

Industrial Engineering Journal ISSN: 0970-2555 Volume : 53, Issue 7, July : 2024

FRAMEWORK FOR DETECTING SPAM IN REVIEWS USING NETWORK BASED APPROACHES

¹MODINI SURYA CHANDRIKA DEVATHI, ² MRS. CH. DEEPTHI

 ¹ PG Scholar in the department of MCA at QIS College of Engineering & Technology (AUTONOMOUS), Vengamukkapalem, Ongole- 523272, Prakasam Dt., AP., India.
 ²Professor in the department of CSE/MCA at QIS Collegeof Engineering & Technology (AUTONOMOUS), Vengamukkapalem, Ongole- 523272, Prakasam Dt., AP., India.

ABSTRACT:

The exponential growth of online review platforms has become a cornerstone for decision-making processes, prompting the need for robust spam detection mechanisms to preserve the authenticity and reliability of reviews. This paper presents a novel framework for detecting spam in reviews utilizing network-based approaches. Unlike traditional methods that primarily rely on content analysis, our framework capitalizes on the structural properties of the review network to discern spam from genuine reviews. By modeling reviews as nodes and their relationships as edges within a network, we extract features that capture the interconnectedness and dynamics of reviews. Leveraging graph-based algorithms and machine learning techniques, our framework can effectively identify patterns indicative of spam behavior, such as review collusion and anomalous review clusters. Experimental evaluations conducted on diverse datasets demonstrate the efficacy and scalability of our approach in accurately detecting spam reviews while minimizing false positives. Ultimately, our framework offers a comprehensive solution to combat spam in online review thereby fostering trust platforms, and transparency in consumer decision-making processes.

INDEX: spam detection, mechanism, spam behavior, spam review, decision-making processes

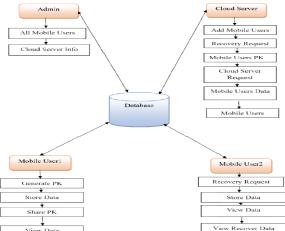
INTRODUCTION:

Online reviews have become a cornerstone of consumer decision-making, influencing

purchasing behaviors, brand perceptions, and market dynamics. However, amidst the wealth of genuine feedback lies the persistent issue of spam reviews, which threaten the integrity and reliability of online review platforms. Detecting and mitigating spam in reviews is a critical challenge faced by businesses, consumers, and platform operators alike. Traditional spam detection methods predominantly rely on content-based analysis techniques, which may overlook subtle patterns and collaborations among spammers. To address this limitation, novel approaches leveraging the structural properties of the review network have emerged, offering promising solutions for detecting spam in reviews using network-based approaches. The advent of network-based approaches

presents a paradigm shift in spam detection methodologies, offering a holistic perspective that considers not only the content of reviews interconnectedness and but also their relationships within the review ecosystem. By modeling reviews and their interactions as a network, these approaches provide valuable insights into the underlying dynamics of spam activity, facilitating the identification of anomalous patterns and suspicious behaviors. Leveraging graph-based algorithms and network analysis techniques, such as centrality measures and community detection, networkbased approaches offer a comprehensive framework for detecting spam in reviews across diverse online platforms.

In this context, this paper introduces a framework for detecting spam in reviews using network-based approaches. The framework aims to capitalize on the inherent



Industrial Engineering Journal ISSN: 0970-2555

Volume : 53, Issue 7, July : 2024

structure of the review network to uncover subtle patterns and relationships indicative of spam activity. By constructing a review network where each review is represented as a node and connections between reviews are established based on similarity metrics or user interactions, the framework offers a holistic approach to spam detection that complements traditional content-basedmethods. Through feature extraction and analysis within the network, the framework review aims toidentify spammer communities, anomalous review clusters, and other patterns indicative of spam behavior, thereby enhancing the accuracy and effectiveness of spam detection in online review platforms.

SYSTEM ARCHITECTURE :

METHODOLOGY:

Network-based spam detection frameworks rely on several interconnected modules to achieve accurate spam identification in reviews. Here's a detailed description of each key module:

Data Acquisition Module:

Description: This module is responsible for gathering review data from various sources.

Functionalities:

Access data from APIs of online platforms (e.g., Yelp, Amazon). Read review data from databases o Allow user upload of review datasets. Perform basic data cleaning tasks (e.g., handling missing values, removing irrelevant information). Standardize data format for consistency across sources

Network Construction Module:

Description: This module transforms the preprocessed review data into a network structure.

