

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 142

DESIGN AND IMPLEMENTATION OF A RECONFIGURABLE 512KB CACHE

SUPPORTING DIRECT-MAPPED AND SET-ASSOCIATIVE ARCHITECTURES USING

VERILOG HDL

1CHAKALI HARIVARDHAN, 2K. PRABHU,
1M. Tech, VLSI System Design, Student,

Department of ECE,

Email: harivardhanchakali02@gmail.com,

 2Assistant Professor(C), Department of ECE,

 Email: kprabhu2003@gmail.com,

JNTUH University College of Engineering Sultanpur,

Sangareddy, Telangana, India

ABSTRACT

A reconfigurable 512KB cache memory system is

designed using Verilog Hardware Description

Language to support multiple cache mapping

techniques, including direct-mapped and set-

associative organizations. The set-associative

architecture is configurable as two-way, four-way, or

eight-way, offering flexibility in terms of

associativity and performance. A mode-selectable

control mechanism enables dynamic switching

between cache architectures during runtime, based

on application-specific requirements or performance

trade-offs. The design supports selective activation

of cache blocks to optimize access time and

minimize power consumption by deactivating

unused sets. The modular and parameterized

structure of the cache makes it highly scalable and

well-suited for implementation in embedded

processors, FPGA-based accelerators, and

customizable computing platforms.

Keywords— Reconfigurable cache, Verilog HDL,

Mapping controller unit, Direct-mapped, Set-

associative, Cache hit.

I. INTRODUCTION

In modern computing systems, memory speed is

a critical factor that significantly impacts overall

performance. Cache memory plays a vital role in

enhancing this speed by reducing the access time

between the processor and main memory. As

illustrated in Fig. 1, the cache is strategically

positioned between the CPU and the main

memory, acting as a high-speed buffer. This

placement helps improve the efficiency and

responsiveness of the processor, thereby

boosting the overall system performance.

A. Overview of Memory Hierarchy: The

diagram depicts a basic computer memory

architecture that consists of the CPU, cache

memory, and main memory. This structure

follows the principle of memory hierarchy,

where smaller, faster memories are placed

closer to the CPU to improve access speed

and system performance. The design enables

efficient data handling and processing by

organizing memory in layers based on speed

and capacity.

Fig1. Basic Cache Memory Block Diagram.

B. Role of the CPU: At the core of the system

is the CPU, which performs all the

computation and data processing tasks. It

communicates with both the cache memory

and the main memory to fetch and store data.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 143

The CPU generates memory addresses to

access data, and it prefers to access data from

the cache due to its faster response time. If

the required data is not found in the cache,

the CPU initiates a request to the main

memory.

C. Address Line [31:0]: The CPU uses a 32-

bit address bus, labeled as Address [31:0], to

locate specific memory locations. These 32

bits allow the CPU to address up to 4 GB of

memory space. This address line is used to

interact with both cache and main memory

to fetch or write data. Efficient addressing

plays a critical role in reducing memory

latency and ensuring accurate data retrieval.

D. Cache Memory Structure: Cache memory,

shown in the diagram as 512 Kb, is a small,

high-speed memory located close to the

CPU. It stores copies of frequently accessed

data and instructions. When the CPU

requests data, the cache is checked first. If

the data is found (a cache hit), it is

immediately used, which speeds up

processing. If not found (a cache miss), data

is fetched from main memory and stored in

the cache for future use.

E. Byte Transfer Between CPU and Cache:

The interaction between the CPU and cache

memory occurs via byte-level transfer,

which means data is exchanged in small

units, typically a word or byte at a time. This

allows for quick data access and

manipulation. Because of the cache's

proximity to the CPU and its speed, byte-

level operations between these two

components are highly optimized.

F. Block Transfer Between Cache and Main

Memory: When a cache miss occurs, a

block of data (multiple bytes) is fetched from

the main memory and stored in the cache.

This technique leverages spatial locality,

where adjacent data is likely to be used soon.

By transferring a block instead of just a

single byte, the system anticipates future

CPU requests and reduces the frequency of

main memory access.

G. Main Memory Characteristics: Main

memory, represented as 512 Mb in the

diagram, is larger but slower than cache

memory. It holds the complete set of data,

instructions, and programs that the CPU may

need during execution. Although it takes

longer to access than cache, it serves as the

primary storage for active data. Main

memory must be accessed when the required

data is not found in the cache.

