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ABSTRACT 

A reconfigurable 512KB cache memory system is 

designed using Verilog Hardware Description 

Language to support multiple cache mapping 

techniques, including direct-mapped and set-

associative organizations. The set-associative 

architecture is configurable as two-way, four-way, or 

eight-way, offering flexibility in terms of 

associativity and performance. A mode-selectable 

control mechanism enables dynamic switching 

between cache architectures during runtime, based 

on application-specific requirements or performance 

trade-offs. The design supports selective activation 

of cache blocks to optimize access time and 

minimize power consumption by deactivating 

unused sets. The modular and parameterized 

structure of the cache makes it highly scalable and 

well-suited for implementation in embedded 

processors, FPGA-based accelerators, and 

customizable computing platforms. 

Keywords— Reconfigurable cache, Verilog HDL, 

Mapping controller unit, Direct-mapped, Set-

associative, Cache hit. 

I. INTRODUCTION 

In modern computing systems, memory speed is 

a critical factor that significantly impacts overall 

performance. Cache memory plays a vital role in 

enhancing this speed by reducing the access time 

between the processor and main memory. As 

illustrated in Fig. 1, the cache is strategically 

positioned between the CPU and the main 

memory, acting as a high-speed buffer. This 

placement helps improve the efficiency and 

responsiveness of the processor, thereby 

boosting the overall system performance. 

A. Overview of Memory Hierarchy: The 

diagram depicts a basic computer memory 

architecture that consists of the CPU, cache 

memory, and main memory. This structure 

follows the principle of memory hierarchy, 

where smaller, faster memories are placed 

closer to the CPU to improve access speed 

and system performance. The design enables 

efficient data handling and processing by 

organizing memory in layers based on speed 

and capacity. 

 
Fig1. Basic Cache Memory Block Diagram. 

B. Role of the CPU: At the core of the system 

is the CPU, which performs all the 

computation and data processing tasks. It 

communicates with both the cache memory 

and the main memory to fetch and store data. 
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The CPU generates memory addresses to 

access data, and it prefers to access data from 

the cache due to its faster response time. If 

the required data is not found in the cache, 

the CPU initiates a request to the main 

memory. 

C. Address Line [31:0]: The CPU uses a 32-

bit address bus, labeled as Address [31:0], to 

locate specific memory locations. These 32 

bits allow the CPU to address up to 4 GB of 

memory space. This address line is used to 

interact with both cache and main memory 

to fetch or write data. Efficient addressing 

plays a critical role in reducing memory 

latency and ensuring accurate data retrieval. 

D. Cache Memory Structure: Cache memory, 

shown in the diagram as 512 Kb, is a small, 

high-speed memory located close to the 

CPU. It stores copies of frequently accessed 

data and instructions. When the CPU 

requests data, the cache is checked first. If 

the data is found (a cache hit), it is 

immediately used, which speeds up 

processing. If not found (a cache miss), data 

is fetched from main memory and stored in 

the cache for future use. 

E. Byte Transfer Between CPU and Cache: 

The interaction between the CPU and cache 

memory occurs via byte-level transfer, 

which means data is exchanged in small 

units, typically a word or byte at a time. This 

allows for quick data access and 

manipulation. Because of the cache's 

proximity to the CPU and its speed, byte-

level operations between these two 

components are highly optimized. 

F. Block Transfer Between Cache and Main 

Memory: When a cache miss occurs, a 

block of data (multiple bytes) is fetched from 

the main memory and stored in the cache. 

This technique leverages spatial locality, 

where adjacent data is likely to be used soon. 

By transferring a block instead of just a 

single byte, the system anticipates future 

CPU requests and reduces the frequency of 

main memory access. 

G. Main Memory Characteristics: Main 

memory, represented as 512 Mb in the 

diagram, is larger but slower than cache 

memory. It holds the complete set of data, 

instructions, and programs that the CPU may 

need during execution. Although it takes 

longer to access than cache, it serves as the 

primary storage for active data. Main 

memory must be accessed when the required 

data is not found in the cache. 

H. Direct Data Path from CPU to Main 

Memory: The diagram also includes a direct 

data transfer path from the CPU to the main 

memory. This bypass allows the CPU to 

directly access main memory in certain 

scenarios—such as when working with 

uncached memory blocks or during special 

memory operations. However, direct access 

is slower than accessing cache due to higher 

latency. 

I. Performance Optimization: The memory 

hierarchy is optimized to reduce data access 

time and boost CPU efficiency. Frequently 

used data is stored in a 512 KB cache, 

enabling fast byte-level access. On a cache 

miss, a data block is transferred from the 

larger 512 MB main memory. This layered 

design supports both byte-level (CPU–

cache) and block-level (cache–main 

memory) transfers, while also allowing 

direct CPU–memory access when needed. 

