

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

NEW STRONGLY HOMEOMORPHISM IN INTUITIONISTIC TOPOLOGICAL SPACES

Mrs. P.Suganya, Research Scholar, Reg.No.19222212092015, Department of Mathematics, St. Mary's College(Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti -627012, Tirunelveli) Thoothukudi-1,TamilNadu, India

Dr J. Arul Jesti, Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti -627012, Tirunelveli) Thoothukudi-1,TamilNadu, India

Abstract

The purpose of this paper is to introduce the notion of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly *i*-homeomorphism in Intuitionistic Topological Spaces. Further, some of their basic properties of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly *i*-homeomorphism are investigated. Besides, we proved intuitionistic strongly *i*-homeomorphism is an equivalence relation.

Keywords: $\mathcal{I}i$ -homeomorphism, intuitionistic strongly *i*-homeomorphism, $\mathcal{I}Si$ -h(A)

I. Introduction

Homeomorphism play a vital role in topology. The notion of intuitionistic sets and intuitionistic points was introduced by Coker[6]. Later he developed and introduced the Intuitionistic topological spaces[5] and explained some fundamental properties. Selvanayaki etal[3] introduced homeomorphism and discussed some basic properties. Suganya[1] et al introduced and derived some properties of Ji-open sets in Intuitionistic topological spaces. In this paper we explained a new class of functions on Intuitionistic topological space called Ji-homeomorphism and analyse their characterizations. Additionally, we also define intuitionistic strongly *i*-homeomorphism in intuitionistic topological space and we proved the family of all intuitionistic strongly *i*-homeomorphism satisfies the group properties.

II. *Ji*-homeomorphism and Intuitionistic strongly *i*-homeomorphism

2.1 Preliminaries

We recall some definitions and results which are useful for this sequel. Throughout the present study, \mathcal{I} means intuitionistic, a space A means intuitionistic topological space (A, τ_{I_1}) and B means an intuitionistic topological space (B, τ_{I_2}) unless otherwise mentioned.

Definition 2.1.1. [6] Let *A* be a non-empty set. An intuitionistic set(IS for short) *H* is an object having the form $H = \langle A, H_1, H_2 \rangle$ where H_1, H_2 are subsets of *A* satisfying $H_1 \cap H_2 = \emptyset$. The set H_1 is called the set of members of *H*, while H_2 is called set of non members of *H*.

Definition 2.1.2. [5] An intuitionistic topology (for short IT) on a non-empty set A is a family τ_I of intuitonistic sets in A satisfying following axioms. 1)

$$\widetilde{Q}, \widetilde{A} \in \tau_I$$

2) $G_1 \cap G_2 \in \tau_I$, for any $G_1, G_2 \in \tau_I$

3) $\cup G_{\alpha} \in \tau_I$ for any arbitrary family { $G_{\alpha} / \alpha \in J$ } where (A, τ_I) is called an intuitionistic topological space and any intuitionistic set *H* is called an intuitionistic open set (for short *JOS*) in *A*. The complement H^c of an *JOS H* is called an intuitionistic closed set (for short *JCS*) in *A*.

Definition 2.1.3[1] An intuitionistic set *D* of an Intutionistic topological space (A, τ_I) is said to be an intutionistic *i*-open set (shortly $\mathcal{I}i$ -open set) if there exist an intutionistic open set $H \neq \tilde{\emptyset}$ and \tilde{A} such that $D \subseteq \mathcal{I}cl(D \cap H)$.

Definition 2.1.4.[3] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is \mathcal{I} -open map if the image of every \mathcal{I} -open set in A is \mathcal{I} -open in B.

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

Definition 2.1.5.[3] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is $\mathcal{I}i$ -closed map if the image of every \mathcal{I} -closed set in A is $\mathcal{I}i$ -closed in B.

Definition 2.1.6.[2]A mapping $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is $\mathcal{I}i$ - continuous function if the inverse image of every intuitionistic open set in (B, τ_{I_2}) is $\mathcal{I}i$ -open in (A, τ_{I_1}) .

Definition 2.1.7.[2] A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be \mathcal{I} i-irresolute if $s^{-1}(G)$ is a \mathcal{I} i-open in (A, τ_{I_1}) for every \mathcal{I} i-open set G in (B, τ_{I_2}) .

Definition 2.1.8.[4] A bijective function $s: (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be \mathcal{I} -homeomorphism if s is $\mathcal{I}i$ -continuous and $\mathcal{I}i$ -open map.

