

Design and Implementation of a Configurable N-bit SPI to

I2C Protocol Converter using Verilog
1KONINTI PRAVEENA, 2T. MOHAN DAS,

1M. Tech, VLSI System Design, Student, Department of ECE,

Email: praveenakoninti@gmail.com,

2Assistant Professor(C), Department of ECE, Email: mohandas.nitdgp@gmail.com,

JNTUH University College of Engineering Sultanpur, Sangareddy, Telangana, India

Abstract: In embedded system design, serial

communication protocols such as SPI (Serial

Peripheral Interface) and I2C (Inter-Integrated

Circuit) are commonly employed to connect various

peripheral devices. However, direct communication

between components using different protocols is

problematic due to their inherent incompatibility. This

work introduces the development of a hardware- based

protocol converter designed in Verilog HDL to bridge

SPI and I2C communication. The proposed system

captures data from an SPI master and reformats it to

be compatible with I2C slave devices, allowing

efficient interaction across protocol boundaries. The

architecture consists of an SPI slave interface, an I2C

master interface, and a control logic unit that

manages data handling and ensures proper timing

coordination. The entire design was synthesized and

functionally verified on an FPGA platform to ensure

accuracy and timing reliability. This converter offers

a reliable and cost-efficient hardware solution for

integrating mixed-protocol peripherals in VLSI-based

embedded systems.

Keywords: SPI, I2C, Verilog, Protocol, Vivado.

I. INTRODUCTION

Embedded systems play a critical role in modern

electronics, powering everything from consumer

gadgets to industrial automation solutions. These

systems rely heavily on communication protocols to

facilitate data exchange between microcontrollers and

peripheral devices. Among the most widely used

protocols in this domain are SPI (Serial Peripheral

Interface) and I2C (Inter-Integrated Circuit), both

known for their simplicity, efficiency, and

effectiveness in short-distance, intra-board

communication. Despite their popularity, SPI and I2C

are fundamentally different in their architectures and

operation. SPI is a full-duplex, master-slave

communication protocol that utilizes separate lines for

data transmission and reception, offering high-speed

data transfer. In contrast, I2C is a half-duplex, multi-

master protocol that operates over two lines: a serial

data line (SDA) and a serial clock line (SCL),

supporting multiple devices on the same bus through

addressing. This difference in design creates a

significant challenge when a system requires

communication between components using these two

incompatible protocols. Integrating devices that use

SPI and I2C without a proper interface can lead to data

corruption, timing issues, and overall system

instability. Therefore, there is a growing need for a

mechanism that can enable seamless communication

between SPI and I2C devices in mixed-protocol

environments.

To overcome this interoperability issue, a protocol

converter becomes essential. A protocol converter

functions as a bridge between two different

communication standards, translating the format and

timing of one protocol into that of another. In this

context, a converter that can receive data from an SPI

master and relay it accurately to an I2C slave offers a

highly practical solution in embedded system design.

This project aims to design and implement such a

converter using Verilog Hardware Description

Language (HDL), which is a standard tool in VLSI and

digital design. Verilog allows for precise control over

hardware behavior at the register-transfer level,

making it an ideal choice for implementing custom

digital circuits like protocol converters.The proposed

converter is developed by creating separate functional

modules for SPI and I2C within a single design

mailto:singarapusiddhartha@gmail.com
mailto:mohandas.nitdgp@gmail.com
Gireesh
Typewritten text
94-99

framework. The SPI slave module captures data from

an external SPI master device. This data is temporarily

stored in internal registers or buffers before being

forwarded by the I2C master module to an I2C-

compliant peripheral. A central control unit is

responsible for managing the timing and control

signals that ensure correct sequencing of data capture,

conversion, and transmission. This control logic is

critical because SPI and I2C operate with different

timing models and data formats. The converter must

not only translate the data but also synchronize the

operations across two distinct clock domains. Data

integrity is a crucial aspect of the converter's design.

To maintain reliability, the system incorporates error-

checking mechanisms and adheres to the timing

constraints specified in both SPI and I2C protocols.

This ensures that communication is accurate and

consistent across various operating conditions.

