

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

NEW STRONGLY HOMEOMORPHISM IN INTUITIONISTIC TOPOLOGICAL SPACES

Mrs. P.Suganya, Research Scholar, Reg.No.19222212092015, Department of Mathematics, St. Mary's College(Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti - 627012, Tirunelveli) Thoothukudi-1,TamilNadu, India **Dr J. Arul Jesti,** Assistant Professor, Department of Mathematics, St. Mary's College

(Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti -627012, Tirunelveli) Thoothukudi-1,TamilNadu, India

Abstract

The purpose of this paper is to introduce the notion of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly *i*-homeomorphism in Intuitionistic Topological Spaces. Further, some of their basic properties of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly i -homeomorphism are investigated. Besides, we proved intuitionistic strongly *i*-homeomorphism is an equivalence relation.

Keywords: J*i*-homeomorphism, intuitionistic strongly *i*-homeomorphism, $\mathcal{I} \mathcal{S} \mathcal{I} \cdot h(A)$

I. Introduction

Homeomorphism play a vital role in topology. The notion of intuitionistic sets and intuitionistic points was introduced by Coker[6]. Later he developed and introduced the Intuitionistic topological spaces^[5] and explained some fundamental properties. Selvanayaki etal^[3] introduced homeomorphism and discussed some basic properties. Suganya[1] et al introduced and derived some properties of *Ji*-open sets in Intuitionistic topological spaces. In this paper we explained a new class of functions on Intuitionistic topological space called $\mathcal{I}i$ -homeomorphism and analyse their characterizations. Additionally, we also define intuitionistic strongly i -homeomorphism in intuitionistic topological space and we proved the family of all intuitionistic strongly i homeomorphism satisfies the group properties.

II. *Ji*-homeomorphism and Intuitionistic strongly *i*-homeomorphism

2.1 Preliminaries

We recall some definitions and results which are useful for this sequel. Throughout the present study, J means intuitionistic, a space A means intuitionistic topological space (A, τ_{I_1}) and B means an intuitionistic topological space (B, τ_{I_2}) unless otherwise mentioned.

Definition 2.1.1. [6] Let \vec{A} be a non-empty set. An intuitionistic set(IS for short) \vec{H} is an object having the form $H = \langle A, H_1, H_2 \rangle$ where H_1, H_2 are subsets of A satisfying $H_1 \cap H_2 = \emptyset$. The set H_1 is called the set of members of H , while H_2 is called set of non members of H .

Definition 2.1.2. [5] An intuitionistic topology (for short IT) on a non-empty set A is a family τ_1 of intutionistic sets in A satisfying following axioms. $1)$

$$
\widetilde{\emptyset}, \widetilde{A} \in \tau_I
$$

2) $G_1 \cap G_2 \in \tau_I$, for any $G_1, G_2 \in \tau_I$

3) ∪ $G_{\alpha} \in \tau_I$ for any arbitrary family { $G_{\alpha} / \alpha \in J$ } where (A, τ_I) is called an intuitionistic topological space and any intuitionistic set H is called an intuitionistic open set (for short JOS) in A. The complement H^c of an JOS H is called an intuitionistic closed set (for short $\mathcal{I}CS$) in A.

Definition 2.1.3[1] An intuitionistic set D of an Intutionistic topological space (A, τ) is said to be an intutionistic *i*-open set (shortly *Ji*-open set) if there exist an intutionistic open set $H \neq \tilde{\emptyset}$ and \tilde{A} such that $D \subseteq \mathcal{I}cl(D \cap H)$.

Definition 2.1.4.[3] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is *J*-open map if the image of every *J*-open set in A is $\mathcal I$ -open in B .

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

Definition 2.1.5.[3] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is *Ji*-closed map if the image of every *J*-closed set in A is J_i -closed in B .

Definition 2.1.6.[2]A mapping $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is $\mathcal{I}i$ - continuous function if the inverse image of every intuitionistic open set in (B, τ_{I_2}) is *Ji*-open in (A, τ_{I_1}) .

Definition 2.1.7.[2] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be *J*i-irresolute if $s^{-1}(G)$ is a *Ji*-open in (A, τ_{I_1}) for every *Ji*-open set *G* in (B, τ_{I_2}) .

Definition 2.1.8.[4] A bijective function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be *J*-homeomorphism if *s* is Ji -continuous and Ji -open map.

Definition 2.1.9.[1] Let (A, τ_{I_1}) be an Intuitionistic topological space and let $H \subseteq A$. The intuitionistic *i*-interior of H is defined as the union of all $\mathcal{I}i$ -open sets contained in A and is denoted by $\mathcal{I}int_i(H)$. It is clear that $\text{Jint}_i(H)$ is the largest $\text{J}i$ -open set, for any subset H of A.