Definition 2.1.9.[1] Let (A, τ_{I_1}) be an Intuitionistic topological space and let $H \subseteq A$. The intuitionistic *i*-interior of *H* is defined as the union of all $\mathcal{I}i$ -open sets contained in *A* and is denoted by $\mathcal{I}int_i(H)$. It is clear that $\mathcal{I}int_i(H)$ is the largest $\mathcal{I}i$ -open set, for any subset *H* of *A*.

Definition 2.1.10.[1] Let (A, τ_{I_1}) be an intuitionistic topological space and let $H \subseteq A$. The $\mathcal{I}i$ -closure of H is defined as the intersection of all $\mathcal{I}i$ -closed sets in A containing H, and is denoted by $\mathcal{I}cl_i(H)$. It is clear that $\mathcal{I}cl_i(H)$ is the smallest $\mathcal{I}i$ -closed set for any subset H of A.

2.2. Ji-homeomorphism

Definition 2.2.1: A function $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is a *Ji*-homeomorphism if

1. *s* is 1-1 and onto

2. s is *Ii*-continuous

3. s is Ji-open map

Example 2.2.2: Let $A = \{17, 19, 21\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4\}$ where $\mathcal{V}_1 = \langle A, \{17\}, \{19\} \rangle$, $\mathcal{V}_2 = \langle A, \emptyset, 19 \rangle$, $\mathcal{V}_3 = \langle A, \{17, 21\}, \emptyset \rangle$ and $\mathcal{V}_4 = \langle A, \{17\}, \emptyset \rangle$. Let $B = \{85, 90, 95\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{85\}, \{95\} \rangle$, $\mathcal{H}_2 = \langle B, \{85, 90\}, \emptyset \rangle$ and $\mathcal{H}_3 = \langle B, \emptyset, \{85, 95\} \rangle$. Define $s : (A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$ as s(17) = 85, s(19) = 90, s(21) = 95 and s(A) = B. Then, $s(\langle A, \{17\}, \{19\} \rangle) = \langle B, \{85\}, \{90\} \rangle$

, $s(< A, \{\emptyset\}, \{19\} >) = < B, \{\emptyset\}, \{90\} >, s(< A, \{17, 21\}, \{\emptyset\} >) = < B, \{85, 95\}, \{\emptyset\} > and$

 $s(< A, \{17\}, \{\emptyset\} >) = < B, \{85\}, \{\emptyset\} >$. Therefore, *s* is $\mathcal{I}i$ -open. Also, $s^{-1}(< B, \{85\}, \{95\} > = < A, \{17\}, \{21\} >, s^{-1}(< B, \{85,90\}, \{\emptyset\} > = < A, \{17,19\}, \{\emptyset\} > and s^{-1}(< B, \{\emptyset\}, \{85,95\} > = < A, \{\emptyset\}, \{17,21\} >$. Therefore, *s* is $\mathcal{I}i$ -continuous. Hence, *s* is $\mathcal{I}i$ -homeomorphism.

Theorem 2.2.3: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be a one-one onto mapping. Then, s is a *Ji*-homeomorphism if and only if s is *Ji*-closed and *Ji*-continuous.

Proof: Let *s* be a *Ji*-homeomorphism. Then, *s* is *Ji*-continuous. Let *K* be a *J*-closed set in *A*. Then A - K is *J*-open. Since *s* is *Ji*-open, s(A - K) is *Ji*-open in *B*. That is, B - s(K) is *Ji*-open in *B*. Therefore, s(K) is *Ji*-closed in *B*. Hence, the image of every *J*-closed set in *A* is *Ji*-closed in *B*. That is, *s* is *Ji*-closed. Conversely, let *s* be a *Ji*-closed and *Ji*-continuous. Let *R* be *J*-open in *A*. Then A - R is *J*-closed in *A*. Since *s* is *Ji*-closed, s(A - R) = B - s(R) is *Ji*-closed in *B*. Therefore, s(R) is *Ji*-open and hence, *s* is a *Ji*-homeomorphism.

Theorem 2.2.4: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an one-one, onto and $\mathcal{I}i$ -continuous map. Then the following statements are equivalent

(i) s is an $\mathcal{I}i$ -open.

(ii) s is an $\mathcal{I}i$ -homeomorphism.

(iii) s is an *Ii*-closed.

Proof:(i) \Leftrightarrow (ii) Obvious from the definition.