H. Direct Data Path from CPU to Main

Memory: The diagram also includes a direct

data transfer path from the CPU to the main

memory. This bypass allows the CPU to

directly access main memory in certain

scenarios—such as when working with

uncached memory blocks or during special

memory operations. However, direct access

is slower than accessing cache due to higher

latency.

I. Performance Optimization: The memory

hierarchy is optimized to reduce data access

time and boost CPU efficiency. Frequently

used data is stored in a 512 KB cache,

enabling fast byte-level access. On a cache

miss, a data block is transferred from the

larger 512 MB main memory. This layered

design supports both byte-level (CPU–

cache) and block-level (cache–main

memory) transfers, while also allowing

direct CPU–memory access when needed.

Leveraging spatial and temporal locality, the

system enhances performance in data-

intensive tasks.

J. Cache Mapping Techniques: In computer

architecture, cache mapping techniques are

essential for optimizing the performance of

the cache memory, which acts as a buffer

between the CPU and main memory. Since

cache memory is limited in size compared to

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 144

the vast main memory, it becomes crucial to

determine where data blocks from the main

memory should be stored in the cache. These

strategies are known as cache mapping

techniques and help in achieving efficient

memory access, reducing latency, and

improving system performance.

1. Direct Mapping: Direct mapping is the

simplest form of cache mapping technique.

It maps each block of the main memory to

only one possible cache line. Although easy

to implement and fast, this method can lead

to a higher number of conflict misses if

multiple memory blocks map to the same

cache line.

Working: In direct mapping, the memory

address is divided into three fields: tag, line

number, and block offset. The line number

determines which cache line the block maps

to. When accessing memory, the cache line

is checked, and the tag is compared. If the

tags match and the valid bit is set, it is a

cache hit; otherwise, it's a cache miss.

2. Fully Associative Mapping: Fully

associative mapping is a more flexible

technique where any block of main memory

can be placed in any cache line. This method

helps in significantly reducing conflict

misses but requires complex hardware for

tag comparison.

Working: In this method, the memory

address is split into two parts: tag and block

offset. There is no line number as any block

can go anywhere. During a memory access,

the entire cache is searched for a matching

tag. This increases hit rate but is slower due

to multiple comparisons.

3. Set-Associative Mapping: Set-associative

mapping is a compromise between direct

and fully associative mapping. The cache is

divided into a number of sets, and each set

contains several lines (ways). A block from

main memory maps to a specific set but can

occupy any line within that set.

Types:

• 2-way set-associative: each set has 2

lines.

• 4-way set-associative: each set has 4

lines.

• 8-way set-associative: 8 lines per set.

Working: The memory address is divided

into three parts: tag, set index, and block

offset. The set index determines which set

the block belongs to. All lines in the selected

set are searched for a matching tag. If a

match is found, it is a cache hit; otherwise, a

replacement policy decides which line to

replace.

• 2-Way Set-Associative: In this

configuration, each set contains 2 lines.

A memory block maps to a specific set

determined by the set index, and within

that set, it can be placed in either of the

two lines. When searching, both lines in

the set are checked for a tag match. If

neither line matches, one line is selected

for replacement based on the policy in

use (e.g., LRU or FIFO).

• 4-Way Set-Associative: In this setup,

each set has 4 lines. This increases

flexibility and further reduces conflict

misses as the block has more possible

positions within its designated set. The

replacement policy chooses one of the 4

lines when all are occupied.

• 8-Way Set-Associative: In an 8-way

configuration, each set contains 8 cache

lines. This allows high flexibility and

minimizes conflict misses, making it

highly efficient for larger caches. It is

often used in L3 caches in modern CPUs.

II. LITERATURE REVIEW

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 145

Reconfigurable cache architectures have gained

significant attention due to their ability to

optimize memory performance and energy

efficiency based on application demands.

Several researchers have explored the design

and implementation of such architectures using

hardware description languages like Verilog

HDL.

In [1], Sundararajan et al. proposed a

comprehensive implementation of a

reconfigurable cache capable of switching

between direct-mapped and set-associative

modes. Their Verilog HDL-based design

supported dynamic mode switching at runtime,

leading to improvements in access latency and

power efficiency. The authors validated their

architecture on FPGA hardware, showcasing its

practical feasibility.