To verify the functionality of the protocol converter,

the design is synthesized and simulated using FPGA

development tools. Simulation provides insights into

the timing behavior and logic correctness, allowing

designers to catch potential errors before hardware

implementation. The FPGA environment also serves

as a platform for real-time testing and debugging.

Once verified in simulation, the design is implemented

on a physical FPGA board. Hardware-level testing

includes sending known data sequences from an SPI

master to the converter and confirming the correct

reception by the I2C slave. Timing analyzers and logic

probes help validate that data transfer occurs without

glitches or violations.

II. RELATED WORKS

B. Jose and J. S. Immanuel, "Design of BIST(Built-

In-SelfTest)Embedded Master-Slave communication

using SPI Protocol," 2021 3rd International

Conference on Signal Processing and

Communication (ICPSC), Coimbatore, India, 2021,

pp. 581-585

Focuses on developing a system that integrates a built-

in self-test mechanism within a master-slave

communication framework based on the SPI (Serial

Peripheral Interface) protocol. The design aims to

enhance the reliability and fault detection capabilities

of SPI-based communication by embedding self-

testing features that can automatically verify the

functionality of the communication interface without

external testing equipment. This approach improves

system robustness and reduces maintenance overhead,

making it suitable for applications requiring

dependable data exchange in embedded systems.

D. Trivedi, A. Khade, K. Jain and R. Jadhav, "SPI to

I2C Protocol Conversion Using Verilog," 2018

Fourth International Conference on Computing

Communication Control and Automation

(ICCUBEA), Pune, India, 2018, pp. 1-4

The SPI to I2C Protocol Conversion using Verilog

project successfully implements a digital bridge that

enables communication between SPI and I2C devices

by translating the differing protocols at the hardware

level. Utilizing Verilog HDL, the design manages the

distinct signaling, timing, and control requirements of

both interfaces, ensuring accurate and synchronized

data exchange. This conversion facilitates

interoperability in systems where components with

different communication standards need to interface,

enhancing flexibility and integration in embedded

system designs. The result is a reliable and efficient

protocol converter suitable for FPGA or ASIC

implementation.

S. Mehrotra and N. Charaya, “Design of I2C Single

Master Using Verilog,” in International Journal of

Science and Research, vol. 4, no. 1, pp. 1897-1900,

Jan. 2015

The design of an I2C Single Master using Verilog

successfully creates a hardware implementation of the

I2C communication protocol with a single master

device controlling the data flow. The Verilog-based

design manages the essential I2C features such as start

and stop conditions, address recognition, data

read/write operations, and clock synchronization on

the shared bus. This implementation enables reliable

communication with multiple slave devices on the bus

while maintaining proper timing and protocol

compliance. The outcome is an efficient, reusable

module suitable for integration into larger digital

systems requiring I2C master functionality

L. M. Kappaganthu, M. D. Prakash and A. Yadlapati,

"I2C protocol and its clock stretching verification

using system verilog and UVM," 2017 International

Conference on Inventive Communication and

Computational Technologies (ICICCT),

Coimbatore, India, 2017, pp. 478-480

The design of an I2C Single Master using Verilog

successfully creates a hardware implementation of the

I2C communication protocol with a single master

device controlling the data flow. The Verilog-based

design manages the essential I2C features such as start

and stop conditions, address recognition, data

read/write operations, and clock synchronization on

the shared bus. This implementation enables reliable

communication with multiple slave devices on the bus

while maintaining proper timing and protocol

compliance. The outcome is an efficient, reusable

module suitable for integration into larger digital

systems requiring I2C master functionality.

L. Li, Y. Wang, X. Chen and X. Ren, "Research on

Improvement of Configurable I2C controller IP

Core," 2023 IEEE International Conference on

Control, Electronics and Computer Technology

(ICCECT), Jilin, China, 2023, pp. 484-489

The research focuses on enhancing the performance

and flexibility of a configurable I2C controller IP core

by optimizing its architecture and adding advanced

features such as dynamic clock control, multi-master

support, and error detection mechanisms. Through

improved configurability, the controller can adapt to a

wide range of system requirements, making it suitable

for diverse embedded applications. The upgraded IP

core not only supports standard I2C operations but also

allows developers to adjust parameters like data rate

and addressing modes, improving integration

efficiency and resource utilization in FPGA or ASIC

designs. The outcome is a more versatile and robust

I2C controller that meets the evolving demands of

modern communication systems.