Definition 2.1.10.[1] Let (A, τ_{I_1}) be an intuitionistic topological space and let $H \subseteq A$. The *Ji*-closure of *H* is defined as the intersection of all $\mathcal{I}i$ -closed sets in *A* containing *H*, and is denoted by $\mathcal{I}cl_i(H)$. It is clear that $\mathcal{I}cl_i(H)$ is the smallest $\mathcal{I}i$ -closed set for any subset H of A.

2.2. *Ji*-homeomorphism

Definition 2.2.1: A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is a *Ji*-homeomorphism if

1. s is 1-1 and onto

2. s is J_i -continuous

3. s is $\mathcal{I}i$ -open map

Example 2.2.2: Let $A = \{17, 19, 21\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4\}$ where $\mathcal{V}_1 = \langle \tilde{A}, \tilde{\emptyset}, \tilde{A}, \tilde{A}, \tilde{A} \rangle$ $A, \{ 17\}, \{ 19\} >, \mathcal{V}_2 = , \mathcal{V}_3 = \text{and } \mathcal{V}_4 = .$ Let $B =$ $\{85,90,95\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{85\}, \{95\} \rangle$, $\mathcal{H}_2 = \langle B, \{85\}, \{95\} \rangle$ B , { 85,90}, \emptyset > and $\mathcal{H}_3 = \langle B, \emptyset, \{85, 95\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(17) = 85$, $s(19) = 90$, $s(21) = 95$ and $s(A) = B$. Then, $s(< A, {17}, {19} >) = < B, {85}, {90} >$

, $s(< A, \{\emptyset\}, \{19\}>) = < B, \{\emptyset\}, \{90\}>, s(< A, \{17,21\}, \{\emptyset\}) = < B, \{85,95\}, \{\emptyset\} > \text{and}$

 $s(< A, {17}, {\emptyset}) >$ = < B, {85}, {Ø} >. Therefore, *s* is *Ji*-open. Also, $s^{-1}(< B, {85}, {95} > =$ $A, \{17\}, \{21\} >, s^{-1}(< B, \{85,90\}, \{\emptyset\} > \{4\}, \{17,19\}, \{\emptyset\} > \text{and } s^{-1}(< B, \{\emptyset\}, \{85,95\} > \{4\}, \{\emptyset\} > \{6\}$ $A, \{\emptyset\}, \{17,21\} >$. Therefore, s is $\mathcal{I}i$ -continuous. Hence, s is $\mathcal{I}i$ -homeomorphism.

Theorem 2.2.3: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be a one-one onto mapping. Then, s is a $\mathcal{I}i$ homeomorphism if and only if s is $\mathcal{I}i$ -closed and $\mathcal{I}i$ -continuous.

Proof: Let *s* be a $\mathcal{I}i$ -homeomorphism. Then, *s* is $\mathcal{I}i$ -continuous. Let *K* be a \mathcal{I} -closed set in *A*. Then $A - K$ is *J*-open. Since *s* is *Ji*-open, $s(A - K)$ is *Ji*-open in *B*. That is, $B - s(K)$ is *Ji*-open in *B*. Therefore, $s(K)$ is $\mathcal{I}i$ -closed in B . Hence, the image of every \mathcal{I} -closed set in A is $\mathcal{I}i$ -closed in B . That is, s is Ji-closed. Conversely, let s be a Ji-closed and Ji-continuous. Let R be J-open in A. Then $A -$ R is J-closed in A. Since s is Ji-closed, $s(A - R) = B - s(R)$ is Ji-closed in B. Therefore, $s(R)$ is Ii -open in B . Thus, s is Ii -open and hence, s is a Ii -homeomorphism.

Theorem 2.2.4: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an one-one, onto and *Ji*-continuous map. Then the following statements are equivalent

(i) s is an $\mathcal{I}i$ -open.

(ii) s is an $\mathcal{I}i$ -homeomorphism.

 (iii) s is an $\mathcal{I}i$ -closed.

Proof:(i) \Leftrightarrow (ii) Obvious from the definition.

(ii) \Leftrightarrow (iii) Let Y be a J-closed set in A. Then Y^c is J-open in A. By hypothesis, $s(Y^c) = (s(Y))^c$ is an $\mathcal{I}i$ -open in B. That is, $s(Y)$ is $\mathcal{I}i$ -closed in B. Therefore, s is an $\mathcal{I}i$ -closed.

(iii) \Leftrightarrow (i) Let C be a J-open set in A. Then C^c is J-closed in A. By hypothesis, $s(C^c) = (s(C))^c$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

is $\mathcal{I}i$ -closed in B . That is, $s(C)$ is $\mathcal{I}i$ -open in B . Therefore, s is an $\mathcal{I}i$ -open map. **Theorem 2.2.5:** If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is bijective and $s(\mathcal{I}cl_i(N)) = \mathcal{I}cl(s(N))$ then s is $\mathcal{I}i$ homeomorphism for every subset N of A .