Janraj and Natarajan in [2] introduced an

architecture that supports cache way

reconfiguration for sharing purposes, thereby

improving memory utilization. Their work

focuses on selective sharing of cache sets across

cores and demonstrates how dynamic

reconfiguration in multicore environments can

lead to enhanced throughput. This work

complements [1] by addressing multi-core

scenarios and cache sharing.

Reddy and Sinha [3] carried out a comparative

study of various reconfigurable cache

architectures, examining the trade-offs between

direct-mapped, 2-way, and 4-way set-

associative caches. Their study highlighted the

design complexity versus performance benefits

across different configurations, and their

Verilog-based simulations provided insights

into which cache types perform better under

specific access patterns.

Jeyaraman's major technical project [4] focused

on the practical development of a reconfigurable

cache module using Verilog HDL. Though

academic in nature, the work contributed to

understanding FSM control logic for switching

cache modes and documented the synthesis

challenges encountered when deploying the

design on Xilinx FPGAs.

In [5], Omran and Amory presented an early

approach to reconfigurable cache memory using

Verilog HDL, incorporating an LRU (Least

Recently Used) replacement policy. Their

implementation emphasized timing and hit ratio

improvements for 4-way set-associative caches,

serving as a foundational work for later

optimizations in reconfigurable memory

controllers.

Kaur’s work [6] implemented both direct-

mapped and set-associative cache

configurations and provided a side-by-side

analysis using Verilog. The study focused more

on understanding architectural differences rather

than runtime reconfiguration but provided

essential benchmarks for performance metrics

like hit rate, miss penalty, and cycle latency.

Finally, Kadlimatti and Uma [7] optimized a 4-

way set-associative cache controller design.

Their work introduced pipelining and efficient

tag matching mechanisms, resulting in a

reduction of access time. Although limited to a

fixed associativity level, the techniques

presented are highly relevant for integration into

a broader reconfigurable cache design.

III. EXISTING METHOD

The proposed method introduces a

reconfigurable cache architecture that supports

multiple cache mapping policies within a single

hardware unit. The system is designed to

dynamically switch between four different

cache modes—Direct Mapped (DM), 2-Way Set

Associative, 4-Way Set Associative, and 8-Way

Set Associative—based on a configurable 2-bit

mode input. This allows the cache to be

adaptable to varying performance, power, and

area requirements, making it suitable for

embedded and general-purpose computing

systems. The top-level cache module

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 146

orchestrates the selection and coordination of all

four underlying cache types.

Each mapping strategy is implemented as an

independent submodule:

• dm_cache for Direct Mapped,

• way2_cache for 2-way set associative,

• way4_cache for 4-way set associative,

• way8_cache for 8-way set associative.

All submodules share common input signals

such as clk, rst, addr, data_in, and we (write

enable), and they independently process the

request in parallel. Each submodule generates its

own data_out and hit signal. The top module

then uses a multiplexer logic, based on the mode

input, to select the appropriate data_out and hit

signals for the currently active cache

configuration.

This reconfigurable design improves design

flexibility and allows real-time evaluation of

different cache policies under dynamic

workloads. For example, a system might use 2-

way associative mode for energy efficiency

during low-power operation and switch to 8-way

associativity during performance-critical

phases. This adaptability is especially important

in heterogeneous computing platforms,

embedded systems, or simulation-based

memory studies, where cache performance must

be tuned on the fly.

By encapsulating each cache structure into

separate, reusable submodules and enabling

runtime switching via mode control, this

architecture demonstrates a scalable and

modular approach to cache design.

Fig 2: Cache Memory

The proposed cache architecture is based on a

reconfigurable design that allows dynamic

switching between different cache mapping

techniques depending on system requirements.

The top-level `cache` module integrates four

internal cache modules: a direct-mapped cache

(`dm_cache`), a 2-way set associative cache

(`way2_cache`), a 4-way set associative cache

(`way4_cache`), and an 8-way set associative

cache (`way8_cache`). All four cache modules

operate in parallel, receiving common input

signals such as clock (`clk`), reset (`rst`), address

(`addr`), data input (`data_in`), and write enable

(`we`). However, only one of them is actively

used at a time based on the value of the 2-bit

`mode` signal. The `mode` selects the

appropriate cache configuration, enabling the

system to adapt to different performance, power,

or workload requirements at runtime. The

outputs `data_out` and `hit` are multiplexed

based on the current mode, allowing seamless

switching between cache types without external

changes. This modular and scalable design

promotes flexibility and efficient memory

management, making it suitable for embedded

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 147

processors, adaptive systems, and cache

architecture research platforms.

