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ABSTRACT 

In the rapidly evolving landscape of integrated 

circuits, ensuring high reliability in memory 

systems is paramount. This study investigates 

the effectiveness of the March (5n) testing 

algorithm when integrated into a Memory Built-

In Self-Test (MBIST) framework. The March 

(5n) algorithm is specifically designed to 

enhance fault coverage for various memory fault 

types, including stuck-at and transition faults. 

The proposed MBIST architecture, which 

includes a Finite State Machine (FSM) 

controller, address generator, and data generator, 

automates the testing process, enabling efficient 

self-testing of memory devices. Experimental 

results demonstrate that the integration of the 

March (5n) algorithm significantly improves 

fault coverage and reduces testing time 

compared to conventional testing 

methodologies. This work underscores the 

critical role of innovative testing techniques in 

maintaining the reliability and performance of 

modern memory technologies. 
KEY WORDS: Data Compression, BAQ, Leach 

Protocol, WSNs. 

I. INTRODUCTION 

The rapid advancement of digital and embedded 

systems has intensified the need for dependable 

semiconductor memory. Memory 

components—particularly SRAMs and 

embedded arrays—are integral to the 

performance and reliability of processors, SoCs, 

and mobile systems. However, with shrinking 

technology nodes and increased integration 

density, memory reliability is increasingly 

challenged by manufacturing defects, aging 

effects, and environmental stressors [10]. These 

factors introduce faults such as stuck-at, 

transition, and coupling faults, potentially 

leading to data corruption and system failure. 

Consequently, comprehensive memory testing 

is vital during both fabrication and in-field 

operation. 

A. Memory Fault Models 

Memory testing begins with fault modelling, 

which provides a logical abstraction of 

physical defects. Single-cell faults—like 

Stuck-At Faults (SAFs), where cells are 

locked to logic ‘0’ or ‘1’—are typically 

detected by writing both logic levels and 

verifying correctness. Transition Faults 

(TFs), where a cell fails to change state (e.g., 

0→1), impact timing-sensitive operations 

and require sequential read/write actions for 

detection [1], [9]. Data Retention Faults 
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(DRFs) result from a cell’s inability to hold 

a value over time due to leakage or 

degradation and are identified using idle 

periods after write operations [8]. Stuck-

Open Faults (SOFs), caused by open 

circuits, produce undefined outputs and are 

more difficult to detect using conventional 

patterns [6]. 

B. Conventional Testing Techniques and 

Their Limitations 

Traditional memory testing methods rely 

on Automatic Test Equipment (ATE), 

which applies externally generated test 

vectors and monitors outputs. While 

ATEs provide flexibility and wide fault 

coverage, they are often costly, slow for 

large memories, and inadequate for at-

speed testing in embedded systems [4]. 

Additionally, limited pin access and 

complex routing in SoCs restrict external 

probing. Software-based diagnostics, 

executed by embedded processors, offer 

in-system testing but often lack 

sufficient fault coverage and real-time 

applicability. To overcome these 

limitations, Design-for-Testability (DfT) 

principles advocate for the integration of 

test capabilities within the chip. A 

prominent example is Built-In Self-Test 

(BIST), which allows on-chip generation 

and evaluation of test patterns. For 

memories, Memory BIST (MBIST) 

specifically targets efficient, 

autonomous, and at-speed fault detection 

in embedded arrays [2]. 

C. March Test Algorithms  

March algorithms, widely adopted in 

MBIST, are structured sequences of 

memory operations executed in 

ascending (↑) or descending (↓) address 

orders. These algorithms—including 

March C-, March A, and March B—

systematically detect SAFs, TFs, and 

coupling faults with varying coverage 

and complexity [5]. The March (5n) 

variant, used in this work, offers a 

balanced trade-off between fault 

coverage and hardware simplicity, 

making it suitable for high-reliability 

applications. 

II. LITERATURE SURVEY 

As integrated circuits continue to scale down in 

size and increase in complexity, embedded 

memories—particularly SRAMs—have become 

increasingly vulnerable to faults induced by 

manufacturing defects, aging, and process 

variations. Memory testing, therefore, plays a 

vital role in validating system reliability across 

all stages of design and deployment. Techniques 

for testing memories have evolved from 

traditional external test methods to more 

efficient built-in approaches that support 

automation and high fault coverage. 

Review on Memory Testing Techniques 

A. External Tester-Based Approaches 

The conventional method for memory 

validation involves Automatic Test 
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Equipment (ATE), which applies controlled 

test vectors and captures outputs to detect 

anomalies. ATE systems are versatile and 

capable of characterizing performance and 

timing, but they suffer from high cost, long 

test duration, and limited access to deeply 

embedded memory blocks in SoCs [10]. 

B. Built-In Self-Test (BIST) 

To address these limitations, Built-In Self-

Test (BIST) architectures were developed. 

BIST incorporates on-chip modules such as 

test controllers, address generators, data 

generators, and comparators, enabling the 

circuit to test itself autonomously. In 

memory-specific applications, MBIST 

(Memory BIST) has emerged as a preferred 

technique due to its low-cost scalability and 

ability to perform at-speed testing. MBIST 

significantly reduces dependency on 

external tools while enhancing test 

accessibility and time efficiency [4]. 