(ii) \Leftrightarrow (iii) Let Y be a \mathcal{I} -closed set in A. Then Y^c is \mathcal{I} -open in A. By hypothesis, $s(Y^c) = (s(Y))^c$ is an $\mathcal{I}i$ -open in B. That is, s(Y) is $\mathcal{I}i$ -closed in B. Therefore, s is an $\mathcal{I}i$ -closed.

(iii) \Leftrightarrow (i) Let *C* be a *J*-open set in *A*. Then *C^c* is *J*-closed in *A*. By hypothesis, $s(C^c) = (s(C))^c$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

is $\mathcal{I}i$ -closed in B. That is, s(C) is $\mathcal{I}i$ -open in B. Therefore, s is an $\mathcal{I}i$ -open map. **Theorem 2.2.5:** If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is bijective and $s(\mathcal{I}cl_i(N)) = \mathcal{I}cl(s(N))$ then s is $\mathcal{I}i$ homeomorphism for every subset N of A.

Proof: If $s(\Im cl_i(N)) = \Im cl(s(N))$ for every subset N of A, then s is \Im -continuous. If N is \Im -closed in A then N is \Im -closed in A. Then $\Im cl_i(A) = A \Rightarrow s(\Im cl_i(A)) = s(A)$. Hence by the given hypothesis, it follows that $\Im cl(s(A)) = s(A)$. Thus s(A) is \Im -closed in B and hence \Im -closed in B for every \Im -closed set N in A. That is, s is \Im -closed. Hence s is \Im -homeomorphism.

Remark 2.2.6: The reverse implication is not true as shown in the following example.

Example 2.2.7: Let $A = \{p, q\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{q\} \rangle$ and $\mathcal{V}_2 = \langle A, \{p\}, \emptyset \rangle$. Let $B = \{x, y\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{\emptyset\}, \{\emptyset\} \rangle$, $\mathcal{H}_2 = \langle B, \{x\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{x\}, \{y\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as s(p) = x, s(q) = y and s(A) = B. Then, $s(\langle A, \{\emptyset\}, \{q\} \rangle) = \langle B, \{\emptyset\}, \{y\} \rangle$, $s(A, \{\emptyset\}, \{g\} \rangle) = \langle B, \{\emptyset\}, \{y\} \rangle$.

 $\{p\}, \{\emptyset\} >) = \langle B, \{x\}, \{\emptyset\} > . \text{ Therefore, } s \text{ is } \mathcal{I}i\text{-open. Also, } s^{-1}(\langle B, \{x\}, \{\emptyset\} > = \langle A, \{p\}, \{\emptyset\} >, s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} > = \langle A, \{\emptyset\}, \{\emptyset\} > and s^{-1}(\langle B, \{x\}, \{y\} > = \langle A, \{p\}, \{q\} >. \text{ Therefore, } s \text{ is } \mathcal{I}i\text{-continuous. Hence, } s \text{ is } \mathcal{I}i\text{-homeomorphism. Now, } s(\mathcal{I}cl_i(\langle A, \{\emptyset\}, \{q\} >)) = s(\langle A, \{\emptyset\}, \{q\} >)) = \langle B, \{\emptyset\}, \{y\} > and \mathcal{I}cl(s(\langle A, \{\emptyset\}, \{q\} >)) = \langle B, \{\emptyset\}, \{\emptyset\} >. \text{ Hence, } s(\mathcal{I}cl_i(\langle A, \{\emptyset\}, \{q\} >))) \neq \mathcal{I}cl(s(\langle A, \{\emptyset\}, \{q\} >)).$

Theorem 2.2.8: Every intuitionistic homeomorphism is *Ji*-homeomorphism but not conversely.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be intuitionistic homeomorphism then *s* is intuitionistic continuous and intuitionistic open. Let *L* be intuitionistic open set in *A*. Since every intuitionistic open set is *Ji*-open and *s* is *J*-open map, then s(L) is *Ji*-open in *B*. Hence, *s* is *Ji*-open. Let *K* be a intuitionistic open set in *B*. Since, *s* is intuitionistic continuous, $s^{-1}(K)$ is intuitionistic open in *A*. Since every intuitionistic open is *Ji*-open, $s^{-1}(K)$ is *Ji*-open in *A* which implies *s* is *Ji*-continuous. Hence *s* is *Ji*-homeomorphism.

Remark 2.2.9: The reverse implication need not be true as seen from the following example.

