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Abstract: In embedded system design, serial 

communication protocols such as SPI (Serial 

Peripheral Interface) and I2C (Inter-Integrated 

Circuit) are commonly employed to connect various 

peripheral devices. However, direct communication 

between components using different protocols is 

problematic due to their inherent incompatibility. This 

work introduces the development of a hardware- based 

protocol converter designed in Verilog HDL to bridge 

SPI and I2C communication. The proposed system 

captures data from an SPI master and reformats it to 

be compatible with I2C slave devices, allowing 

efficient interaction across protocol boundaries. The 

architecture consists of an SPI slave interface, an I2C 

master interface, and a control logic unit that 

manages data handling and ensures proper timing 

coordination. The entire design was synthesized and 

functionally verified on an FPGA platform to ensure 

accuracy and timing reliability. This converter offers 

a reliable and cost-efficient hardware solution for 

integrating mixed-protocol peripherals in VLSI-based 

embedded systems. 
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I. INTRODUCTION 

 
Embedded systems play a critical role in modern 

electronics, powering everything from consumer 

gadgets to industrial automation solutions. These 

systems rely heavily on communication protocols to 

facilitate data exchange between microcontrollers and 

peripheral devices. Among the most widely used 

protocols in this domain are SPI (Serial Peripheral 

Interface) and I2C (Inter-Integrated Circuit), both 

known  for  their  simplicity,  efficiency,  and 

effectiveness in short-distance, intra-board 

communication. Despite their popularity, SPI and I2C 

are fundamentally different in their architectures and 

operation. SPI is a full-duplex, master-slave 

communication protocol that utilizes separate lines for 

data transmission and reception, offering high-speed 

data transfer. In contrast, I2C is a half-duplex, multi- 

master protocol that operates over two lines: a serial 

data line (SDA) and a serial clock line (SCL), 

supporting multiple devices on the same bus through 

addressing. This difference in design creates a 

significant challenge when a system requires 

communication between components using these two 

incompatible protocols. Integrating devices that use 

SPI and I2C without a proper interface can lead to data 

corruption, timing issues, and overall system 

instability. Therefore, there is a growing need for a 

mechanism that can enable seamless communication 

between SPI and I2C devices in mixed-protocol 

environments. 

 
To overcome this interoperability issue, a protocol 

converter becomes essential. A protocol converter 

functions as a bridge between two different 

communication standards, translating the format and 

timing of one protocol into that of another. In this 

context, a converter that can receive data from an SPI 

master and relay it accurately to an I2C slave offers a 

highly practical solution in embedded system design. 

This project aims to design and implement such a 

converter using Verilog Hardware Description 

Language (HDL), which is a standard tool in VLSI and 

digital design. Verilog allows for precise control over 

hardware behavior at the register-transfer level, 

making it an ideal choice for implementing custom 

digital circuits like protocol converters.The proposed 

converter is developed by creating separate functional 

modules for SPI and I2C within a single design 
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framework. The SPI slave module captures data from 

an external SPI master device. This data is temporarily 

stored in internal registers or buffers before being 

forwarded by the I2C master module to an I2C- 

compliant peripheral. A central control unit is 

responsible for managing the timing and control 

signals that ensure correct sequencing of data capture, 

conversion, and transmission. This control logic is 

critical because SPI and I2C operate with different 

timing models and data formats. The converter must 

not only translate the data but also synchronize the 

operations across two distinct clock domains. Data 

integrity is a crucial aspect of the converter's design. 

To maintain reliability, the system incorporates error- 

checking mechanisms and adheres to the timing 

constraints specified in both SPI and I2C protocols. 

This ensures that communication is accurate and 

consistent across various operating conditions. 

 
To verify the functionality of the protocol converter, 

the design is synthesized and simulated using FPGA 

development tools. Simulation provides insights into 

the timing behavior and logic correctness, allowing 

designers to catch potential errors before hardware 

implementation. The FPGA environment also serves 

as a platform for real-time testing and debugging. 

Once verified in simulation, the design is implemented 

on a physical FPGA board. Hardware-level testing 

includes sending known data sequences from an SPI 

master to the converter and confirming the correct 

reception by the I2C slave. Timing analyzers and logic 

probes help validate that data transfer occurs without 

glitches or violations. 