Proof: If $s(\mathcal{I}cl_i(N)) = \mathcal{I}cl(s(N))$ for every subset N of A, then s is $\mathcal{I}i$ -continuous. If N is \mathcal{I} closed in A then N is Ji-closed in A.Then $\mathcal{I}cl_i(A) = A \Rightarrow s(\mathcal{I}cl_i(A)) = s(A)$. Hence by the given hypothesis, it follows that $\mathcal{I}cl(s(A)) = s(A)$. Thus $s(A)$ is *J*-closed in *B* and hence $\mathcal{I}i$ -closed in *B* for every *J*-closed set *N* in *A*. That is, *s* is $\mathcal{I}i$ -closed. Hence *s* is $\mathcal{I}i$ -homeomorphism.

Remark 2.2.6: The reverse implication is not true as shown in the following example.

Example 2.2.7: Let $A = \{p, q\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \{A, \{\emptyset\}, \{q\} > \text{and}$ $\mathcal{V}_2 = \langle A, \{p\}, \emptyset \rangle$. Let $B = \{x, y\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle A, \{p\}, \emptyset \rangle$ $B, \{\emptyset\}, \{\emptyset\} > \mathcal{H}_2 = \langle B, \{x\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{x\}, \{y\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(p) = x$, $s(q) = y$ and $s(A) = B$. Then, $s \leq A, \{\emptyset\}, \{q\} > \emptyset = \leq B, \{\emptyset\}, \{y\} > \emptyset$, $s(A, \{\emptyset\})$

 ${p}, {\emptyset} >) = < B, {x}, {\emptyset} >.$ Therefore, s is *Ji*-open. Also, $s^{-1}(< B, {x}, {\emptyset} > = < A, {p}, {\emptyset} >,$ $s^{-1}(< B, \{\emptyset\}, \{\emptyset\}) = < A, \{\emptyset\}, \{\emptyset\} > \text{ and } s^{-1}(< B, \{x\}, \{y\}) = < A, \{p\}, \{q\} >.$ Therefore, s is $\mathcal{I}i$ -continuous. Hence, s is $\mathcal{I}i$ -homeomorphism. Now, $s(\mathcal{I}cl_i(< A, \{\emptyset\}, \{q\}>) = s(< A, \{\emptyset\}, \{q\})$) = < B, {Ø}, {y} > and $\mathcal{I}cl(s \leq A, \{\emptyset\}, \{q\} >)) = \langle B, \{\emptyset\}, \{\emptyset\} >)$. Hence, $s(\mathcal{I}cl_i \leq A, \{\emptyset\}, \{q\} >)$)) \neq $\mathcal{I}cl(s \leq A, \{\emptyset\}, \{q\} >)$).

Theorem 2.2.8: Every intuitionistic homeomorphism is $\mathcal{I}i$ -homeomorphism but not conversely.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be intuitionistic homeomorphism then s is intuitionistic continuous and intuitionistic open. Let L be intuitionistic open set in A . Since every intuitionistic open set is $\mathcal{I}i$ open and s is *J*-open map, then $s(L)$ is $\mathcal{I}i$ -open in B . Hence, s is $\mathcal{I}i$ -open. Let K be a intuitionistic open set in B. Since, s is intuitionistic continuous, $s^{-1}(K)$ is intuitionistic open in A. Since every intuitionistic open is $\mathcal{I}i$ -open, $s^{-1}(K)$ is $\mathcal{I}i$ -open in A which implies s is $\mathcal{I}i$ -continuous. Hence s is $\mathcal{I}i$ homeomorphism.

Remark 2.2.9: The reverse implication need not be true as seen from the following example.

Example 2.2.10: Let $A = \{i, j\}$ with $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{j\} \rangle, \mathcal{V}_2 = \langle A, \{\emptyset\}, \{\empty$ $A, \{i\}, \{j\} > \text{and } \mathcal{V}_3 = \langle A, \{i\}, \{\emptyset\} > \rangle$. Let $B = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 =$ $< B$, {u}, { \emptyset } > and $\mathcal{H}_2 = < B$, { \emptyset }, { v } > . Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(i) = u$, $s(j) = u$ ν and $s(A) = B$. Then, $s^{-1}(< B, {\emptyset}, {\{v\}} > = < A, {\emptyset}, {\{j\}} > , s^{-1}(< B, {\{u\}}, {\emptyset}) > = <$ $A, \{i\}, \{\emptyset\} >$ which are $\mathcal{I}i$ -open set in A. Hence, s is $\mathcal{I}i$ -continuous. Also, $s \leq A, \{\emptyset\}, \{j\} >) = \langle$ $B, \{\emptyset\}, \{v\} > 0, \{c \leq A, \{i\}, \{\emptyset\} > 0\} = \{B, \{u\}, \{\emptyset\} > 0\} = \{A, \{i\}, \{j\} > 0\} = \{B, \{u\}, \{v\} > 0\}$ are $\mathcal{I}i$ -open sets in B . Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But s (< $A, \{i\}, \{j\} > \, = \, <\, B, \{u\}, \{v\} >$ which is not intuitionistic open set in B. Hence s is not intuitionistic homeomorphism.