Leveraging spatial and temporal locality, the 

system enhances performance in data-

intensive tasks. 

J. Cache Mapping Techniques: In computer 

architecture, cache mapping techniques are 

essential for optimizing the performance of 

the cache memory, which acts as a buffer 

between the CPU and main memory. Since 

cache memory is limited in size compared to 
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the vast main memory, it becomes crucial to 

determine where data blocks from the main 

memory should be stored in the cache. These 

strategies are known as cache mapping 

techniques and help in achieving efficient 

memory access, reducing latency, and 

improving system performance. 

1. Direct Mapping: Direct mapping is the 

simplest form of cache mapping technique. 

It maps each block of the main memory to 

only one possible cache line. Although easy 

to implement and fast, this method can lead 

to a higher number of conflict misses if 

multiple memory blocks map to the same 

cache line. 

Working: In direct mapping, the memory 

address is divided into three fields: tag, line 

number, and block offset. The line number 

determines which cache line the block maps 

to. When accessing memory, the cache line 

is checked, and the tag is compared. If the 

tags match and the valid bit is set, it is a 

cache hit; otherwise, it's a cache miss. 

2. Fully Associative Mapping: Fully 

associative mapping is a more flexible 

technique where any block of main memory 

can be placed in any cache line. This method 

helps in significantly reducing conflict 

misses but requires complex hardware for 

tag comparison. 

Working: In this method, the memory 

address is split into two parts: tag and block 

offset. There is no line number as any block 

can go anywhere. During a memory access, 

the entire cache is searched for a matching 

tag. This increases hit rate but is slower due 

to multiple comparisons. 

3. Set-Associative Mapping: Set-associative 

mapping is a compromise between direct 

and fully associative mapping. The cache is 

divided into a number of sets, and each set 

contains several lines (ways). A block from 

main memory maps to a specific set but can 

occupy any line within that set. 

 

 

Types: 

• 2-way set-associative: each set has 2 

lines. 

• 4-way set-associative: each set has 4 

lines. 

• 8-way set-associative: 8 lines per set. 

Working: The memory address is divided 

into three parts: tag, set index, and block 

offset. The set index determines which set 

the block belongs to. All lines in the selected 

set are searched for a matching tag. If a 

match is found, it is a cache hit; otherwise, a 

replacement policy decides which line to 

replace. 

• 2-Way Set-Associative: In this 

configuration, each set contains 2 lines. 

A memory block maps to a specific set 

determined by the set index, and within 

that set, it can be placed in either of the 

two lines. When searching, both lines in 

the set are checked for a tag match. If 

neither line matches, one line is selected 

for replacement based on the policy in 

use (e.g., LRU or FIFO). 

• 4-Way Set-Associative: In this setup, 

each set has 4 lines. This increases 

flexibility and further reduces conflict 

misses as the block has more possible 

positions within its designated set. The 

replacement policy chooses one of the 4 

lines when all are occupied. 

• 8-Way Set-Associative: In an 8-way 

configuration, each set contains 8 cache 

lines. This allows high flexibility and 

minimizes conflict misses, making it 

highly efficient for larger caches. It is 

often used in L3 caches in modern CPUs. 

II. LITERATURE REVIEW 
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Reconfigurable cache architectures have gained 

significant attention due to their ability to 

optimize memory performance and energy 

efficiency based on application demands. 

Several researchers have explored the design 

and implementation of such architectures using 

hardware description languages like Verilog 

HDL. 

In [1], Sundararajan et al. proposed a 

comprehensive implementation of a 

reconfigurable cache capable of switching 

between direct-mapped and set-associative 

modes. Their Verilog HDL-based design 

supported dynamic mode switching at runtime, 

leading to improvements in access latency and 

power efficiency. The authors validated their 

architecture on FPGA hardware, showcasing its 

practical feasibility. 

Janraj and Natarajan in [2] introduced an 

architecture that supports cache way 

reconfiguration for sharing purposes, thereby 

improving memory utilization. Their work 

focuses on selective sharing of cache sets across 

cores and demonstrates how dynamic 

reconfiguration in multicore environments can 

lead to enhanced throughput. This work 

complements [1] by addressing multi-core 

scenarios and cache sharing. 

Reddy and Sinha [3] carried out a comparative 

study of various reconfigurable cache 

architectures, examining the trade-offs between 

direct-mapped, 2-way, and 4-way set-

associative caches. Their study highlighted the 

design complexity versus performance benefits 

across different configurations, and their 

Verilog-based simulations provided insights 

into which cache types perform better under 

specific access patterns. 