 
II. RELATED WORKS 

 
B. Jose and J. S. Immanuel, "Design of BIST(Built- 

In-SelfTest)Embedded Master-Slave communication 

using SPI Protocol," 2021 3rd International 

Conference on Signal Processing and 

Communication (ICPSC), Coimbatore, India, 2021, 

pp. 581-585 

Focuses on developing a system that integrates a built- 

in self-test mechanism within a master-slave 

communication framework based on the SPI (Serial 

Peripheral Interface) protocol. The design aims to 

enhance the reliability and fault detection capabilities 

of SPI-based communication by embedding self- 

testing features that can automatically verify the 

functionality of the communication interface without 

external testing equipment. This approach improves 

system robustness and reduces maintenance overhead, 

making it suitable for applications requiring 

dependable data exchange in embedded systems. 

 
D. Trivedi, A. Khade, K. Jain and R. Jadhav, "SPI to 

I2C Protocol Conversion Using Verilog," 2018 

Fourth International Conference on Computing 

Communication Control and Automation 

(ICCUBEA), Pune, India, 2018, pp. 1-4 

The SPI to I2C Protocol Conversion using Verilog 

project successfully implements a digital bridge that 

enables communication between SPI and I2C devices 

by translating the differing protocols at the hardware 

level. Utilizing Verilog HDL, the design manages the 

distinct signaling, timing, and control requirements of 

both interfaces, ensuring accurate and synchronized 

data exchange. This conversion facilitates 

interoperability in systems where components with 

different communication standards need to interface, 

enhancing flexibility and integration in embedded 

system designs. The result is a reliable and efficient 

protocol converter suitable for FPGA or ASIC 

implementation. 

S. Mehrotra and N. Charaya, “Design of I2C Single 

Master Using Verilog,” in International Journal of 

Science and Research, vol. 4, no. 1, pp. 1897-1900, 

Jan. 2015 

The design of an I2C Single Master using Verilog 

successfully creates a hardware implementation of the 

I2C communication protocol with a single master 

device controlling the data flow. The Verilog-based 

design manages the essential I2C features such as start 

and stop conditions, address recognition, data 

read/write operations, and clock synchronization on 

the shared bus. This implementation enables reliable 

communication with multiple slave devices on the bus 

while maintaining proper timing and protocol 

compliance. The outcome is an efficient, reusable 

module suitable for integration into larger digital 

systems requiring I2C master functionality 

 

 
L. M. Kappaganthu, M. D. Prakash and A. Yadlapati, 

"I2C protocol and its clock stretching verification 

using system verilog and UVM," 2017 International 

Conference on Inventive Communication and 

Computational Technologies (ICICCT), 

Coimbatore, India, 2017, pp. 478-480 



 

The design of an I2C Single Master using Verilog 

successfully creates a hardware implementation of the 

I2C communication protocol with a single master 

device controlling the data flow. The Verilog-based 

design manages the essential I2C features such as start 

and stop conditions, address recognition, data 

read/write operations, and clock synchronization on 

the shared bus. This implementation enables reliable 

communication with multiple slave devices on the bus 

while maintaining proper timing and protocol 

compliance. The outcome is an efficient, reusable 

module suitable for integration into larger digital 

systems requiring I2C master functionality. 

 
L. Li, Y. Wang, X. Chen and X. Ren, "Research on 

Improvement of Configurable I2C controller IP 

Core," 2023 IEEE International Conference on 

Control, Electronics and Computer Technology 

(ICCECT), Jilin, China, 2023, pp. 484-489 

 
The research focuses on enhancing the performance 

and flexibility of a configurable I2C controller IP core 

by optimizing its architecture and adding advanced 

features such as dynamic clock control, multi-master 

support, and error detection mechanisms. Through 

improved configurability, the controller can adapt to a 

wide range of system requirements, making it suitable 

for diverse embedded applications. The upgraded IP 

core not only supports standard I2C operations but also 

allows developers to adjust parameters like data rate 

and addressing modes, improving integration 

efficiency and resource utilization in FPGA or ASIC 

designs. The outcome is a more versatile and robust 

I2C controller that meets the evolving demands of 

modern communication systems. 

 
III. EXISTING METHOD 

 
In hardware system design, interfacing different 

communication protocols is a common requirement. A 

typical example involves integrating SPI (Serial 

Peripheral Interface) with I2C (Inter-Integrated 

Circuit), which are widely used for short-distance data 

exchange between microcontrollers and peripherals. In 

most Verilog-based designs, this integration is realized 

by combining two separate protocol modules: an SPI 

slave and an I2C master. These modules are 

coordinated by a centralized controller that manages 

the transition and flow of data between them. The SPI 

module functions as the input channel in this 

architecture. It receives commands or data from an 

external SPI master using standardized lines such as 

SCLK, MOSI, MISO, and SS. 