Theorem 2.2.11: Every intuitionistic α -homeomorphism is $\mathcal{I}i$ -homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic α -homeomorphism, then s is bijective, intuitionistic α -continuous and intuitionistic α -open. Let E be an intuitionistic-open set in B. Since, s is intuitionistic α -continuous, $s^{-1}(E)$ is intuitionistic α -open in X. Since, all the intuitionistic α -open set is $\mathcal{I}i$ -open, $s^{-1}(E)$ is $\mathcal{I}i$ -open in A which implies s is $\mathcal{I}i$ -continuous. Let H be a intuitionistic-open set in A. Since, s is intuitionistic α -open, $s(H)$ is intuitionistic α -open in B. Since, every intuitionistic α -open set is $\mathcal{I}i$ -open, $\mathcal{S}(H)$ is $\mathcal{I}i$ -open in B which implies \mathcal{S} is $\mathcal{I}i$ -open. Thus, \mathcal{S} is $\mathcal{I}i$ -homeomorphism. **Remark 2.2.12:**The reverse implication need not be true as seen from the following example.

Example 2.2.13: Let $A = \{g, h\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{\emptyset\} \rangle$ and $\mathcal{V}_2 = \langle A, \{h\}, \{\emptyset\} \rangle$. Let $B = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle B, \{v\}, \{u\} \rangle$ and $\mathcal{H}_2 = \langle B, \{\emptyset\}, \{u\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(g) = u$, $s(h) = v$ and $s(A) = v$ B. Then, $s^{-1}(< B, \{\emptyset\}, \{u\} > = < A, \{\emptyset\}, \{g\} > , s^{-1}(< B, \{v\}, \{u\} >) = < A, \{h\}, \{g\} >$ which are *Ji*-open set in A. Hence, *s* is *Ji*-continuous. Also, $s \leq A, \{\emptyset\}, \{\emptyset\} > 0 \leq B, \{\emptyset\}, \{\emptyset\} > 0$, $s \leq$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

 $A, \{h\}, \{\emptyset\} > \emptyset$ = < $B, \{v\}, \{\emptyset\} >$ which are $\mathcal{I}i$ -open set in B . Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But $s \leq A$, $\{\emptyset\}$, $\{\emptyset\} > 0 \leq B$, $\{\emptyset\}$, $\{\emptyset\} > 0$ which is not intuitionistic α -open set in B. Hence s is not intuitionistic α -homeomorphism.

Theorem 2.2.14:Every intuitionistic semi homeomorphism is $\mathcal{I}i$ -homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic semi-homeomorphism, then s is bijective, intuitionistic semi-continuous and intuitionistic semi-open. Since, every intuitionistic semi-continuous map is $\mathcal{I}i$ -continuous and intuitionistic semi-open map is $\mathcal{I}i$ -open which implies s is both $\mathcal{I}i$ -continuous and $\mathcal{I}i$ -open. Therefore, s is $\mathcal{I}i$ -homeomorphism.

Remark 2.2.15: The reverse implication is not true as seen from the following example.

Example 2.2.16: Let $A = \{7, 14, 21\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle \tilde{A}, \tilde{V}_2, \tilde{V}_3, \tilde{V}_4, \tilde{V}_5, \tilde{V}_6, \tilde{V}_7, \tilde{V}_8, \tilde{V}_9, \tilde{V}_1, \tilde{V}_2, \tilde{V}_3, \tilde{V}_$ $A, \{ 14\}, \{ 7\} >, \mathcal{V}_2 = , \mathcal{V}_3 = \text{ and } \mathcal{V}_4 = .$ Let $B =$ ${m, n, o}$ with a family $\tau_{I_2} = {\tilde{\beta}, \tilde{\varnothing}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3}$ where $\mathcal{H}_1 = \langle B, \{o\}, \{k\} > \mathcal{H}_2 = \langle B, \{m, n\}, \emptyset > \emptyset \rangle$ and $\mathcal{H}_3 = \langle B, \emptyset, \{m, o\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(7) = o$, $s(14) = m$, $s(21) =$ n and $s(A) = B$. Now, $s^{-1}(< B, \{\emptyset\}, \{m, o\}) = < A, \{\emptyset\}, \{7, 14\} >, s^{-1}(< B, \{m, n\}, \{\emptyset\} >) =$ $< A$, {14,21}, { \emptyset } >, s^{-1} ($< B$, { m }, { o } > = < A, {14}, { 7 } > which are $\mathcal{I}i$ -open set in A. So, s is $\mathcal{I}i$ -continuous. Also, $s \leq A, \{14\}, \{7\} > \} = \langle B, \{m\}, \{o\} >, s \leq A, \{14\}, \{7,21\} > \} = \langle$ $B, \{m\}, \{n, o\} >, s \leq A, \{\emptyset\}, \{7\} >) = \{0\}, \{o\} >, s \leq A, \{\emptyset\}, \{7, 21\} >) = \{0\}$ $B, \{\emptyset\}, \{n, o\} >$, which are $\mathcal{I}i$ -open set in B . Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ homeomorphism. But, s^{-1} (< B, {Ø}, {m, o} > = < A, {Ø}, {7,14} >,which is not intuitionistic semi-open set in A. Therefore, s is not intuitionistic semi-homeomorphism.