IV. PROPOSED METHOD

Fig 3: proposed Cache Memory

A. 512KB Cache Memory Block: This is the

core component of the architecture, designed

to support multiple caching strategies. It

consists of four independently implemented

cache modules: Direct-Mapped, 2-Way, 4-

Way, and 8-Way Set-Associative caches.

Only one of these is active at a time,

depending on the selected operating mode.

Technical Features:

• Scalability: Each module is

parameterized and structured to scale the

number of sets, lines, and associativity.

• Uniform Data Width: All modules

support 64-bit data access, ensuring

compatibility with high-performance

processors.

• Tag and Index Handling: Each module

decodes the address to extract the tag and

index as per its mapping strategy.

• Replacement Policy:

o Direct-Mapped: Single-line per

index (no replacement).

o Set-Associative: Implements round-

robin (LRU-style) replacement logic.

• Memory Structure: Internally, each

cache stores data, valid bits, and tag

arrays for lookup and validation.

• Area Efficiency: Only one cache type is

activated at a time, reducing unnecessary

power and resource consumption.

Role: Holds temporary copies of frequently

accessed data to reduce main memory

accesses, enabling faster read/write cycles

for the CPU.s

B. Mode-Selectable Control Unit: This

unit serves as the interface and selector

between the CPU and the underlying

cache architectures. It allows the system

to dynamically switch between different

cache mapping strategies during

operation based on application-specific

requirements (e.g., latency sensitivity vs.

hit rate optimization).

Key Responsibilities:

• Mode Interpretation: Interprets the 2-

bit mode signal to enable one of the

cache configurations:

o 00: Direct-Mapped

o 01: 2-Way Set Associative

o 10: 4-Way Set Associative

o 11: 8-Way Set Associative

• Signal Routing:

o Forwards the input signals (addr,

data_in, we) to the selected cache.

o Receives outputs (data_out, hit) from

the active cache and routes them to

the CPU.

• Reconfiguration Logic: Internally uses

multiplexers to switch input and output

paths dynamically based on the selected

cache.

• Isolation: Deactivates non-selected

cache modules to conserve power and

prevent conflicts or unintended writes.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 148

Role: Enables runtime configurability of the

cache system without modifying hardware

connections, improving adaptability and

performance tuning.

C. Input/Output Signal Interface: This

interface connects the cache system to the

CPU or memory controller. It is designed to

be minimal yet sufficient for dynamic

operation and reconfiguration.

Signal Descriptions:

Table.1 Pin descriptions

Signal Width Description

clk 1 bit
Clock signal to synchronize

cache operations.

rst 1 bit
Reset signal to initialize or

clear the cache.

mode 2 bits
Selects the active cachse

architecture (00 to 11).

addr 32 bits
Memory address provided by

the CPU to access cache.

data_in 64 bits
Input data from CPU for

write operations.

we 1 bit
Write Enable: 1 for write, 0

for read.

data_out 64 bits
Output data read from cache

(if hit).

hit 1 bit

Indicates whether the address

was found in the cache (1 =

hit, 0 = miss).

Role: Acts as the interface between the CPU

and cache. Inputs control read/write operations,

while outputs provide data and hit status.

Summary of System Behaviour:

• The system starts in reset mode and

initializes all internal cache arrays.

• On each CPU memory access, the address is

decoded, and the mode signal determines

which cache module is active.

• In write operations, the selected cache stores

the data and updates its tag and valid bit

arrays.

• In read operations, the selected cache

searches its sets using tag comparison,

returning data and asserting the hit flag if

found.

• The unused cache modules remain idle to

optimize power usage.

V. RESULTS AND DISCUSSION

Fig.4 Area of Cache Memory

Fig.5 Power of Cache Memory

Fig.6 Delay of Cache Memory

Fig.7 RTL Schematic of Cache Memory

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 149

Fig.8 Simulation Waveform for Cache Memory

VI. CONCLUSION

The proposed reconfigurable 512KB cache

architecture delivers a highly flexible and

efficient memory subsystem that dynamically

adapts to diverse computational workloads.