Jeyaraman's major technical project [4] focused 

on the practical development of a reconfigurable 

cache module using Verilog HDL. Though 

academic in nature, the work contributed to 

understanding FSM control logic for switching 

cache modes and documented the synthesis 

challenges encountered when deploying the 

design on Xilinx FPGAs. 

In [5], Omran and Amory presented an early 

approach to reconfigurable cache memory using 

Verilog HDL, incorporating an LRU (Least 

Recently Used) replacement policy. Their 

implementation emphasized timing and hit ratio 

improvements for 4-way set-associative caches, 

serving as a foundational work for later 

optimizations in reconfigurable memory 

controllers. 

Kaur’s work [6] implemented both direct-

mapped and set-associative cache 

configurations and provided a side-by-side 

analysis using Verilog. The study focused more 

on understanding architectural differences rather 

than runtime reconfiguration but provided 

essential benchmarks for performance metrics 

like hit rate, miss penalty, and cycle latency. 

Finally, Kadlimatti and Uma [7] optimized a 4-

way set-associative cache controller design. 

Their work introduced pipelining and efficient 

tag matching mechanisms, resulting in a 

reduction of access time. Although limited to a 

fixed associativity level, the techniques 

presented are highly relevant for integration into 

a broader reconfigurable cache design. 

III. EXISTING METHOD 

The proposed method introduces a 

reconfigurable cache architecture that supports 

multiple cache mapping policies within a single 

hardware unit. The system is designed to 

dynamically switch between four different 

cache modes—Direct Mapped (DM), 2-Way Set 

Associative, 4-Way Set Associative, and 8-Way 

Set Associative—based on a configurable 2-bit 

mode input. This allows the cache to be 

adaptable to varying performance, power, and 

area requirements, making it suitable for 

embedded and general-purpose computing 

systems. The top-level cache module 
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orchestrates the selection and coordination of all 

four underlying cache types.  

Each mapping strategy is implemented as an 

independent submodule: 

• dm_cache for Direct Mapped, 

• way2_cache for 2-way set associative, 

• way4_cache for 4-way set associative,  

• way8_cache for 8-way set associative. 

All submodules share common input signals 

such as clk, rst, addr, data_in, and we (write 

enable), and they independently process the 

request in parallel. Each submodule generates its 

own data_out and hit signal. The top module 

then uses a multiplexer logic, based on the mode 

input, to select the appropriate data_out and hit 

signals for the currently active cache 

configuration. 

This reconfigurable design improves design 

flexibility and allows real-time evaluation of 

different cache policies under dynamic 

workloads. For example, a system might use 2-

way associative mode for energy efficiency 

during low-power operation and switch to 8-way 

associativity during performance-critical 

phases. This adaptability is especially important 

in heterogeneous computing platforms, 

embedded systems, or simulation-based 

memory studies, where cache performance must 

be tuned on the fly. 

By encapsulating each cache structure into 

separate, reusable submodules and enabling 

runtime switching via mode control, this 

architecture demonstrates a scalable and 

modular approach to cache design. 

 
Fig 2: Cache Memory 

The proposed cache architecture is based on a 

reconfigurable design that allows dynamic 

switching between different cache mapping 

techniques depending on system requirements. 

The top-level `cache` module integrates four 

internal cache modules: a direct-mapped cache 

(`dm_cache`), a 2-way set associative cache 

(`way2_cache`), a 4-way set associative cache 

(`way4_cache`), and an 8-way set associative 

cache (`way8_cache`). All four cache modules 

operate in parallel, receiving common input 

signals such as clock (`clk`), reset (`rst`), address 

(`addr`), data input (`data_in`), and write enable 

(`we`). However, only one of them is actively 

used at a time based on the value of the 2-bit 

`mode` signal. The `mode` selects the 

appropriate cache configuration, enabling the 

system to adapt to different performance, power, 

or workload requirements at runtime. The 

outputs `data_out` and `hit` are multiplexed 

based on the current mode, allowing seamless 

switching between cache types without external 

changes. This modular and scalable design 

promotes flexibility and efficient memory 

management, making it suitable for embedded 
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processors, adaptive systems, and cache 

architecture research platforms. 

 

IV. PROPOSED METHOD 

 
Fig 3: proposed Cache Memory 

A. 512KB Cache Memory Block: This is the 

core component of the architecture, designed 

to support multiple caching strategies. It 

consists of four independently implemented 

cache modules: Direct-Mapped, 2-Way, 4-

Way, and 8-Way Set-Associative caches. 

Only one of these is active at a time, 

depending on the selected operating mode. 

Technical Features: 

• Scalability: Each module is 

parameterized and structured to scale the 

number of sets, lines, and associativity. 