Remark 2.2.17: Composition of two $\mathcal{I}i$ -homeomorphism is not $\mathcal{I}i$ -homeomorphism.

Example 2.2.18: Let $A = \{17, 19, 21\}$ with $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{17\}, \{19\} \rangle$, $\mathcal{V}_2 = \langle A, \{\emptyset\}, \{19\} > \mathcal{V}_3 = \langle A, \{17,21\}, \{\emptyset\} > \text{and } \mathcal{V}_4 = \langle A, \{17\}, \{\emptyset\} > \text{. Let } B = \{i, j, k\} \text{ with }$ a family $\tau_{I_2} = {\{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}}$ where $\mathcal{H}_1 = \langle B, \{i\}, \{k\} \rangle$, $\mathcal{H}_2 = \langle B, \{i, j\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{i, j\} \rangle$ *B*, { \emptyset }, { i, k } >. Let $C = \{2, 3, 5\}$ with $\tau_{I_2} = \{\tilde{C}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \{C, \{3\}, \{2\} > \mathcal{V}_2 = \{C, \{3\}, \{4\} > \{2\} > \{2\}$ C , {3}, {2,5} >, $V_3 = \langle C, {\emptyset}, {\emptyset}, {\emptyset} \rangle$ and $V_4 = \langle C, {\emptyset}, {\emptyset}, {\emptyset} \rangle$, {2,5} >. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t:(B,\tau_{I_2})\to (C,\tau_{I_3})$ as $s(17) = i$, $s(19) = j$, $s(21) = k$, $s(A) = B$, $t(i) = 2$, $t(j) = 3$, $t(k) = 5$ and $t(B) = C$. Then s and t are *J*i-homeomorphism. But, $(t \circ s) < A$, {17,21}, {Ø} >= $t(s(< A, {17,21}, {\emptyset}) >)) = t(< B, {i, k}, {\emptyset} >) = < C, {2, 5}, {\emptyset} >$ which is not *Ji*-open set in *C*. Hence, $(t \circ s)$ is not $\mathcal{I}i$ -open map. Therefore, $(t \circ s)$ is not $\mathcal{I}i$ -homeomorphism.

Theorem 2.2.19: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t : (B, \tau_{I_2}) \to (C, \tau_{I_3})$ are *J***i**-homeomorphism where *B* is a $\mathcal{I}i$ **-** $T_{1/2}$ space then $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also $\mathcal{I}i$ -homeomorphism.

Proof: Let M be intuitionistic open in C . Since t is $\mathcal{I}i$ -homeomorphism, t is $\mathcal{I}i$ -continuous. Therefore $t^{-1}(M)$ is $\mathcal{I}i$ -open in B . Since B is $\mathcal{I}i$ - $\mathcal{T}_{1/2}$ space, $t^{-1}(M)$ is intuitionistic open. Therefore $s^{-1}(t^{-1}(M))$ is *Ji*-open in A. Hence $(t \circ s)$ is *Ji*-continuous. Let L be intuitionistic open in A. Then $s(L)$ is $\mathcal{I}i$ -open in B. Since B is $\mathcal{I}i$ - $T_{1/2}$ space, $s(L)$ is intuitionistic open. Hence $t(s(L))$ is $\mathcal{I}i$ -open in C. Hence $(t \circ s)$ is *Ji*-open map. Therefore $(t \circ s)$ is *Ji*-homeomorphism.

2.3. Intuitionistic Strongly -homeomorphism

Definition 2.3.1: A bijection $s:(A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$) is said to be intuitionistic strongly homeomorphism if both s and s^{-1} are intuitionistic irresolute.

Definition 2.3.2: A bijection $s:(A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$) is said to be intuitionistic strongly ihomeomorphism if both s and s^{-1} are $\mathcal{I}i$ -irresolute.

