

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 9

CROSS-PLATFORM WINDOWS 11 DESKTOP SIMULATION WITH WEB

TECHNOLOGIES

SOUMYA PRIYADARSHANI SAHOO 4th Year, Department of CSE, Gandhi Institute for

Technology, BPUT, India soumyasahoo2021@gift.edu.in

CHANDRA SEKHAR GIRI 4th Year, Department of CSE, Gandhi Institute for Technology, BPUT,

India csekhar2021@gift.edu.in

Abstract—

This project explores the development of a cross-platform Windows 11 desktop simulation using modern web

technologies such as HTML5, CSS3, JavaScript, and frameworks like React.js and Electron. The simulation aims

to replicate the look, feel, and interactivity of the Windows 11 desktop environment, including features like the

Start Menu, taskbar, window management, and settings interface. By leveraging web technologies, the application

can run seamlessly on multiple platforms—Windows, macOS, and Linux—without native code. The goal is to

provide users, developers, and educators with a lightweight, customizable environment for learning, prototyping

UI concepts, or enhancing accessibility to Windows-like interfaces. This simulation also supports touch and

responsive design for use on tablets and mobile devices. The project highlights the versatility of web development

tools in creating immersive, system-like user experiences without relying on traditional OS-level APIs or

resources..

Keywords:

HTML, CSS, NODE-JS

I. INTRODUCTION

In the era of cloud computing and platform-independent applications, simulating a Windows 11

desktop environment using web technologies presents a powerful solution for accessibility, education,

and lightweight computing. A cross-platform Windows 11 desktop simulation built with HTML, CSS,

and JavaScript allows users to experience and interact with a familiar desktop interface directly through

a web browser, without the need for native operating system installation. This approach enables

seamless access across different devices and operating systems—including macOS, Linux, and mobile

platforms—making it ideal for environments where native Windows access is limited or impractical.

Utilizing modern front-end frameworks and APIs, developers can replicate key UI components like

the Start Menu, taskbar, window management, and file explorer, providing an engaging and interactive

user experience. Additionally, such simulations can serve as educational tools, testing platforms, or

even lightweight remote desktops for specific tasks. This project highlights the capabilities of web

technologies to deliver rich, OS-like experiences that are platform-agnostic, customizable, and

accessible from virtually anywhere.

II. LITERATURE REVIEW

Recent advancements in web technologies have enabled the development of operating system

simulations within browsers, leveraging HTML5, CSS3, and JavaScript. Projects like Windows 11 in

React and WebDesktop demonstrate the feasibility of replicating desktop environments using front-

end frameworks such as React and Vue.js. Research on cross-platform solutions emphasizes the

benefits of browser-based environments for enhanced accessibility, device independence, and reduced

resource consumption. Studies also highlight challenges in achieving full OS functionality, including

file system emulation, multitasking, and security. Despite limitations, literature supports the growing

role of web-based simulations in education, remote access, and lightweight computing environments.

III. SYSTEM DESIGN

mailto:soumyasahoo2021@gift.edu.in
mailto:saradaprasad.rana2020@gift.edu.in

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 10

The system design for a cross-platform Windows 11 desktop simulation using web technologies

involves a modular, component-based architecture. The user interface is developed using HTML5 and

styled with CSS3 to mimic the Windows 11 aesthetic. JavaScript, along with frameworks like React

or Vue.js, manages dynamic behaviors and component interactions such as window movement,

resizing, and taskbar updates. A virtual file system is simulated using browser storage APIs like

LocalStorage or IndexedDB. The system is responsive and optimized for various devices and screen

sizes. Backend services, if needed, are integrated via RESTful APIs, ensuring a seamless, interactive,

and scalable desktop experience.

IV. IMPLEMENTATION

The implementation of a cross-platform Windows 11 desktop simulation begins with designing the UI

using HTML5 and CSS3 to replicate the Start Menu, taskbar, desktop icons, and windows. JavaScript,

along with a front-end framework like React or Vue.js, is used to handle state management, user

interactions, and dynamic component rendering. Features like drag-and-drop windows, multi-window

support, and a simulated file explorer are implemented using DOM manipulation and browser APIs

such as LocalStorage or IndexedDB. Event listeners manage user inputs, while optional backend

integration through RESTful APIs supports user authentication or file operations, enabling a fully

interactive and responsive desktop simulation.

RESULTS

The cross-platform Windows 11 desktop simulation successfully replicates key features of the Windows

11 interface within a web browser. Users can interact with familiar components such as the Start Menu,

taskbar, desktop icons, and resizable application windows. The system runs smoothly across multiple

platforms—including Windows, macOS, Linux, and mobile devices—without the need for installation.

Basic file operations are enabled through LocalStorage, providing a functional virtual file system. The

simulation demonstrates responsive design, efficient performance, and cross-device compatibility.

Overall, it serves as an effective proof of concept for delivering desktop-like environments using only

web technologies, highlighting the potential for broader applications.

CONCLUSION

The cross-platform Windows 11 desktop simulation using web technologies effectively demonstrates the

potential of HTML5, CSS3, and JavaScript in replicating a desktop environment within a web browser.

The simulation successfully mirrors key features of Windows 11, offering an interactive and responsive

experience across various devices and platforms. By leveraging web APIs and front-end frameworks,

the project highlights the feasibility of creating lightweight, accessible, and cross-platform solutions for

users without native OS installation. While limitations exist in achieving full OS functionality, this

approach showcases the promise of web-based desktop simulations in education, remote access, and

lightweight computing.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 11

ACKNOWLEDGEMENT

We extend our sincere appreciation to all individuals and organizations whose contributions have

been instrumental in the development of the real-time weather application. Special thanks to

meteorological experts and researchers whose invaluable insights and advancements have enhanced

our understanding of weather forecasting and data processing. We acknowledge the support of

technology partners for their innovative solutions in sensor technologies and data acquisition.

Furthermore, we express gratitude to the users whose feedback and preferences have guided the design

and functionality of the application. This collaborative effort underscores our commitment to providing

accurate, reliable, and accessible weather information to users worldwide.

REFERENCES

• http://www.wikipedia.com/

• http://www.w3schools.com/

• http://www.reactjs.org/

• https://dev.to/achowba/building-a-modal-in-react- https://dev.to/achowba/building-a-modal-in-

react-

15hg#%3A~%3AtargetText%3DOpen%20the%20Modal.js%20file%2C%7B%7B%20transform

%3A%20props.show%20%3F

http://www.wikipedia.com/
http://www.w3schools.com/
http://www.reactjs.org/
https://dev.to/achowba/building-a-modal-in-react-
https://dev.to/achowba/building-a-modal-in-react-15hg#%3A~%3AtargetText%3DOpen%20the%20Modal.js%20file%2C%7B%7B%20transform%3A%20props.show%20%3F
https://dev.to/achowba/building-a-modal-in-react-15hg#%3A~%3AtargetText%3DOpen%20the%20Modal.js%20file%2C%7B%7B%20transform%3A%20props.show%20%3F
https://dev.to/achowba/building-a-modal-in-react-15hg#%3A~%3AtargetText%3DOpen%20the%20Modal.js%20file%2C%7B%7B%20transform%3A%20props.show%20%3F
https://dev.to/achowba/building-a-modal-in-react-15hg#%3A~%3AtargetText%3DOpen%20the%20Modal.js%20file%2C%7B%7B%20transform%3A%20props.show%20%3F