Example 2.2.10: Let $A = \{i, j\}$ with $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{j\} \rangle, \mathcal{V}_2 = \langle A, \{i\}, \{j\} \rangle$ and $\mathcal{V}_3 = \langle A, \{i\}, \{\emptyset\} \rangle$. Let $B = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle B, \{u\}, \{\emptyset\} \rangle$ and $\mathcal{H}_2 = \langle B, \{\emptyset\}, \{v\} \rangle$. Define $s : (A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$ as s(i) = u, s(j) = v and s(A) = B. Then, $s^{-1}(\langle B, \{\emptyset\}, \{v\} \rangle) = \langle A, \{\emptyset\}, \{j\} \rangle$, $s^{-1}(\langle B, \{u\}, \{\emptyset\} \rangle) = \langle A, \{i\}, \{\emptyset\} \rangle$ which are $\mathcal{I}i$ -open set in A. Hence, s is $\mathcal{I}i$ -continuous. Also, $s(\langle A, \{\emptyset\}, \{j\} \rangle) = \langle B, \{\emptyset\}, \{v\} \rangle$ which are $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But $s(\langle A, \{i\}, \{j\} \rangle) = \langle B, \{u\}, \{v\} \rangle$ which is not intuitionistic open set in B. Hence s is not intuitionistic homeomorphism.

Theorem 2.2.11: Every intuitionistic α -homeomorphism is $\mathcal{I}i$ -homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic α -homeomorphism, then s is bijective, intuitionistic α -continuous and intuitionistic α -open. Let E be an intuitionistic-open set in B. Since, s is intuitionistic α -continuous, $s^{-1}(E)$ is intuitionistic α -open in X. Since, all the intuitionistic α -open set is $\mathcal{I}i$ -open, $s^{-1}(E)$ is $\mathcal{I}i$ -open in A which implies s is $\mathcal{I}i$ -continuous. Let H be a intuitionistic-open set in A. Since, s is intuitionistic α -open, s(H) is intuitionistic α -open in B. Since, every intuitionistic α -open set is $\mathcal{I}i$ -open, s(H) is $\mathcal{I}i$ -open in B which implies s is $\mathcal{I}i$ -open. Thus, s is $\mathcal{I}i$ -homeomorphism. **Remark 2.2.12:**The reverse implication need not be true as seen from the following example.

Example 2.2.13: Let $A = \{g, h\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{\emptyset\} \rangle$ and $\mathcal{V}_2 = \langle A, \{h\}, \{\emptyset\} \rangle$. Let $B = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle B, \{v\}, \{u\} \rangle$ and $\mathcal{H}_2 = \langle B, \{\emptyset\}, \{u\} \rangle$. Define $s : (A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$ as s(g) = u, s(h) = v and s(A) = B. Then, $s^{-1}(\langle B, \{\emptyset\}, \{u\} \rangle = \langle A, \{\emptyset\}, \{g\} \rangle$, $s^{-1}(\langle B, \{v\}, \{u\} \rangle) = \langle A, \{h\}, \{g\} \rangle$ which are $\mathcal{I}i$ -open set in A. Hence, s is $\mathcal{I}i$ -continuous. Also, $s(\langle A, \{\emptyset\}, \{\emptyset\} \rangle) = \langle B, \{\emptyset\}, \{\emptyset\} \rangle$, $s(\langle A, \{0\}, \{0\} \rangle) = \langle B, \{0\}, \{0\} \rangle$.

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

 $A, \{h\}, \{\emptyset\} > 0 = \langle B, \{v\}, \{\emptyset\} > which are \mathcal{I}i$ -open set in B. Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But $s(\langle A, \{\emptyset\}, \{\emptyset\} > 0) = \langle B, \{\emptyset\}, \{\emptyset\} > which is not intuitionistic <math>\alpha$ -open set in B. Hence s is not intuitionistic α -homeomorphism.

Theorem 2.2.14: Every intuitionistic semi homeomorphism is $\mathcal{I}i$ -homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic semi-homeomorphism, then *s* is bijective, intuitionistic semi-continuous and intuitionistic semi-open. Since, every intuitionistic semi-continuous map is $\mathcal{I}i$ -continuous and intuitionistic semi-open map is $\mathcal{I}i$ -open which implies *s* is both $\mathcal{I}i$ -continuous and $\mathcal{I}i$ -continuous. Therefore, *s* is $\mathcal{I}i$ -homeomorphism.

Remark 2.2.15: The reverse implication is not true as seen from the following example.