Example 2.3.3: Let $A = \{i, j\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{j\} \rangle$, $\mathcal{V}_2 = \langle A, \{i\}, \{j\}\rangle$ and $\mathcal{V}_3 = \langle A, \{i\}, \emptyset \rangle$. Let $B = \{x, y\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \emptyset, \emptyset \rangle$, $\mathcal{H}_2 = \langle B, \{x\}, \emptyset \rangle$ and $\mathcal{H}_3 = \langle B, \{x\}, \{y\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

as $s(i) = x$, $s(j) = y$ and $s(A) = B$. Now, $s^{-1}(< B, {\emptyset}, {\emptyset} >) = < A, {\emptyset}, {\emptyset} > , s^{-1}(<$ $B, \{\emptyset\}, \{x\} >) = < A, \{\emptyset\}, \{i\} > , s^{-1}(< B, \{\emptyset\}, \{y\} >) = < A, \{\emptyset\}, \{j\} > , s^{-1}(< B, \{x\}, \{\emptyset\} >) = <$ $A, \{i\}, \{\emptyset\} > S^{-1}(< B, \{y\}, \{\emptyset\}>) = < A, \{j\}, \{\emptyset\} > \text{and} \{j\}, \{x\}, \{y\} > = < A, \{i\}, \{j\} > .$ Therefore, s is $\mathcal{I}i$ -irresolute. Also, $s \leq A, \{\emptyset\}, \{\emptyset\} > = \langle B, \{\emptyset\}, \{\emptyset\} > , s \leq \langle A, \{\emptyset\}, \{i\} > = \langle A, \{\emptyset\}, \{\emptyset\} > , s \leq \langle A, \{\empty$ $B, \{\emptyset\}, \{x\} > S \subset A, \{\emptyset\}, \{i\} > S \subset B, \{\emptyset\}, \{y\} > S \subset A, \{i\}, \{\emptyset\} > S \subset B, \{x\}, \{\emptyset\} > S \subset A, \{i\}, \{j\}$ $\{\emptyset\} > \rho = \langle B, \{y\}, \{\emptyset\} \rangle$ and $s \leq A, \{i\}, \{j\} > \rho \leq B, \{x\}, \{y\} > \rho$. Therefore, s^{-1} is $\mathcal{I}i$ -irresolute. Hence s is intuitionistic strongly i -homeomorphism

We denote the family of all intuitionistic strongly *i*-homeomorphism of an Intuitionistic topological space (A, τ_{I_1}) into itself by $\mathcal{I}Si-h(A)$.

Theorem 2.3.4: Every intuitionistic strongly *i*-homeomorphism is a $\mathcal{I}i$ -homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be a bijective map which is intuitionistic strongly *i*-homeomorphism. Then s and s^{-1} are Ji-irresolute. Since, every Ji-irresolute are Ji-continuous, s and s^{-1} are Jicontinuous. Since, s^{-1} is $\mathcal{I}i$ -continuous, s is $\mathcal{I}i$ -open map. Thus, s is both $\mathcal{I}i$ -continuous and $\mathcal{I}i$ -open. Therefore, *s* is \mathcal{I} *i*-homeomorphism.

Remark 2.3.5: The reverse implication need not be true as seen from the following example.

Example 2.3.6: Let $A = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle A, \{v\}, \{u\} \rangle$

and $\mathcal{H}_2 = \langle A, \{\emptyset\}, \{u\} \rangle$. Let $B = \{k, l\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle A, \{\emptyset\}, \{\emptyset\} \rangle$ $B, \{\emptyset\}, \{\emptyset\} > \mathcal{H}_2 = \langle B, \{k\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{k\}, \{l\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(u) = l$, $s(v) = k$ and $s(A) = B$. Then, $s^{-1}(< B, \{k\}, \{\emptyset\}) = < A, \{v\}, \{\emptyset\} > s^{-1}(<$ $B, \{k\}, \{l\} >] = \langle A, \{v\}, \{u\} > , s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} >) = \langle A, \{\emptyset\}, \{\emptyset\} >$ which are *Ji*-open set in A. So, s is $\mathcal{I}i$ -continuous. Also, $s \leq A, \{v\}, \{u\} >) = \{B, \{k\}, \{l\} > , s \leq A, \{\emptyset\}, \{u\} >) = \{$ $B, \{\emptyset\}, \{l\} >$ which are $\mathcal{I}i$ -open set in B . Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But, $s^{-1}(< B, {\phi}, {k}) > = < A, {\phi}, {\psi} >$, which is not *Ji*-open set in A. Therefore, *s* is not *Ji*irresolute. Hence, s is not intuitionistic strongly i -homeomorphism.