Functionalities:

Create nodes representing reviews, users, and entities (products, businesses). Establish edges between nodes based on predefined rules (e.g., user writes a review, review mentions a product). Define different node and edge types to capture specific relationships (e.g., positive review edge, frequent reviewer)

Feature Extraction Module:

Description: This module extracts informative features from both the network structure and the review content.

Network-based Feature Extraction:

Calculate network metrics for nodes and edges (e.g., degree centrality, clustering coefficient, community membership). Identify user and review characteristics based on network position (e.g., isolated users, highly connected reviews)

Content-based Feature Extraction:

Analyze review text for sentiment (positive, negative). Identify keywords or phrases associated with spam (e.g., promotional language, excessive use of adjectives). Apply stylometry techniques to analyze writing style and identify potential impersonation attempts

Model Training and Evaluation Module:

Description: This module focuses on training a machine learning model for spam classification.

Training Functionalities:

Select appropriate network-based classification models (e.g., Graph Convolutional Networks, Community-based Spam Detection models). Train the chosen model using labeled review data (spam/legitimate).

Evaluation Functionalities:

Calculate performance metrics (accuracy, precision, recall, F1-score) to assess the

ISSN: 0970-2555

Volume : 53, Issue 7, July : 2024

model's effectiveness. Allow for hyperparameter tuning to optimize model performance

Spam Detection Module:

Description: This module applies the trained model to classify new, unlabeled reviews.

Functionalities:

Extract features (network-based and contentbased) from the new reviewFeed the features into the trained modelObtain the classification result (spam or legitimate) along with an optionalconfidence score

Visualization and User Interface (UI) Module (Optional):

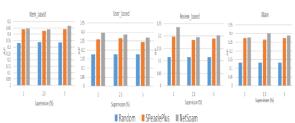
Description: This module provides visual aids and user interaction capabilities.

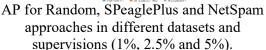
Functionalities (Visualization):

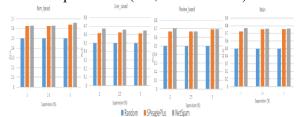
Visualize the constructed network to highlight potential spam clusters or suspicious user activity patterns. Represent user and review attributes visually for easier identification of anomalies

Functionalities (UI):

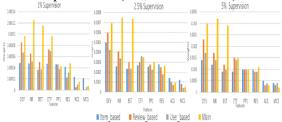
Allow users to monitor system performance (e.g., accuracy over time). Review classification results for individual reviews. Provide options to adjust framework parameters (e.g., network construction rules, feature selection thresholds)


Integration Module (Optional):


Description: This module facilitates seamless integration with existing review management systems.


Functionalities:

Output classified reviews (spam/legitimate) for filtering or flaggingIntegrate with the system's existing review flagging mechanism o Allow for configuration of review classification thresholds for spam identification


RESULTS ANALYSIS :

AUC for Random, SPeaglePlus and NetSpam approaches in different datasets and supervisions (1%, 2.5% and 5%).

Features weights for Net Spam framework on different datasets using different supervisions (1%, 2.5% and 5%).

CONCLUSION

In conclusion, the framework for detecting in reviews using network-based spam approaches represents significant а advancement in combating the pervasive issue of spam in online review platforms. Through the utilization of network structures and graph-based algorithms, this framework offers a holistic perspective that goes beyond traditional content-based methods, enabling the identification of subtle patterns and collaborations among spammers. Bv leveraging the interconnectedness and relationships within review networks, the framework enhances the accuracy and effectiveness of spam detection, thereby fostering trust and reliability in online consumer feedback.Looking ahead, the continued refinement and integration of

ISSN: 0970-2555

Volume : 53, Issue 7, July : 2024

network-based approaches hold immense promise for further enhancing spam detection capabilities in online review platforms. Future research endeavors should focus on leveraging advanced machine learning techniques, such as deep learning and reinforcement learning, to capture complex patterns and dynamics review networks. Additionally, within interdisciplinary collaboration and crossdomain research efforts will be crucial in addressing emerging challenges and staying evolving spammer ahead of tactics. Ultimately, the adoption of network-based approaches offers a pathway towards creating more trustworthy and transparent online review ecosystems, benefiting both consumers and businesses alike.

FUTURE ENHANCEMENT

Here are some potential future enhancements for a framework for detecting spam in reviews using network-based approaches:

Incorporate dynamic network features: Capture the evolution of the review network over time to identify spammers who adapt their tactics.

Explore hybrid approaches: Combine network-based approaches with NLP or sentiment analysis for more robust spam detection.