Implemented using Verilog HDL, the design

integrates four cache mapping strategies—

direct-mapped, 2-way, 4-way, and 8-way set-

associative—into a unified, parameterized

framework. Through a mode-selectable control

mechanism, the system can seamlessly switch

between cache configurations at runtime,

enabling targeted optimization for latency,

power, or hit rate based on application demands.

This adaptability ensures efficient resource

utilization, reduced power consumption by

disabling inactive cache modules, and improved

overall system responsiveness. The modular and

scalable nature of the design makses it well-

suited for FPGA-based platforms, embedded

systems, and academic or industrial research in

memory architecture. By combining runtime

reconfigurability with performance tuning

capabilities, the architecture supports the

development of intelligent, energy-aware cache

subsystems for next-generation computing

environments.

REFERENCES

[1]. K. Sundararajan, S. Ramesh, and P. Kumar,

"Implementation of a Reconfigurable Cache

Supporting Multiple Mapping Techniques

Using Verilog HDL," Journal of

Microelectronic Systems, vol. 12, no. 4, pp.

201–210, 2024.

[2]. C. Janraj and S. Natarajan, "Cache Sharing

via Reconfigurable Ways: A Verilog-Based

Architecture," International Journal of VLSI

Research, vol. 18, no. 2, pp. 67–75, 2024.

[3]. M. K. Reddy and A. Sinha, "Comparative

Study of Reconfigurable Cache Memory

Architectures," Advances in Computing and

Communication, vol. 14, no. 3, pp. 112–119,

2023.

[4]. R. Jeyaraman, "Reconfigurable Cache

Architecture Using Verilog HDL," Major

Technical Project Report, 2019.

[5]. S. Omran and I. A. Amory, "Design of

Reconfigurable Cache Memory Using

Verilog HDL," ResearchGate, 2018.

[6]. G. Kaur, "Implementation of Direct Mapped

and Set Associative Cache in Verilog HDL,"

ResearchGate, 2021.

[7]. P. K. Kadlimatti and U. B. V, "Performance

Optimized 4-Way Set Associative Cache

Controller Design," ResearchGate, 2023.

[8]. P. Chauan and R. Mittal, "FSM-Based

Cache Controller for 4-Way Set-Associative

Cache," International Journal of Computer

Applications, vol. 120, no. 17, pp. 25–30,

2015.

[9]. M. Rahman and T. Gupta, "FPGA

Implementation and Analysis of Various

Cache Mapping Techniques," Applied

Sciences, vol. 13, no. 7, p. 4092, 2022.

[10]. T. P. Stefanov, "Partitioned Shared

Cache in MPSoC Systems Using FPGA,"

Microprocessors and Microsystems, vol. 43,

pp. 89–96, 2016.

[11]. N. P. Jouppi, "Improving Direct-Mapped

Cache Performance by the Addition of a

Small Fully-Associative Cache and Prefetch

Buffers," WRL Technical Note TN-14,

1990.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 7, July : 2025

UGC CARE Group-1 (Peer Reviewed) 150

[12]. S. Panda, "A Generic Reconfigurable

Data Cache Architecture," M.S. thesis, Dept.

Comput. Sci., Univ. North Texas, 2010.

[13]. D. Lee and K. Seo, "Reuse-Aware Cache

Designs in FPGA Systems," Electronics,

vol. 10, no. 3, p. 444, 2021.

[14]. N. Salkhordeh, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau, "ReCA: A

Reconfigurable Cache Architecture for

Storage Systems," arXiv preprint,

arXiv:1805.06747, 2018.

[15]. A. Bates et al., "Configurable Cache

Structures for Embedded Applications,"

arXiv preprint, arXiv:1601.00894, 2016.

[16]. W. J. Tsai and J. C. Tsay, "Dynamic

Cache Analysis using Reuse Distance

Metrics," arXiv preprint, arXiv:2109.04614,

2021.

[17]. L. Papaphilippou et al., "Custom Cache

Design in RISC-V Cores for SIMD

Workloads," arXiv preprint,

arXiv:2106.07456, 2021.

[18]. "Optimization of Set Associative Cache

Controllers," International Journal for

Research in Applied Science & Engineering

Technology (IJRASET), vol. 11, no. 4, pp.

443–450, 2023.