III. EXISTING METHOD

In hardware system design, interfacing different

communication protocols is a common requirement. A

typical example involves integrating SPI (Serial

Peripheral Interface) with I2C (Inter-Integrated

Circuit), which are widely used for short-distance data

exchange between microcontrollers and peripherals. In

most Verilog-based designs, this integration is realized

by combining two separate protocol modules: an SPI

slave and an I2C master. These modules are

coordinated by a centralized controller that manages

the transition and flow of data between them. The SPI

module functions as the input channel in this

architecture. It receives commands or data from an

external SPI master using standardized lines such as

SCLK, MOSI, MISO, and SS.

Fig.1: SPI (master and slave) protocol block diagram

As the SPI slave captures serial data bit-by-bit, it

employs a shift register to sequentially store the

incoming data. Once a complete byte or word is

received, it is converted into a parallel format for

further processing. This converted data is usually

stored in a register or buffer, allowing temporary

retention before it is forwarded to the I2C module.

This intermediate storage is crucial for maintaining

data integrity, especially when dealing with protocol

speed mismatches. The handoff between the SPI and

I2C modules is managed by control logic, which is

often implemented as a finite state machine (FSM).

The FSM monitors flags or signals from the SPI

module and triggers appropriate sequences for I2C

transmission. When the control unit detects that valid

data has been received from SPI, it prepares the I2C

master to initiate communication. The FSM generates

control signals for start conditions, addressing, and

data transmission according to the I2C protocol.

The I2C module begins the transfer by sending a start

condition, followed by the slave address and a

read/write bit. This is done using the SDA (data) and

SCL (clock) lines, which are open-drain and require

synchronization. Since SPI uses separate lines for data

in and out and operates at higher frequencies, while

I2C uses a shared, slower bus, the two protocols differ

significantly in timing characteristics. Careful

synchronization is necessary to avoid data corruption.

Timing issues are handled by introducing buffering

and control mechanisms. These may include wait

states or ready flags that ensure each module only

proceeds when the other is prepared, especially when

data arrives faster than it can be sent out. FIFO (First-

In, First-Out) buffers are commonly used between SPI

and I2C components. These allow continuous SPI data

reception while the I2C bus is busy transmitting earlier

data, preventing overflows and ensuring seamless

operation. These FIFO structures act as timing

equalizers and decouplers between the two protocols,

bridging the speed gap and allowing each protocol to

operate at its optimal rate without causing delays or

loss. Error handling is generally basic in such systems.

While the I2C protocol includes an ACK/NACK

mechanism to confirm successful data reception, SPI

assumes successful communication unless custom

error detection logic is added. For enhanced reliability,

some implementations may incorporate basic status

flags or error indicators that are monitored by the

control logic. However, full-fledged error correction

techniques are rare in basic SPI-to-I2C bridges.

The entire system is typically designed using Verilog

HDL (Hardware Description Language). This allows

designers to define precise timing, logic behaviour,

and signal interactions at the register-transfer level

(RTL).Before physical implementation, simulation is

conducted using tools such as Xilinx Vivado or

ModelSim. These simulations validate the logic flow,

timing constraints, and data integrity across all

protocol layers. After successful simulation and

synthesis, the design is deployed onto a target FPGA

board. This allows real-time verification of the

interface’s behaviour and provides an opportunity to

test various edge cases in hardware. Developers often

include debug registers or test modes in the Verilog

design, which aid in diagnosing problems during

hardware testing. These may include loopback tests or

status outputs to observe system performance. Power

and resource usage are also considered, especially

when the SPI-I2C Bridge is implemented in embedded

systems or IoT devices. Lightweight design and low

clock domains are favoured to reduce overhead.

IV. PROPOSED METHOD:

Fig: 2. PROPOSED BLOCK DIAGRAM

The proposed architecture offers a dynamic and

customizable solution for converting SPI input into

I2C output using Verilog hardware description

language. This system emphasizes flexibility, making

it suitable for embedded applications with varying

protocol requirements. Unlike rigid, fixed-function

converters, this design introduces parameters that

allow developers to adapt the system to different data

widths, clock speeds, and I2C addressing schemes.