Implement transfer learning: Leverage pretrained models to improve performance on specific spam types.

Address adversarial attacks: Develop methods to detect and mitigate attempts by spammers to manipulate the network.

Incorporate explainability: Make the framework's decisions more interpretable for users to understand the reasoning behind spam classifications.

REFERENCES

1. Srikanth veldandi, et al. "Design and Implementation of Robotic Arm for Pick and Place by using Bluetooth Technology." Journal of Energy Engineering and Thermodynamics, no. 34, June 2023, pp. 16– 21. https://doi.org/10.55529/jeet.34.16.21.

2. Srikanth veldandi., et al. "Grid Synchronization Failure Detection on Sensing the Frequency and Voltage beyond the Ranges." Journal of Energy Engineering and Thermodynamics, no. 35, Aug. 2023, pp. 1–7. https://doi.org/10.55529/jeet.35.1.7.

3. Srikanth veldandi, et al. "Intelligents Traffic Light Controller for Ambulance." Journal of Image Processing and Intelligent Remote Sensing, no. 34, July 2023, pp. 19–26. https://doi.org/10.55529/jipirs.34.19.26.

4. Srikanth veldandi, et al. "Smart Helmet with Alcohol Sensing and Bike Authentication for Riders." Journal of Energy Engineering and Thermodynamics, no. 23, Apr. 2022, pp. 1–7. https://doi.org/10.55529/jeet.23.1.7.

5. Srikanth veldandi, et al. "An Implementation of Iot Based Electrical Device Surveillance and Control using Sensor System." Journal of Energy Engineering and Thermodynamics, no. 25, Sept. 2022, pp. 33– 41. https://doi.org/10.55529/jeet.25.33.41.

6. Srikanth veldandi, et al "Design and Implementation of Robotic Arm for Pick and Place by using Bluetooth Technology." Journal of Energy Engineering and Thermodynamics, no. 34, June 2023, pp. 16– 21. https://doi.org/10.55529/jeet.34.16.21.

7. Srikanth, V. "Secret Sharing Algorithm Implementation on Single to Multi Cloud."
Srikanth | International Journal of Research, 23 Feb. 2018, journals.pen2print.org/index.php/ijr/article/vie w/11641/11021.

8. V. Srikanth. "Managing Mass-Mailing System in Distributed Environment" v srikanth | International Journal & Magazine of Engineering, Technology, Management and Research, 23 August. 2015. http://www.ijmetmr.com/olaugust2015/VSrika nth-119.pdf

V. Srikanth. "SECURITY, CONTROL 9 AND ACCESS ON IOT AND ITS THINGS" v srikanth | INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING. 15 JUNE. 2017. http://ijmtarc.in/Papers/Current%20Papers/IJ MTARC-170605.pdf

ISSN: 0970-2555

Volume : 53, Issue 7, July : 2024

"ANALYZING 10. V. Srikanth. THE TWEETS AND DETECT TRAFFIC FROM TWITTER ANALYSIS" v srikanth INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING. 20 MARCH. 2017. http://ijmtarc.in/Papers/Current%20Papers/IJ MTARC-170309.pdf

11. V. Srikanth. "A NOVEL METHOD FOR BUG DETECTION TECHNIQUES USING INSTANCE SELECTION AND FEATURE SELECTION" v srikanth **INTERNATIONAL** JOURNAL OF INNOVATIVE ENGINEERING AND MANAGEMENT RESEARCH, 08 DECEMBER. 2017. https://www.ijiemr.org/public/uploads/paper/9 76 approvedpaper.pdf

12. V. Srikanth. "SECURED RANKED KEYWORD SEARCH OVER ENCRYPTED DATA ON CLOUD" v srikanth | INTERNATIONAL JOURNAL OF INNOVATIVE ENGINEERING AND MANAGEMENT RESEARCH, 08 Febraury. 2018.

http://www.ijiemr.org/downloads.php?vol=Vo lume-7&issue=ISSUE-02

13. V. Srikanth. "WIRELESS SECURITY PROTOCOLS (WEP, WPA, WPA2 & WPA3)" v srikanth | Journal of Emerging Technologies and Innovative Research (JETIR), 08 mAY. 2019.

https://www.jetir.org/papers/JETIRDA06001. pdf

14. V. Srikanth, et al. "Detection of Fake Currency Using Machine Learning Models." Deleted Journal, no. 41, Dec. 2023, pp. 31–38. https://doi.org/10.55529/ijrise.41.31.38.