Example 2.2.16: Let $A = \{7,14,21\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{14\}, \{7\} \rangle, \mathcal{V}_2 = \langle A, \{14\}, \{7,21\} \rangle, \mathcal{V}_3 = \langle A, \emptyset, \{7\} \rangle$ and $\mathcal{V}_4 = \langle A, \emptyset, \{7,21\} \rangle$. Let $B = \{m,n,o\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{o\}, \{k\} \rangle, \mathcal{H}_2 = \langle B, \{m,n\}, \emptyset \rangle$ and $\mathcal{H}_3 = \langle B, \emptyset, \{m,o\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ as s(7) = o, s(14) = m, s(21) = n and s(A) = B. Now, $s^{-1}(\langle B, \{\emptyset\}, \{m,o\} \rangle = \langle A, \{\emptyset\}, \{7,14\} \rangle, s^{-1}(\langle B, \{m,n\}, \{\emptyset\} \rangle) = \langle A, \{14,21\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{m\}, \{o\} \rangle = \langle A, \{14\}, \{7\} \rangle)$ which are $\mathcal{I}i$ -open set in A. So, s is $\mathcal{I}i$ -continuous. Also, $s(\langle A, \{14\}, \{7\} \rangle) = \langle B, \{m\}, \{o\} \rangle, s(\langle A, \{14\}, \{7,21\} \rangle) = \langle B, \{m\}, \{n,o\} \rangle, s(\langle A, \{\emptyset\}, \{7\} \rangle) = \langle B, \{\emptyset\}, \{n,o\} \rangle$, which are $\mathcal{I}i$ -open set in B. Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But $s^{-1}(\langle B, \{\emptyset\}, \{m,o\} \rangle = \langle A, \{\emptyset\}, \{7,14\} \rangle$, which is not intuitionistic semi-open set in A. Therefore, s is not intuitionistic semi-homeomorphism.

Remark 2.2.17: Composition of two Ji-homeomorphism is not Ji-homeomorphism.

Example 2.2.18: Let $A = \{17, 19, 21\}$ with $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{17\}, \{19\} \rangle$ $\mathcal{V}_2 = \langle A, \{\emptyset\}, \{19\} \rangle$, $\mathcal{V}_3 = \langle A, \{17, 21\}, \{\emptyset\} \rangle$ and $\mathcal{V}_4 = \langle A, \{17\}, \{\emptyset\} \rangle$. Let $B = \{i, j, k\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{i\}, \{k\} \rangle$, $\mathcal{H}_2 = \langle B, \{i, j\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{\emptyset\}, \{i, k\} \rangle$. Let $C = \{2, 3, 5\}$ with $\tau_{I_3} = \{\tilde{C}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle C, \{3\}, \{2\} \rangle$, $\mathcal{V}_2 = \langle C, \{3\}, \{2, 5\} \rangle$, $\mathcal{V}_3 = \langle C, \{\emptyset\}, \{2\} \rangle$ and $\mathcal{V}_4 = \langle C, \{\emptyset\}, \{2, 5\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t : (B, \tau_{I_2}) \to (C, \tau_{I_3})$ as s(17) = i, s(19) = j, s(21) = k, s(A) = B, t(i) = 2, t(j) = 3, t(k) = 5 and t(B) = C. Then s and t are $\mathcal{I}i$ -homeomorphism. But, $(t \circ s) \langle A, \{17, 21\}, \{\emptyset\} \rangle = t(\langle B, \{i, k\}, \{\emptyset\} \rangle) = \langle C, \{2, 5\}, \{\emptyset\} \rangle$ which is not $\mathcal{I}i$ -open set in C. Hence, $(t \circ s)$ is not $\mathcal{I}i$ -open map. Therefore, $(t \circ s)$ is not $\mathcal{I}i$ -homeomorphism.

Theorem 2.2.19: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t : (B, \tau_{I_2}) \to (C, \tau_{I_3})$ are $\mathcal{I}i$ -homeomorphism where B is a $\mathcal{I}i$ - T_{1_2} space then $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also $\mathcal{I}i$ -homeomorphism.