This results in a more scalable and reusable

communication bridge. At its core, the architecture is

modular and broken down into four essential

components: an SPI slave unit, an I2C master unit, a

control unit based on a finite state machine (FSM), and

a data buffer that connects the two. Each of these

modules is written to support parameterization, so

users can change features during synthesis or runtime

through control registers. This gives significant

flexibility during integration into different systems.

The SPI slave component receives serial data from an

SPI master. It is designed to be highly configurable,

accepting 8-bit, 16-bit, or wider data words based on

the defined data width parameter N.A shift register

captures the incoming bits serially, with its length

determined by the value of N. When the specified

number of bits is received, the shift register’s content

is moved to a parallel data buffer. A signal is generated

internally to indicate that a complete data word has

been received. This triggers the control unit to prepare

for data transmission to the I2C bus. The SPI interface

also monitors the Slave Select (SS) signal to recognize

when a new transmission is about to start. It resets its

internal state and readies itself to receive data

accordingly.

Additionally, built-in validation logic within the SPI

module ensures proper clocking and data alignment. It

checks for invalid clock sequences or incomplete

transmissions and flags any detected issues. Once data

is safely captured, it is stored temporarily in a register

or FIFO buffer. This buffer plays a crucial role in

isolating the SPI and I2C modules, which typically

operate at different speeds. The FSM-based controller

manages the transition from SPI reception to I2C

transmission. It shifts between states like idle, receive,

prepare, transmit, wait for ACK, and error handling.

Before initiating I2C transmission, the FSM processes

the data to fit the I2C protocol format. This includes

breaking the N-bit SPI data into 8-bit chunks, if

necessary.

A 7-bit slave address and a control bit (read or write)

are appended to structure the I2C packet properly.

These values are programmable to support different

I2C peripherals. The I2C master unit in this design is

not hardcoded but programmable. A prescaler inside it

controls the I2C clock (SCL), supporting various

standard modes like 100 kHz and 400 kHz. The I2C

communication starts with a START condition, which

signals the bus is busy and prevents other devices from

transmitting. The slave address is sent out first,

followed by the data chunks one by one. Each chunk

is placed on the SDA line in synchronization with the

SCL line. After each 8-bit segment, the system checks

for an acknowledgment (ACK) from the targeted I2C

device. This ensures the device is responding and

accepting data.

If no ACK is received, the FSM enters a separate state

to handle this failure. Depending on configuration, it

can retry the transmission or raise an error interrupt to

the system. After all data chunks are successfully

acknowledged, the I2C controller issues a STOP

condition, releasing the bus for other devices. The

FSM transitions back to the idle state, completing the

cycle and waiting for the next SPI command to arrive.

Due to the asynchronous nature of SPI and I2C, a

timing bridge is required. This is usually implemented

using a FIFO buffer that operates on two different

clocks. The FIFO helps maintain a steady flow of data

and prevents loss due to mismatches in transmission

rates. It acts as a safeguard for timing and

synchronization. Developers can configure protocol

parameters like SPI clock polarity (CPOL), clock

phase (CPHA), and I2C timing through either Verilog

parameters or mapped control registers. The system

can be expanded to support repeated START

conditions in I2C. This allows the master to

communicate with multiple devices on the same bus

without issuing a STOP in between.

Using repeated START improves efficiency,

especially in sensor-dense environments where data

must be fetched from multiple nodes quickly. Fault

resilience is enhanced through built-in detection flags

for errors such as framing issues, ACK failures, or

buffer overflows. The control unit responds

appropriately to each scenario. To validate the design,

a comprehensive test bench is constructed. It simulates

SPI transmissions and observes the corresponding I2C

outputs under various conditions. The simulation

environment checks boundary conditions, such as

maximum data width handling, edge cases like missed

ACKs, and invalid clock behaviour. The FSM's

behaviour is also verified to ensure all state transitions

are accurate and all outputs are correctly timed relative

to the clock domains.

Ultimately, this modular, parameterized protocol

bridge provides an efficient and robust method of

converting SPI data into I2C communication streams

in real-time, making it suitable for a wide range of

digital systems and applications.