C. March Algorithms in Memory Testing 

March algorithms represent a class of 

systematic memory test methods that 

involve sequences of read/write operations 

in ascending or descending address orders. 

These algorithms are designed to expose a 

broad spectrum of fault types including 

stuck-at faults (SAFs), transition faults 

(TFs), and coupling faults (CFs) [10]. 

• March C- (“van de Goor” [11]) is a widely 

used algorithm performing six operations 

per memory cell, making it effective for 

detecting both static and dynamic faults. 

However, its longer test time limits its 

applicability in speed-critical systems. 

• March B (Hamdioui and van de Goor [7]) 

simplifies the test to five operations per cell, 

reducing test time while maintaining good 

SAF and TF coverage, though it is slightly 

less effective for coupling faults. 

• March Y (Renovell et al. [3]) is optimized 

for speed and resource efficiency with only 

four operations per cell, offering minimal 

fault coverage suitable for low-power 

applications. 

• March SS (Hamdioui [12]) extends fault 

detection to complex state-coupling faults 

using a six-operation scheme. Its broader 

coverage makes it ideal for safety-critical 

systems, albeit with increased hardware 

overhead. 

• March LA (Wang and Gupta [5]) departs 

from linear address progression, targeting 

address decoder faults through dynamic 

linking of test addresses. While highly 

effective for decoder-related faults, its 

complexity poses challenges in MBIST 

design. 

• March (5n) (Paschalis and Gizopoulos [6]) 

offers a well-balanced solution with five 

operations per cell, delivering strong 

detection capability across SAFs, TFs, and 

CFs with reduced complexity. Its 

deterministic flow and efficiency make it 
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suitable for FSM-based MBIST 

architectures in embedded environments. 

III. PROPOSED METHODOLOGY 

As embedded memories dominate the silicon 

area of modern integrated circuits, ensuring their 

reliability is essential for system correctness. 

Traditional memory test techniques, especially 

those relying on external Automatic Test 

Equipment (ATE), are often cost-prohibitive, 

time-intensive, and lack the granularity needed 

for testing deeply embedded memory 

components. To address these limitations, this 

work employs a Memory Built-In Self-Test 

(MBIST) framework driven by the March (5n) 

algorithm—known for its efficiency and high 

fault coverage. The proposed methodology 

encompasses memory fault modelling, modular 

MBIST architecture development, algorithm 

implementation using Verilog HDL, and 

validation through simulation and fault injection 

analysis. 

A. Memory Fault Modelling 

Effective memory testing begins with 

accurate modelling of potential fault types. 

Key fault classes considered include: 

• Stuck-at Faults (SAFs): Permanent 

logic errors where a cell is fixed at '0' or 

'1'. 

• Transition Faults (TFs): Failure in 

switching states (0→1 or 1→0). 

• Coupling Faults (CFs): Logical 

interference between neighbouring 

cells. 

• Address Decoder Faults (ADFs): 

Errors resulting from faulty or aliased 

address lines. 

These fault models serve as a benchmark 

for evaluating the coverage capabilities of 

the March (5n) test. Fault conditions are 

introduced in the memory model to validate 

the algorithm's effectiveness during 

simulation. 

B. MBIST Architecture Design Using March 

(5n) 

The MBIST system integrates a structured 

set of hardware components that coordinate 

test operations autonomously, without 

external control as shown in Figure 1. The 

architecture is built around six key modules: 

 

Figure 1. Architecture design of March (5n) 

• Finite State Machine (FSM) 

Controller: The Finite State Machine 

(FSM) functions as the control core of 

the MBIST system, directing the 

execution of the March (5n) algorithm 

through a well-defined sequence of 

states. Figure 2 represents the state 

diagram of FSM controller. It manages 

operations such as writing ‘0’, reading 
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‘0’, writing ‘1’, and their execution in 

both ascending and descending memory 

address orders. The FSM begins in the 

IDLE state, awaiting the activation 

signal. Once triggered, it transitions 

through states including W0_ASC (write 

‘0’ in ascending order), R0W1_ASC 

(read ‘0’ and write ‘1’ in ascending 

order), R1W0_DESC (read ‘1’ and write 

‘0’ in descending order), R0_ASC (read 

‘0’ in ascending order), and R0_DESC 

(read ‘0’ in descending order), 

concluding with the DONE state, which 

signals test completion. Each state 

activates specific control signals for 

modules such as the address generator, 

data generator, and comparator to 

perform the required operation.  

 
Figure 2. State diagram of FSM controller. 

The FSM logic is implemented using a 

case construct in Verilog HDL, and 

transitions are synchronized with the 

system clock. Additionally, optional 

clock gating is employed to disable 

inactive modules during non-operational 

states, enhancing power efficiency. 

• Address Generator: A bidirectional 

counter generates memory addresses in 

ascending and descending order, as 

required by the March (5n) test phases. 

The counter is parameterizable for 

different memory sizes and ensures full 

address coverage through direction 

control and wrap-around logic. 