Theorem 2.3.7: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t : (B, \tau_{I_2}) \to (C, \tau_{I_3})$ are intuitionistic strongly *i*homeomorphism then $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also intuitionistic strongly *i*-homeomorphism. **Proof:**(i) $(t \circ s)$ is \mathcal{I} *i*-irresolute

Let *P* be a *Ji*-open in *C*. Now, $(t \circ s)^{-1}(P) = s^{-1}(t^{-1}(P)) = s^{-1}(Q)$ where $Q = t^{-1}(P)$. By hypothesis, $Q = t^{-1}(P)$ is $\mathcal{I}i$ -open in B and again, by hypothesis $s^{-1}(Q)$ is $\mathcal{I}i$ -open in A. (ii) $(t \circ s)^{-1}$ is *Ji*-irresolute

Let G be a *J***i**-open in A. By hypothesis, $s(G)$ is *J***i**-open in B. Again, by hypothesis $(t \circ s)(G)$ = $t(s(G))$ is $\mathcal{I}i$ -open in C. Thus, $(t \circ s)^{-1}$ is $\mathcal{I}i$ -irresolute.

From (i) and (ii), $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also intuitionistic strongly *i*-homeomorphism.

Theorem 2.3.8: Every intuitionistic strongly *i*-homeomorphism is $\mathcal{I}i$ -irresolute.

Proof: Obvious from the definition.

Remark 2.3.9: The reverse implication need not be true as shown in the following example.

Example 2.3.10: Let $A = \{w, e\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{e\} \rangle$ and $\mathcal{V}_2 = \langle A, \{w\}, \emptyset \rangle$. Let $B = \{o, n\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle B, \{n\}, \{o\} \rangle$ and $\mathcal{H}_2 = \langle B, \{\emptyset\}, \{o\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as $s(w) = o$, $s(e) = n$ and $s(A) =$ B. Then, $s^{-1}(< B, \{\emptyset\}, \{\emptyset\}) = \langle A, \{\emptyset\}, \{\emptyset\} > 0, s^{-1}(< B, \{o\}, \{\emptyset\} > 0) = \langle A, \{e\}, \{\emptyset\} > 0, s^{-1}(< B, \{\emptyset\} > 0)$ $B, \{\emptyset\}, \{o\} > \rho = \langle A, \{\emptyset\}, \{e\} > \rho, s^{-1}(\langle B, \{n\}, \{\emptyset\} > \rho) = \langle A, \{w\}, \{\emptyset\} > \text{and} s^{-1}(\langle B, \{n\}, \{w\}, \{\emptyset\} > \rho) = \langle A, \{w\}, \{\emptyset\} > \text{and} s^{-1}(\langle B, \{n\}, \{w\}, \{\emptyset\} > \rho) = \langle A, \{\emptyset\}, \{\emptyset\} > \rho \rangle$ $B, \{\emptyset\}, \{o\} > 0$ = < $A, \{\emptyset\}, \{e\} > 0, s^{-1}$ (< $B, \{n\}, \{\emptyset\} > 0$ = < $A, \{w\},$ $B, \{n\}, \{o\} > = \langle A, \{w\}, \{e\} > \rangle$. Therefore, s is $\mathcal{I}i$ -irresolute. But $(s^{-1})^{-1} (\langle A, \{\emptyset\}, \{w\} >) = \langle A, \{\emptyset\}, \{w\} > \rangle$ $B, \{\emptyset\}, \{n\} >$ which is not *Ji*-open in *B*. Hence (s^{-1}) is not *Ji*-irresolute. Therefore, *s* is not intuitionistic strongly i -homeomorphism.

Theorem 2.3.11: The set $JSi-h(A)$ is a group under the composition of maps.

Proof: Define a binary operation ' * ' from $\mathcal{I}Si-h(A) \times \mathcal{I}Si-h(A) \rightarrow \mathcal{I}Si-h(A)$, by $s * t = s \circ t$ for all s and t in JSi- $h(A)$ and ∘ is the usual operation of composition of maps. Then by theorem 2.3.7, s ∘

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

 $t \in \mathcal{I}$ Si $\text{-} h(A)$. We know that the composition of maps are associative and the identity map $i : \mathcal{I}$ Si $h(A)$ → $\mathcal{I}Si-h(A)$ belonging to $\mathcal{I}Si-h(A)$ is the identity element. If $s \in \mathcal{I}Si-h(A)$ then $s^{-1} \in \mathcal{I}Si-h(A)$ such that $s \circ s^{-1} = s^{-1} \circ s = i$ and hence inverse exists for each element of $\mathcal{I}Si-h(A)$. Therefore, $\mathcal{I}Si$ $h(A)$ is a group under the composition of maps.

Theorem 2.3.12: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic strongly *i*-homeomorphism. Then *s* induces an isomorphism from the group $\mathcal{I}Si-h(A)$ onto the group $\mathcal{I}Si-h(A)$.