 

 
 

Fig.1: SPI (master and slave) protocol block diagram 

 
As the SPI slave captures serial data bit-by-bit, it 

employs a shift register to sequentially store the 

incoming data. Once a complete byte or word is 

received, it is converted into a parallel format for 

further processing. This converted data is usually 

stored in a register or buffer, allowing temporary 

retention before it is forwarded to the I2C module. 

This intermediate storage is crucial for maintaining 

data integrity, especially when dealing with protocol 

speed mismatches. The handoff between the SPI and 

I2C modules is managed by control logic, which is 

often implemented as a finite state machine (FSM). 

The FSM monitors flags or signals from the SPI 

module and triggers appropriate sequences for I2C 

transmission. When the control unit detects that valid 

data has been received from SPI, it prepares the I2C 

master to initiate communication. The FSM generates 

control signals for start conditions, addressing, and 

data transmission according to the I2C protocol. 

 
The I2C module begins the transfer by sending a start 

condition, followed by the slave address and a 

read/write bit. This is done using the SDA (data) and 

SCL (clock) lines, which are open-drain and require 

synchronization. Since SPI uses separate lines for data 

in and out and operates at higher frequencies, while 

I2C uses a shared, slower bus, the two protocols differ 

significantly in timing characteristics. Careful 

synchronization is necessary to avoid data corruption. 

 
Timing issues are handled by introducing buffering 

and control mechanisms. These may include wait 

states or ready flags that ensure each module only 

proceeds when the other is prepared, especially when 

data arrives faster than it can be sent out. FIFO (First- 

In, First-Out) buffers are commonly used between SPI 

and I2C components. These allow continuous SPI data 

reception while the I2C bus is busy transmitting earlier 

data, preventing overflows and ensuring seamless 

operation. These FIFO structures act as timing 

equalizers and decouplers between the two protocols, 



 
bridging the speed gap and allowing each protocol to 

operate at its optimal rate without causing delays or 

loss. Error handling is generally basic in such systems. 

While the I2C protocol includes an ACK/NACK 

mechanism to confirm successful data reception, SPI 

assumes successful communication unless custom 

error detection logic is added. For enhanced reliability, 

some implementations may incorporate basic status 

flags or error indicators that are monitored by the 

control logic. However, full-fledged error correction 

techniques are rare in basic SPI-to-I2C bridges. 

 
The entire system is typically designed using Verilog 

HDL (Hardware Description Language). This allows 

designers to define precise timing, logic behaviour, 

and signal interactions at the register-transfer level 

(RTL).Before physical implementation, simulation is 

conducted using tools such as Xilinx Vivado or 

ModelSim. These simulations validate the logic flow, 

timing constraints, and data integrity across all 

protocol layers. After successful simulation and 

synthesis, the design is deployed onto a target FPGA 

board. This allows real-time verification of the 

interface’s behaviour and provides an opportunity to 

test various edge cases in hardware. Developers often 

include debug registers or test modes in the Verilog 

design, which aid in diagnosing problems during 

hardware testing. These may include loopback tests or 

status outputs to observe system performance. Power 

and resource usage are also considered, especially 

when the SPI-I2C Bridge is implemented in embedded 

systems or IoT devices. Lightweight design and low 

clock domains are favoured to reduce overhead. 

 
IV. PROPOSED METHOD: 

 

 
 

 

Fig: 2. PROPOSED BLOCK DIAGRAM 

 
The proposed architecture offers a dynamic and 

customizable solution for converting SPI input into 

I2C  output  using  Verilog  hardware  description 

language. This system emphasizes flexibility, making 

it suitable for embedded applications with varying 

protocol requirements. Unlike rigid, fixed-function 

converters, this design introduces parameters that 

allow developers to adapt the system to different data 

widths, clock speeds, and I2C addressing schemes. 

This results in a more scalable and reusable 

communication bridge. At its core, the architecture is 

modular and broken down into four essential 

components: an SPI slave unit, an I2C master unit, a 

control unit based on a finite state machine (FSM), and 

a data buffer that connects the two. Each of these 

modules is written to support parameterization, so 

users can change features during synthesis or runtime 

through control registers. This gives significant 

flexibility during integration into different systems. 