• Data Generator: This block supplies 

static logic values ('0' and '1') during 

write operations. Controlled by FSM 

signals, it ensures correct data is applied 

for each test phase. While basic in 

design, the generator can be extended to 

support pseudorandom patterns for 

enhanced fault stimulation. 

• Comparator Module: The comparator 

monitors memory read outputs and 

checks for mismatches against expected 

values. If a discrepancy is detected, a 

fault flag is raised. Operating 

synchronously with the system clock, 

the comparator is essential for 

identifying both permanent and transient 

memory faults during read cycles. 
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IV. IMPLEMENTATION OF MARCH (5N) 

The March (5n) algorithm is a lightweight yet 

effective memory testing technique widely 

adopted in MBIST frameworks due to its 

balance between fault coverage and test 

complexity. It performs five specific memory 

operations across all addresses in both ascending 

and descending orders, enabling detection of 

stuck-at, transition, and coupling faults with 

reduced hardware overhead. 

A. March (5n) Test Elements: 

• ↑(w0): Write logic ‘0’ to all addresses in 

ascending order. 

• ↑ (r0, w1): Read ‘0’, then write ‘1’ in 

ascending order. 

• ↓ (r1, w0): Read ‘1’, then write ‘0’ in 

descending order. 

• ↑ (r0): Read ‘0’ in ascending order. 

• ↓ (r0): Read ‘0’ in descending order. 

B. Step-wise Working: 

• Initialization: 

o MBIST enters IDLE state. 

o Resets memory, FSM, address 

counter, and fault flags. 

o Test begins when start_bist = 1. 

 

• Step 1 – ↑(w0): 

o FSM moves to W0_ASC. 

o All memory locations are 

sequentially written with ‘0’. 

o Example: MEM [0] = 0, MEM [1] = 

0, ..., MEM [N] = 0. 

• Step 2 – ↑ (r0, w1): 

o FSM transitions to R0W1_ASC. 

o Each address is read and compared 

with expected ‘0’, then overwritten 

with ‘1’. 

o Fault is flagged if mismatch occurs. 

• Step 3 – ↓ (r1, w0): 

o FSM enters R1W0_DESC. 

o Reverse traversal; read ‘1’ and write 

back ‘0’. 

o Confirms previous write success and 

checks for transition faults. 

• Step 4 – ↑ (r0): 

o FSM moves to R0_ASC. 

o Ascending pass to read and verify all 

cells are reset to ‘0’. 

• Step 5 – ↓ (r0): 

o FSM enters R0_DESC. 

o Final descending read pass ensures 

fault coverage in reverse order. 

• Completion: 

o FSM moves to DONE. 

o done = 1 and fail = 1 if faults 

detected, with address stored. 

o Ensures the test cycle is complete 

and results are ready for logging or 

debugging. 

This structured approach highlights each 

operational phase of the March (5n) algorithm 

while emphasizing the role of FSM in 

sequencing, control signal activation, and fault 

flagging. It suits journal formatting where 

clarity, technical correctness, and brevity are 

essential. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 7, July : 2025 
 

UGC CARE Group-1 (Peer Reviewed)                                                                               116 

V. RESULTS: 

The simulation waveform illustrated in Figure 3, 

4, 5, presents a successful execution of the 

March (5n) test algorithm on a memory block 

using the proposed MBIST architecture. The 

timing diagram confirms that each module—

FSM controller, address generator, data 

generator, and comparator—functions in 

synchronization, achieving the test goals. 

 
Figure 3.  Simulation Result-1 

 
Figure. 4 Simulation Results-2 

 
Figure. 5 Simulation Result-3  
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VI. CONCLUSION 

In conclusion, the integration of the March (5n) 

algorithm within a modular MBIST framework 

offers a robust and cost-effective solution for 

embedded memory testing in modern SoCs. The 

architecture—comprising an FSM controller, 

bidirectional address generator, data generator, 

and comparator—executes structured test 

sequences that effectively identify stuck-at and 

transition faults. Simulation results validate 

functional correctness and demonstrate reliable 

fault detection through synchronous read/write 

operations and status signalling. The design 

minimizes hardware overhead while 

maximizing test coverage, making it scalable 

and reusable for various memory configurations 

without reliance on external testers. 

VII. FUTURE SCOPE 

Despite its proven efficiency, the proposed 

MBIST design offers scope for further 

enhancement: 

• Expanded Fault Detection: Future 

iterations can include support for complex 

fault types like bridging, retention, and 

coupling faults through algorithm extensions 

or hybrid techniques. 

• Built-In Repair (BIRA): Incorporating 

redundancy and self-repair logic can 

enhance memory reliability and yield. 

• Low-Power Optimization: Techniques like 

clock gating can reduce power consumption, 

beneficial for battery-operated and IoT 

applications. 

• Hardware Validation: Implementation on 

FPGAs or ASICs with full DFT support 

would enable real-world deployment. 

• Multi-Port Memory Support: Adapting 

the design for multi-bank or dual-port 

memories addresses the needs of high-

performance applications. 

• Standards Integration: Compliance with 

IEEE 1149.1 (JTAG) or IEEE 1500 can 

improve interoperability with industry test 

infrastructures. 
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