Proof: Using the map s, we define a map ψ_s : $\mathcal{I}Si-h(A) \to \mathcal{I}Si-h(B)$ by $\psi_s(h) = s \circ t \circ s^{-1}$ for each $t \in \mathcal{I} \mathcal{S}$ *i*- $h(A)$. By theorem 2.3.7, ψ_s is well defined in general, because $s \circ t \circ s^{-1}$ is a intuitionistic strongly *i*-homeomorphism for every intuitionistic strongly *i*-homeomorphism $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$. Clearly, ψ_s is bijective. Further for all $t_1, t_2 \in \mathcal{I}Si-h(A)$, $\psi_s(t_1 \circ t_2) = s \circ (t_1 \circ t_2) \circ s^{-1} = (s \circ t_1 \circ t_2)$ $(s^{-1}) \circ (s \circ t_2 \circ s^{-1}) = \psi_s(t_1) \circ \psi_s(t_2)$. Therefore, ψ_s is a homeomorphism and hence it induces an isomorphism induced by s.

Theorem 2.3.13: Intuitionistic strongly *i*-homeomorphism is an equivalence relation on the collection of all Intuitionistic topological spaces.

Proof: Reflexive and symmetry are obvious and transitivity follows from theorem 2.3.7.

Theorem 2.3.14: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is an intuitionistic strongly *i*-homeomorphism, where B is $\mathcal{I}i$ - $T_{1/2}$ space then $\mathcal{I}cl_i(s^{-1}(H)) = s^{-1}(\mathcal{I}cl(H))$ for every IS H in B. 2

Proof: Let $H \subseteq B$. Then $\mathcal{I}cl(H)$ is an \mathcal{I} -closed set in B. Since s is an $\mathcal{I}i$ -irresolute mapping, $s^{-1}(3cl(H))$ is an Ji-closed set in A. This implies $3cl_i(s^{-1}(3cl(H))) = s^{-1}(3cl(H))$. Now $\mathcal{I}cl_i(s^{-1}(H)) \subseteq \mathcal{I}cl_i(s^{-1}(\mathcal{I}cl(H))) = s^{-1}(\mathcal{I}cl(H)).$ Since s^{-1} is $\mathcal{I}i$ -irresolute mapping and $\mathcal{I}cl_i(s^{-1}(H))$ is an $\mathcal{I}i$ -closed in A, $(s^{-1})^{-1}(\mathcal{I}cl_i(s^{-1}(H))) = s(\mathcal{I}cl_i(s^{-1}(H)))$ is an $\mathcal{I}i$ -closed in B. Now $H \subseteq (s^{-1})^{-1}(s^{-1}(H)) \subseteq (s^{-1})^{-1}(\mathcal{I}cl_i(s^{-1}(H))) = s(\mathcal{I}cl_i(s^{-1}(H)))$. Therefore $\mathcal{I}cl(H) \subseteq$ $\mathcal{I}cl(s(\mathcal{I}cl_i(s^{-1}(H)))) = s(\mathcal{I}cl_i(s^{-1}(H)))$ since B is an $\mathcal{I}i-T_{1/2}$ space. Hence $s^{-1}(\mathcal{I}cl(H))\subseteq$ $s^{-1}(s(\mathcal{I}cl_i(s^{-1}(H)))) \subseteq \mathcal{I}cl_i(s^{-1}(H))$. Hence, $s^{-1}(\mathcal{I}cl(H))$ ⊆ $\mathcal{I}cl_i(s^{-1}(H))$. Thus we get $\mathcal{I}cl_i(s^{-1}(H)) = s^{-1}(\mathcal{I}cl(H))$ and hence the proof.

III. Conclusion

In this paper we have defined the $\mathcal{I}i$ -homeomorphism and intuitionistic strongly i -

homeomorphism and studied their properties. We conclude that the results of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly *i*-homeomorphism is very useful for future works in Intuitionistic Topological Spaces.

References

- [1] P.Suganya and J. Arul Jesti, On intuitionistic i-open sets in Intuitionistic Topological Spaces, Journal of Algebraic Statistics, Volume 13, No. 2, 2022, p.3182-3187
- [2] P.Suganya and J. Arul Jesti, *Ji*-continuous functions in Intutionistic Topological Spaces, GIS Science Journal, Volume 9 , Issue 6(2022),824-831.
- [3] P.Suganya and J. Arul Jesti, Some New Open and Closed Maps in Intutionistic Topological Spaces, Shodhasamhita : Journal of Fundamental & Comparative Research Vol. VIII, No. 11(XII) : 2022 ,59-65
- [4] S.Selvanayaki and Gnanambal Ilango, Homeomorphism on intuitionistic topological spaces, Annals of Fuzzy Mathematics and Informatics, 6:3, 2015,90-98
- [5] D. Coker. An introduction to intuitionistic topological spaces. BUSEFAL, 81(2000), 51-56.
- [6] D. Coker. A note on intuitionistic sets and intuitionistic points. Turkish J. Math., 20(3)(1996), 343-351.