• Uniform Data Width: All modules 

support 64-bit data access, ensuring 

compatibility with high-performance 

processors. 

• Tag and Index Handling: Each module 

decodes the address to extract the tag and 

index as per its mapping strategy. 

• Replacement Policy: 

o Direct-Mapped: Single-line per 

index (no replacement). 

o Set-Associative: Implements round-

robin (LRU-style) replacement logic. 

• Memory Structure: Internally, each 

cache stores data, valid bits, and tag 

arrays for lookup and validation. 

• Area Efficiency: Only one cache type is 

activated at a time, reducing unnecessary 

power and resource consumption. 

Role: Holds temporary copies of frequently 

accessed data to reduce main memory 

accesses, enabling faster read/write cycles 

for the CPU.s 

B. Mode-Selectable Control Unit: This 

unit serves as the interface and selector 

between the CPU and the underlying 

cache architectures. It allows the system 

to dynamically switch between different 

cache mapping strategies during 

operation based on application-specific 

requirements (e.g., latency sensitivity vs. 

hit rate optimization). 

 

Key Responsibilities: 

• Mode Interpretation: Interprets the 2-

bit mode signal to enable one of the 

cache configurations: 

o 00: Direct-Mapped 

o 01: 2-Way Set Associative 

o 10: 4-Way Set Associative 

o 11: 8-Way Set Associative 

• Signal Routing: 

o Forwards the input signals (addr, 

data_in, we) to the selected cache. 

o Receives outputs (data_out, hit) from 

the active cache and routes them to 

the CPU. 

• Reconfiguration Logic: Internally uses 

multiplexers to switch input and output 

paths dynamically based on the selected 

cache. 

• Isolation: Deactivates non-selected 

cache modules to conserve power and 

prevent conflicts or unintended writes. 
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Role: Enables runtime configurability of the 

cache system without modifying hardware 

connections, improving adaptability and 

performance tuning. 

C. Input/Output Signal Interface: This 

interface connects the cache system to the 

CPU or memory controller. It is designed to 

be minimal yet sufficient for dynamic 

operation and reconfiguration. 

Signal Descriptions: 

Table.1 Pin descriptions 

Signal Width Description 

clk 1 bit 
Clock signal to synchronize 

cache operations. 

rst 1 bit 
Reset signal to initialize or 

clear the cache. 

mode 2 bits 
Selects the active cachse 

architecture (00 to 11). 

addr 32 bits 
Memory address provided by 

the CPU to access cache. 

data_in 64 bits 
Input data from CPU for 

write operations. 

we 1 bit 
Write Enable: 1 for write, 0 

for read. 

data_out 64 bits 
Output data read from cache 

(if hit). 

hit 1 bit 

Indicates whether the address 

was found in the cache (1 = 

hit, 0 = miss). 

Role: Acts as the interface between the CPU 

and cache. Inputs control read/write operations, 

while outputs provide data and hit status. 

Summary of System Behaviour: 

• The system starts in reset mode and 

initializes all internal cache arrays. 

• On each CPU memory access, the address is 

decoded, and the mode signal determines 

which cache module is active. 

• In write operations, the selected cache stores 

the data and updates its tag and valid bit 

arrays. 

• In read operations, the selected cache 

searches its sets using tag comparison, 

returning data and asserting the hit flag if 

found. 

• The unused cache modules remain idle to 

optimize power usage. 

V. RESULTS AND DISCUSSION 

 

Fig.4 Area of Cache Memory 

 

Fig.5 Power of Cache Memory 

 

Fig.6 Delay of Cache Memory 

 

Fig.7 RTL Schematic of Cache Memory 
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Fig.8 Simulation Waveform for Cache Memory 

VI. CONCLUSION 

The proposed reconfigurable 512KB cache 

architecture delivers a highly flexible and 

efficient memory subsystem that dynamically 

adapts to diverse computational workloads. 

Implemented using Verilog HDL, the design 

integrates four cache mapping strategies—

direct-mapped, 2-way, 4-way, and 8-way set-

associative—into a unified, parameterized 

framework. Through a mode-selectable control 

mechanism, the system can seamlessly switch 

between cache configurations at runtime, 

enabling targeted optimization for latency, 

power, or hit rate based on application demands. 

This adaptability ensures efficient resource 

utilization, reduced power consumption by 

disabling inactive cache modules, and improved 

overall system responsiveness. The modular and 

scalable nature of the design makses it well-

suited for FPGA-based platforms, embedded 

systems, and academic or industrial research in 

memory architecture. By combining runtime 

reconfigurability with performance tuning 

capabilities, the architecture supports the 

development of intelligent, energy-aware cache 

subsystems for next-generation computing 

environments. 
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