Proof: Let *M* be intuitionistic open in *C*. Since *t* is $\mathcal{I}i$ -homeomorphism, *t* is $\mathcal{I}i$ -continuous. Therefore $t^{-1}(M)$ is $\mathcal{I}i$ -open in *B*. Since *B* is $\mathcal{I}i \cdot T_{1/2}$ space , $t^{-1}(M)$ is intuitionistic open. Therefore $s^{-1}(t^{-1}(M))$ is $\mathcal{I}i$ -open in *A*. Hence $(t \circ s)$ is $\mathcal{I}i$ -continuous. Let *L* be intuitionistic open in *A*. Then s(L) is $\mathcal{I}i$ -open in *B*. Since *B* is $\mathcal{I}i \cdot T_{1/2}$ space , s(L) is intuitionistic open. Hence t(s(L)) is $\mathcal{I}i$ -open in *C*. Hence $(t \circ s)$ is $\mathcal{I}i$ -open map. Therefore $(t \circ s)$ is $\mathcal{I}i$ -homeomorphism.

2.3. Intuitionistic Strongly *i*-homeomorphism

Definition 2.3.1: A bijection $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be intuitionistic strongly homeomorphism if both *s* and s^{-1} are intuitionistic irresolute.

Definition 2.3.2: A bijection $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is said to be intuitionistic strongly i-homeomorphism if both *s* and s^{-1} are $\mathcal{I}i$ -irresolute.

Example 2.3.3: Let $A = \{i, j\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{j\} \rangle$, $\mathcal{V}_2 = \langle A, \{i\}, \{j\} \rangle$ and $\mathcal{V}_3 = \langle A, \{i\}, \emptyset \rangle$. Let $B = \{x, y\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \emptyset, \emptyset \rangle$, $\mathcal{H}_2 = \langle B, \{x\}, \emptyset \rangle$ and $\mathcal{H}_3 = \langle B, \{x\}, \{y\} \rangle$. Define $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

as s(i) = x, s(j) = y and s(A) = B. Now, $s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} \rangle) = \langle A, \{\emptyset\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{\emptyset\}, \{i\} \rangle) = \langle A, \{\emptyset\}, \{i\} \rangle, s^{-1}(\langle B, \{\emptyset\}, \{i\} \rangle) = \langle A, \{i\}, \{\emptyset\} \rangle) = \langle A, \{i\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{x\}, \{\emptyset\} \rangle) = \langle A, \{i\}, \{\emptyset\} \rangle) = \langle A, \{i\}, \{\emptyset\} \rangle$ and $s^{-1}(\langle B, \{x\}, \{y\} \rangle) = \langle A, \{i\}, \{j\} \rangle$. Therefore, s is Ji-irresolute. Also, $s(\langle A, \{\emptyset\}, \{\emptyset\} \rangle) = \langle B, \{\emptyset\}, \{\emptyset\} \rangle, s(\langle A, \{\emptyset\}, \{i\} \rangle) = \langle B, \{\emptyset\}, \{x\} \rangle, s(\langle A, \{\emptyset\}, \{j\} \rangle) = \langle B, \{\emptyset\}, \{y\} \rangle) = \langle B, \{y\}, \{\emptyset\} \rangle$ and $s(\langle A, \{i\}, \{j\} \rangle) = \langle B, \{x\}, \{\emptyset\} \rangle) = \langle B, \{y\}, \{\emptyset\} \rangle$ and $s(\langle A, \{i\}, \{j\} \rangle) = \langle B, \{x\}, \{y\} \rangle)$. Therefore, s^{-1} is Ji-irresolute. Hence s is intuitionistic strongly i-homeomorphism

We denote the family of all intuitionistic strongly *i*-homeomorphism of an Intuitionistic topological space (A, τ_{I_1}) into itself by JSi-h(A).

Theorem 2.3.4: Every intuitionistic strongly *i*-homeomorphism is a *Ji*-homeomorphism.

Proof: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be a bijective map which is intuitionistic strongly *i*-homeomorphism. Then *s* and s^{-1} are $\mathcal{I}i$ -irresolute. Since, every $\mathcal{I}i$ -irresolute are $\mathcal{I}i$ -continuous, *s* and s^{-1} are $\mathcal{I}i$ -continuous. Since, s^{-1} is $\mathcal{I}i$ -continuous, *s* is $\mathcal{I}i$ -open map. Thus, *s* is both $\mathcal{I}i$ -continuous and $\mathcal{I}i$ -open. Therefore, *s* is $\mathcal{I}i$ -homeomorphism.

Remark 2.3.5: The reverse implication need not be true as seen from the following example.