The SPI slave component receives serial data from an 

SPI master. It is designed to be highly configurable, 

accepting 8-bit, 16-bit, or wider data words based on 

the defined data width parameter N.A shift register 

captures the incoming bits serially, with its length 

determined by the value of N. When the specified 

number of bits is received, the shift register’s content 

is moved to a parallel data buffer. A signal is generated 

internally to indicate that a complete data word has 

been received. This triggers the control unit to prepare 

for data transmission to the I2C bus. The SPI interface 

also monitors the Slave Select (SS) signal to recognize 

when a new transmission is about to start. It resets its 

internal state and readies itself to receive data 

accordingly. 

 
Additionally, built-in validation logic within the SPI 

module ensures proper clocking and data alignment. It 

checks for invalid clock sequences or incomplete 

transmissions and flags any detected issues. Once data 

is safely captured, it is stored temporarily in a register 

or FIFO buffer. This buffer plays a crucial role in 

isolating the SPI and I2C modules, which typically 

operate at different speeds. The FSM-based controller 

manages the transition from SPI reception to I2C 

transmission. It shifts between states like idle, receive, 

prepare, transmit, wait for ACK, and error handling. 

Before initiating I2C transmission, the FSM processes 

the data to fit the I2C protocol format. This includes 

breaking the N-bit SPI data into 8-bit chunks, if 

necessary. 

 
A 7-bit slave address and a control bit (read or write) 

are appended to structure the I2C packet properly. 

These values are programmable to support different 

I2C peripherals. The I2C master unit in this design is 

not hardcoded but programmable. A prescaler inside it 

controls the I2C clock (SCL), supporting various 

standard modes like 100 kHz and 400 kHz. The I2C 



 
communication starts with a START condition, which 

signals the bus is busy and prevents other devices from 

transmitting. The slave address is sent out first, 

followed by the data chunks one by one. Each chunk 

is placed on the SDA line in synchronization with the 

SCL line. After each 8-bit segment, the system checks 

for an acknowledgment (ACK) from the targeted I2C 

device. This ensures the device is responding and 

accepting data. 

 
If no ACK is received, the FSM enters a separate state 

to handle this failure. Depending on configuration, it 

can retry the transmission or raise an error interrupt to 

the system. After all data chunks are successfully 

acknowledged, the I2C controller issues a STOP 

condition, releasing the bus for other devices. The 

FSM transitions back to the idle state, completing the 

cycle and waiting for the next SPI command to arrive. 

Due to the asynchronous nature of SPI and I2C, a 

timing bridge is required. This is usually implemented 

using a FIFO buffer that operates on two different 

clocks. The FIFO helps maintain a steady flow of data 

and prevents loss due to mismatches in transmission 

rates. It acts as a safeguard for timing and 

synchronization. Developers can configure protocol 

parameters like SPI clock polarity (CPOL), clock 

phase (CPHA), and I2C timing through either Verilog 

parameters or mapped control registers. The system 

can be expanded to support repeated START 

conditions in I2C. This allows the master to 

communicate with multiple devices on the same bus 

without issuing a STOP in between. 

 
Using repeated START improves efficiency, 

especially in sensor-dense environments where data 

must be fetched from multiple nodes quickly. Fault 

resilience is enhanced through built-in detection flags 

for errors such as framing issues, ACK failures, or 

buffer overflows. The control unit responds 

appropriately to each scenario. To validate the design, 

a comprehensive test bench is constructed. It simulates 

SPI transmissions and observes the corresponding I2C 

outputs under various conditions. The simulation 

environment checks boundary conditions, such as 

maximum data width handling, edge cases like missed 

ACKs, and invalid clock behaviour. The FSM's 

behaviour is also verified to ensure all state transitions 

are accurate and all outputs are correctly timed relative 

to the clock domains. 

 
Ultimately, this modular, parameterized protocol 

bridge provides an efficient and robust method of 

converting SPI data into I2C communication streams 

in real-time, making it suitable for a wide range of 

digital systems and applications. 

V. RESULTS: 

 
Simulation waveform: 

 

Fig:2. Simulation waveform spi to i2c 
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Fig13: POWER 

 

 
VI. CONCLUSION: 

 
The custom-designed N-bit SPI to I2C protocol 

converter, developed using Verilog, effectively 

connects two popular communication interfaces. Its 

support for variable data widths and precise handling 

of timing and control signals specific to each protocol 

ensures seamless and dependable data transfer. 

Implemented directly in hardware, the design delivers 

low-latency performance while minimizing resource 

usage, making it well-suited for FPGA-based systems. 

This converter improves compatibility across devices, 

eliminates the need for extra interfacing components, 

and offers a scalable solution tailored for a wide range 

of embedded system applications. In essence, the 

project presents a robust and efficient method for 

enabling communication between SPI and I2C 

environments. 
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