts. In addition, flowlevel

models can incur a high computational

overhead, and can also be evaded by

tweaking behavioral characteristics e.g., by

changing packet structure [5]. Graph-based

features, derived from flow-level

information, which reflect the true structure

of communications, interactions, and

behavior of hosts, are an alternate that

overcome these limitations. We show that

incorporating graph-based features into ML

yields robustness against complex

communication patterns and unknown

attacks. Moreover, it allows for cross-

network ML model training and inference.

The major contributions of this paper are as

follows: We propose BotChase, an

anomaly-based bot detection system that is

protocol agnostic, robust to zeroday attacks,

and suitable for large datasets. We employ

a two-phased ML approach that leverages

both supervised and unsupervised learning.

The first phase filters presumable benign

hosts. This is followed by the second phase

on the pruned hosts, to achieve bot

detection with high precision. We propose

feature normalization (F-Norm) on top of

graph-based features in BotChase and

evaluate various ML techniques. Our

graph-based features, inspired from the

literature and derived from network flows,

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 201

undergo F-Norm to overcome severe

topological effects. These effects can skew

bot behavior in different networks,

exacerbating ML prediction. Furthermore,

these features allow to combine data from

different networks and promote spatial

stability [6] in the ML models. We compare

the performance of our graph-based

features with flow-based features from

BotMiner [7] and BClus [8] in a prototype

implementation of BotChase. Furthermore,

we compare BotChase with BotGM [9] and

the end-to-end system proposed for BClus.

We evaluate the BotChase prototype system

in an online setting that recurrently trains

and tests the ML models with new data. We

also leverage the Hoeffding Adaptive Tree

(HAT) [10] classifier for incremental

learning. This is crucial to account for

changes in network traffic and host

behavior. Botnet detection has been an

active area of research that has generated a

substantial body of work. Common botnet

detection approaches are passive. They

assume successful intrusions and focus on

identifying infected hosts (bots) or

detecting C2 communications, by analyzing

system logs and network data, using

signature- or anomaly-based techniques.

Signature-based techniques have

commonly been used to detect pre-

computed hashes of existing malware in

hosts and/or network traffic. They are also

used to isolate IRC-based bots by detecting

bot-like IRC nicknames [12], and to

identify C2-related DNS requests by

detecting C2-like domain names [13].

Metadata such as regular expressions based

on packet content and target IP occurrence

tuples [14] is an example of what could be

employed in a signature and pattern

detection algorithm. More generally,

signature-based techniques have been

employed to identify C2 by comparison

with known C2 communication patterns

extracted from observed C2 traffic, and

infected hosts by comparison with static

profiles and behaviours of known bots [15].

However, they can be easily subverted by

unknown or modified threats, such as zero-

day attacks and polymorphism [15], [16].

This undermines their suitability to detect

sophisticated modern botnets.

3.PROPOSED METHODOLOGY The

CTU-13 is a dataset of botnet traffic that

was captured in the CTU University, Czech

Republic, in 2011. The goal of the dataset

was to have a large capture of real botnet

traffic mixed with normal traffic and

background traffic. The CTU-13 dataset

consists in thirteen captures (called

scenarios) of different botnet samples. On

each scenario we executed a specific

malware, which used several protocols and

performed different actions. Each scenario

was captured in a pcap file that contains all

the packets of the three types of traffic.

These pcap files were processed to obtain

other type of information, such as

NetFlows, WebLogs, etc.

3.1 DECISION TREE ALGORITHM

Decision Tree is a supervised learning

technique widely used for classification

problems, although it can also be applied to

regression tasks. It functions as a tree-

structured classifier where internal nodes

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 202

represent the features of a dataset, branches

denote decision rules, and each leaf node

signifies an outcome. A decision tree

comprises two types of nodes: decision

nodes, which make decisions and have

multiple branches, and leaf nodes, which

represent the final output and contain no

further branches. The decision-making

process is based on the features of the

dataset and is structured to explore all

possible solutions to a problem under given

conditions. The model starts from a root

node and expands into branches, forming a

tree-like structure. Typically, the tree is

constructed using the CART (Classification

and Regression Tree) algorithm, where

each split is based on answers to feature-

specific questions. This process continues

until the tree reaches its leaf nodes, which

deliver the final classification or prediction.

Decision Tree learning is known for its

simplicity, interpretability, and efficiency. It

approximates discrete-valued functions,

including boolean functions, and expresses

learned functions as decision trees or if-

then-else rules. With a highly expressive

hypothesis space, the method

accommodates disjunctions of conjunctions

based on attribute constraints. During

classification, an instance traverses the tree

from the root node through internal

nodes—each representing an attribute

test—until it reaches a leaf node that

provides the final label. The approach is

robust to noisy data and capable of handling

both numerical and categorical features. It

requires minimal data preparation, supports

multi-output problems, and operates with a

cost that scales logarithmically with the

training data size, making it suitable for a

wide range of real-world applications.