V. RESULTS:

Simulation waveform:

Fig:2. Simulation waveform spi to i2c

Area:

Fig11: AREA

Delay:

Fig12: DELAY

Power:

Fig13: POWER

VI. CONCLUSION:

The custom-designed N-bit SPI to I2C protocol

converter, developed using Verilog, effectively

connects two popular communication interfaces. Its

support for variable data widths and precise handling

of timing and control signals specific to each protocol

ensures seamless and dependable data transfer.

Implemented directly in hardware, the design delivers

low-latency performance while minimizing resource

usage, making it well-suited for FPGA-based systems.

This converter improves compatibility across devices,

eliminates the need for extra interfacing components,

and offers a scalable solution tailored for a wide range

of embedded system applications. In essence, the

project presents a robust and efficient method for

enabling communication between SPI and I2C

environments.

VII. REFERENCES

1. B. Jose and J. S. Immanuel, "Design of

BIST(Built-In-Self Test)Embedded Master-Slave

communication using SPI Protocol," 2021 3rd

International Conference on Signal Processing

and Communication (ICPSC), Coimbatore, India,

2021, pp. 581-585

2. A. Kulkarni and S. M. Sakthivel, “UVM

methodology based functional Verification of SPI

Protocol,” in Journal of Physics Conference

Series, vol. 1716, no. 1, pp. 012035, Dec. 2021

3. Y. Guo et al., "A SPI Interface Module

Verification Method Based on UVM," 2020 IEEE

International Conference on Information

Technology, Big Data and Artificial Intelligence

(ICIBA), Chongqing, China, 2020, pp. 1219-1223

4. D. Trivedi, A. Khade, K. Jain and R. Jadhav, "SPI

to I2C Protocol Conversion Using Verilog," 2018

Fourth International Conference on Computing

Communication Control and Automation

(ICCUBEA), Pune, India, 2018, pp. 1-4

5. S. Mehrotra and N. Charaya, “Design of I2C

Single Master Using Verilog,” in International

Journal of Science and Research, vol. 4, no. 1, pp.

1897-1900, Jan. 2015

6. L. M. Kappaganthu, M. D. Prakash and A.

Yadlapati, "I2C protocol and its clock stretching

verification using system verilog and UVM,"

2017 International Conference on Inventive

Communication and Computational Technologies

(ICICCT), Coimbatore, India, 2017, pp. 478-480

7. L. Li, Y. Wang, X. Chen and X. Ren, "Research

on Improvement of Configurable I2C controller

IP Core," 2023 IEEE International Conference on

Control, Electronics and Computer Technology

(ICCECT), Jilin, China, 2023, pp. 484-489

8. B. Jeevan, P. Sahithi, P. Samskruthi and K.

Sivani, "Simulation and synthesis of UART

through FPGA Zedboard for IoT applications,"

2022 International Conference on Advances in

Computing, Communication and Applied

Informatics (ACCAI), Chennai, India, 2022, pp.

1-7

9. F. Leens, (2009) An Introduction to I2C and SPI

Protocols. In: IEEE Instrumentation &

Measurement Magazine. Beijing. pp. 8-13

10. S. Wang, (2010) Design and Implementation of

Serial Peripheral Interface SPI Based on FPGA.

Control & Automation, pp.117-119.

11. W.L.Li, D.P. Y. (2007) Implementation of

Asynchronous Serial Port and Synchronous Serial

Port Conversion Using FPGA. Electronic

Engineer, pp.52-53.

12. S.Zhang, W.Li. (2014) Modular design method of

FPGA. Journal of Electronic Measurement and

Instrument, pp. 560-565.

13. F.J.Sun, C.X.Yu.(2005) Verilog Implementation

of SPI Serial Bus Interface. Modern Electronic

Technique, pp. 105-106,109.

14. W.Mai, W.Liu. (2007) Design and

Implementation of SPI Interface Based on FPGA

and MSP430. Instrumentation Users, pp. 100-

102.

15. W.C.Zhu, S. ,Zhang, H.L.Jiang. (2017) Design of

high speed data communication interface based

on ARM and FPGA. Journal of Guilin University

of Electronic Technology, pp. 293-297