Example 2.3.6: Let $A = \{u, v\}$ with a family $\tau_{I_2} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\}$ where $\mathcal{H}_1 = \langle A, \{v\}, \{u\} \rangle$

and $\mathcal{H}_2 = \langle A, \{\emptyset\}, \{u\} \rangle$. Let $B = \{k, l\}$ with a family $\tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3\}$ where $\mathcal{H}_1 = \langle B, \{\emptyset\}, \{\emptyset\} \rangle$, $\mathcal{H}_2 = \langle B, \{k\}, \{\emptyset\} \rangle$ and $\mathcal{H}_3 = \langle B, \{k\}, \{l\} \rangle$. Define $s : (A, \tau_{I_1}) \rightarrow (B, \tau_{I_2})$ as s(u) = l, s(v) = k and s(A) = B. Then, $s^{-1}(\langle B, \{k\}, \{\emptyset\} \rangle = \langle A, \{v\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} \rangle) = \langle A, \{v\}, \{u\} \rangle, s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} \rangle) = \langle A, \{\emptyset\}, \{u\} \rangle$ which are $\mathcal{I}i$ -open set in A. So, s is $\mathcal{I}i$ -continuous. Also, $s(\langle A, \{v\}, \{u\} \rangle) = \langle B, \{k\}, \{l\} \rangle$, $s(\langle A, \{\emptyset\}, \{u\} \rangle) = \langle B, \{\emptyset\}, \{l\} \rangle$ which are $\mathcal{I}i$ -open set in B. Hence, s is $\mathcal{I}i$ -open map. Therefore, s is $\mathcal{I}i$ -homeomorphism. But, $s^{-1}(\langle B, \{\emptyset\}, \{k\} \rangle) = \langle A, \{\emptyset\}, \{v\} \rangle$, which is not $\mathcal{I}i$ -open set in A. Therefore, s is not $\mathcal{I}i$ -irresolute. Hence, s is not intuitionistic strongly i-homeomorphism.

Theorem 2.3.7: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ and $t : (B, \tau_{I_2}) \to (C, \tau_{I_3})$ are intuitionistic strongly *i*-homeomorphism then $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also intuitionistic strongly *i*-homeomorphism. **Proof:**(i) $(t \circ s)$ is $\mathcal{I}i$ -irresolute

Let P be a $\mathcal{J}i$ -open in C. Now, $(t \circ s)^{-1}(P) = s^{-1}(t^{-1}(P)) = s^{-1}(Q)$ where $Q = t^{-1}(P)$. By hypothesis, $Q = t^{-1}(P)$ is $\mathcal{J}i$ -open in B and again, by hypothesis $s^{-1}(Q)$ is $\mathcal{J}i$ -open in A.

(ii) $(t \circ s)^{-1}$ is $\mathcal{I}i$ -irresolute

Let G be a $\mathcal{I}i$ -open in A. By hypothesis, s(G) is $\mathcal{I}i$ -open in B. Again, by hypothesis $(t \circ s)(G) = t(s(G))$ is $\mathcal{I}i$ -open in C. Thus, $(t \circ s)^{-1}$ is $\mathcal{I}i$ -irresolute.

From (i) and (ii), $t \circ s : (A, \tau_{I_1}) \to (C, \tau_{I_3})$ is also intuitionistic strongly *i*-homeomorphism.

Theorem 2.3.8: Every intuitionistic strongly *i*-homeomorphism is $\mathcal{I}i$ -irresolute.

Proof: Obvious from the definition.

Remark 2.3.9: The reverse implication need not be true as shown in the following example. **Example 2.3.10:** Let $A = \{w, e\}$ with a family $\tau_{I_1} = \{\tilde{A}, \tilde{\emptyset}, \mathcal{V}_1, \mathcal{V}_2\}$ where $\mathcal{V}_1 = \langle A, \{\emptyset\}, \{e\} \rangle$ and