15. V. Srikanth, et al. "A REVIEW ON MODELING AND PREDICTING OF CYBER HACKING BREACHES." 25 Mar. 2023, pp. 300–305. http://ijte.uk/archive/2023/A-REVIEW-ON-MODELING-AND-PREDICTING-OF-

CYBER-HACKING-BREACHES.pdf.

16. V. Srikanth, "DETECTION OF PLAGIARISM USING ARTIFICIAL NEURAL NETWORKS." 25 Mar. 2023, pp. 201–209.

http://ijte.uk/archive/2023/DETECTION-OF-PLAGIARISM-USING-ARTIFICIAL-

NEURAL-NETWORKS.pdf.

17. V. Srikanth, "CHRONIC KIDNEY DISEASE PREDICTION USING MACHINELEARNINGALGORITHMS." 25 January. 2023, pp. 106–122. http://ijte.uk/archive/2023/CHRONIC-

KIDNEY-DISEASE-PREDICTION-USING-MACHINE-LEARNING-

ALGORITHMS.pdf.

18. Srikanth veldandi, et al. "View of Classification of SARS Cov-2 and Non-SARS Cov-2 Pneumonia Using CNN". journal.hmjournals.com/index.php/JPDMHD/a rticle/view/3406/2798.

19. Srikanth veldandi, et al. "Improving Product Marketing by Predicting Early Reviewers on E-Commerce Websites." Deleted Journal, no. 43, Apr. 2024, pp. 17–25. https://doi.org/10.55529/ijrise.43.17.25.

20. Srikanth veldandi, et al."Intelligents Traffic Light Controller for Ambulance." Journal of Image Processing and Intelligent Remote Sensing, no. 34, July 2023, pp. 19–26. https://doi.org/10.55529/jipirs.34.19.26.

21. Veldandi Srikanth, et al. "Identification of Plant Leaf Disease Using CNN and Image Processing." Journal of Image Processing and Intelligent Remote Sensing, June 2024, https://doi.org/10.55529/jipirs.44.1.10.

Veldandi Srikanth, et al. "Human-AI 22. Interaction Using 3D AI Assistant" International Conference on Emerging Advances and Applications in Green Energy (ICEAAGE-2024), 15, Feb 2024. https://www.researchgate.net/publication/3809 71799 ICEAAGE-

2024_Conference_Proceedings_Final

23. Veldandi Srikanth, et al. "Voice Based Assistance for Traffic Sign Recognition System Using Convolutional Neural Network" International journal of advance and applied research (IJAAR) ISSN – 2347-7075, 4th, April 2024, https://ijaar.co.in/wp-

ISSN: 0970-2555

Volume : 53, Issue 7, July : 2024

content/uploads/2021/02/Volume-5-Issue-4.pdf

24. Veldandi Srikanth, et al. "Convolutional Neural Network Based Heart Stroke Detection" International journal of advance and applied research (IJAAR) ISSN – 2347-7075, 4th, April 2024, https://ijaar.co.in/wpcontent/uploads/2021/02/Volume-5-Issue-4.pdf

25. Srikanth veldandi, et al. "Data Analytics Using R Programming Lab | IOK STORE."

IOK STORE, ww.iokstore.inkofknowledge.com/product-

page/data-analytics-using-r-programming-lab. 26. Srikanth veldandi, et al. "Data Structures Laboratory Manual | IOK STORE." IOK STORE,

www.iokstore.inkofknowledge.com/product-page/data-structures-laboratory-manual.

27. Srikanth veldandi, et al. "Cyberspace and The Law: Cyber Security | IOK STORE." IOK STORE,

iokstore.inkofknowledge.com/productpage/cyberspace-and-the-law.

AUTHOR PROFILE:

Mrs. Chepuri. Deepti, currently working as an Assistant Professor in the Department of Computer Science and Engineering, QIS College of Engineering and Technology,

Ongole, Andhra Pradesh. She did her BTech from Uttar Pradesh Technical University, Lucknow, M.Tech from JNTUK, Kakinada. Her area of interest is Machine Learning, Artificial intelligence, Cloud Computing and Programming Languages.

Ms. Modini surya Chandrika Devathi, currently pursuing Master of Computer Applications at QIS College of engineering and Technology (Autonomous), Ongole, Andhra She Pradesh. Completed B.Sc. in Physics from Sri Rohini Degree

College, Chilakaluripet, Andhra Pradesh. Her areas of interest are Machine learning& Cloud computing.