RESULTS

To run project double click on ‘run.bat’ file

to get below screen

In above screen click on ‘Upload CTU

Dataset’ button and upload dataset

In above screen uploading first capture file

and now click on ‘Open’ button to upload

and to get below screen

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 203

In above screen dataset contains total

2824636 records and each record contain

15 columns and below it I am displaying

some dataset records. Now click on ‘Apply

Supervised Learning (K-means) to separate

Bot & Benign Data’ button to remove

benign records In above screen we can see

dataset size before removing benign records

and after removing benign records. By

removing some benign records we can

reduce dataset size. Now click on ‘Run

Flow Ingestion & Graph Transformation’

button to generate graph

In above screen we can see progress bar

which indicates graph-based features

extraction and while applying this

technique it will open 2 empty windows and

you just close those 2 empty windows to get

below screen

In above screen we can see total nodes and

edges generated and time taken to calculate

between_ness, alpha centrality, and

clustering. Now we generate graphs and

now click on ‘Features Extraction &

Normalization’ button to extract features

and to perform normalization on extracted

features.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 204

In above screen after normalization, I am

displaying few records with out_degree, in

degree and weight details. In above screen

‘bc’ refers to between_ness and ‘lcc’ refers

to clustering and ‘ac’ refers to alpha

centrality. All normalized records are saved

inside ‘normalize_data.csv’ file and you can

open and see that file from code folder.

Now click on ‘Run Decision Tree

Algorithm’ button to generate training

model with decision tree classifier and to

calculate metrics such as accuracy,

precision etc.

In above screen after normalization, we got

total records as 3159 with 7 columns

(in_degree, out_degree, weight etc.) and

application split total records into train size

as 2527 and test size as 632. After building

train model we apply test records and got

accuracy as 100%. Below screen showing

normalization progressing steps

CONCLUSION In this research, we

proposed BotChase, a system capable of

efficiently transforming network flows into

an aggregated graph model for enhanced

bot detection. The system leverages a two-

phase machine learning approach to

differentiate bots from benign hosts. The

second phase, which utilizes a Decision

Tree (DT) classifier, demonstrates high true

positive rates and low false positive rates,

indicating reliable performance. BotChase

is also effective in detecting bots that

operate using various protocols and proves

robust against unknown attacks, as well as

in cross-network machine learning model

training and inference. Our results show

that flow-based features underperform

compared to graph-based features, which

provide better representation of

communication patterns. BotChase

outperforms traditional end-to-end systems

that rely solely on flow-based features and

performs competitively against existing

graph-based systems such as BotGM. In an

online setting, BotChase integrates the

Hoeffding Adaptive Tree (HAT) algorithm

for incremental learning, enabling real-time

processing. Although the model takes

longer to converge, it ultimately delivers

superior classification performance. For

implementation, we utilized the CTU-13

dataset, which includes 13 scenarios. Each

scenario provides PCAP files (containing

raw network traffic) and corresponding

capture files (containing extracted data such

as source address, destination address,

timestamp, and packet size). To construct

the graph, we used the capture files instead

of the PCAP files. Selected scenarios were

downloaded and stored in the ‘CTU-13-

dataset’ folder for analysis.

REFERENCES

[1] J. Caballero, C. Grier, C. Kreibich, and

V. Paxson, “Measuring payper-install: the

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 205

commoditization of malware distribution,”

in USENIX Security, 2011, p. 13.

[2] E. M. Hutchins, M. J. Cloppert, and R.

M. Amin, “Intelligence-driven computer

network defense informed by analysis of

adversary campaigns and intrusion kill

chains,” Information Warfare & Security

Research, vol. 1, no. 1, p. 80, 2011.

[3] R. Boutaba et al., “A comprehensive

survey on machine learning for networking:

evolution, applications and research

opportunities,” Journal of Internet Services

and Applications, vol. 9, no. 1, pp. 1–99,

2018.

[4] G. Creech and J. Hu, “A Semantic

Approach to Host-Based Intrusion

Detection Systems Using Contiguous and

Discontiguous System Call Patterns,” IEEE

Trans. on Computers, vol. 63, no. 4, pp.

807–819, 2014.

[5] B. Venkatesh, S. H. Choudhury, S.

Nagaraja, and N. Balakrishnan, “BotSpot:

fast graph-based identification of structured

P2P bots,” Journal of Computer Virology

and Hacking Techniques, vol. 11, no. 4, pp.

247–261, 2015.

[6] Y. Jin et al., “A modular machine

learning system for flow-level traffic

classification in large networks,” ACM

TKDD, vol. 6, no. 1, p. 4, 2012.

[7] G. Gu, R. Perdisci, J. Zhang, and W.

Lee, “BotMiner: Clustering Analysis of

Network Traffic for Protocol-and Structure-

Independent Botnet Detection,” in

USENIX Security, 2008, pp. 139–154.

[8] S. Garcia, M. Grill, J. Stiborek, and A.

Zunino, “An empirical comparison of

botnet detection methods,” Computers &

Security, vol. 45, pp. 100–123, 2014.

[9] S. Lagraa et al., “BotGM: Unsupervised

graph mining to detect botnets in traffic

flows,” in IEEE CSNet, 2017, pp. 1–8.

[10] A. Bifet and R. Gavalda, “Adaptive

learning from evolving data streams,” ` in

Intl. Sym. on Intelligent Data Analysis,

2009, pp. 249–260.