 $\begin{aligned} \mathcal{V}_2 &= \langle A, \{w\}, \emptyset \rangle \text{. Let } B = \{o, n\} \text{ with a family } \tau_{I_2} = \{\tilde{B}, \tilde{\emptyset}, \mathcal{H}_1, \mathcal{H}_2\} \text{ where } \mathcal{H}_1 = \langle B, \{n\}, \{o\} \rangle \\ \text{and } \mathcal{H}_2 &= \langle B, \{\emptyset\}, \{o\} \rangle \text{. Define } s : (A, \tau_{I_1}) \to (B, \tau_{I_2}) \text{ as } s(w) = o, s(e) = n \text{ and } s(A) = \\ B. \text{ Then, } s^{-1}(\langle B, \{\emptyset\}, \{\emptyset\} \rangle = \langle A, \{\emptyset\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{o\}, \{\emptyset\} \rangle) = \langle A, \{e\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{0\}, \{0\} \rangle) = \langle A, \{e\}, \{\emptyset\} \rangle, s^{-1}(\langle B, \{0\}, \{0\} \rangle) = \langle A, \{0\}, \{0\} \rangle \text{ and } s^{-1}(\langle B, \{n\}, \{0\} \rangle) = \langle A, \{0\}, \{0\} \rangle \text{ and } s^{-1}(\langle B, \{n\}, \{0\} \rangle) = \langle A, \{w\}, \{e\} \rangle \text{. Therefore, } s \text{ is } \mathcal{I}i\text{-irresolute. But } (s^{-1})^{-1}(\langle A, \{\emptyset\}, \{w\} \rangle) = \langle B, \{\emptyset\}, \{n\} \rangle \text{ which is not } \mathcal{I}i\text{-open in } B. \text{ Hence } (s^{-1}) \text{ is not } \mathcal{I}i\text{-irresolute. Therefore, } s \text{ is not intuitionistic strongly } i\text{-homeomorphism.} \end{aligned}$

Theorem 2.3.11: The set JSi-h(A) is a group under the composition of maps.

Proof: Define a binary operation '*' from $\Im Si \cdot h(A) \times \Im Si \cdot h(A) \to \Im Si \cdot h(A)$, by $s * t = s \circ t$ for all s and t in $\Im Si \cdot h(A)$ and \circ is the usual operation of composition of maps. Then by theorem 2.3.7, $s \circ$

ISSN: 0970-2555

Volume : 52, Issue 7, No. 2, July : 2023

 $t \in \mathcal{J}Si \cdot h(A)$. We know that the composition of maps are associative and the identity map $i : \mathcal{J}Si \cdot h(A) \rightarrow \mathcal{J}Si \cdot h(A)$ belonging to $\mathcal{J}Si \cdot h(A)$ is the identity element. If $s \in \mathcal{J}Si \cdot h(A)$ then $s^{-1} \in \mathcal{J}Si \cdot h(A)$ such that $s \circ s^{-1} = s^{-1} \circ s = i$ and hence inverse exists for each element of $\mathcal{J}Si \cdot h(A)$. Therefore, $\mathcal{J}Si \cdot h(A)$ is a group under the composition of maps.

Theorem 2.3.12: Let $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ be an intuitionistic strongly *i*-homeomorphism. Then *s* induces an isomorphism from the group $\mathcal{IS}i$ -h(A) onto the group $\mathcal{IS}i$ -h(A).

Proof: Using the map *s*, we define a map $\psi_s: \Im Si \cdot h(A) \to \Im Si \cdot h(B)$ by $\psi_s(h) = s \circ t \circ s^{-1}$ for each $t \in \Im Si \cdot h(A)$. By theorem 2.3.7, ψ_s is well defined in general, because $s \circ t \circ s^{-1}$ is a intuitionistic strongly *i*-homeomorphism for every intuitionistic strongly *i*-homeomorphism $s: (A, \tau_{I_1}) \to (B, \tau_{I_2})$. Clearly, ψ_s is bijective. Further for all $t_1, t_2 \in \Im Si \cdot h(A)$, $\psi_s(t_1 \circ t_2) = s \circ (t_1 \circ t_2) \circ s^{-1} = (s \circ t_1 \circ s^{-1}) \circ (s \circ t_2 \circ s^{-1}) = \psi_s(t_1) \circ \psi_s(t_2)$. Therefore, ψ_s is a homeomorphism and hence it induces an isomorphism induced by *s*.

Theorem 2.3.13: Intuitionistic strongly *i*-homeomorphism is an equivalence relation on the collection of all Intuitionistic topological spaces.

Proof: Reflexive and symmetry are obvious and transitivity follows from theorem 2.3.7.

Theorem 2.3.14: If $s : (A, \tau_{I_1}) \to (B, \tau_{I_2})$ is an intuitionistic strongly *i*-homeomorphism, where *B* is $\mathcal{I}i-T_{1/2}$ space then $\mathcal{I}cl_i(s^{-1}(H)) = s^{-1}(\mathcal{I}cl(H))$ for every IS *H* in *B*.

Proof: Let $H \subseteq B$. Then $\mathcal{J}cl(H)$ is an \mathcal{J} -closed set in B. Since s is an $\mathcal{J}i$ -irresolute mapping, $s^{-1}(\mathcal{J}cl(H))$ is an $\mathcal{J}i$ -closed set in A. This implies $\mathcal{J}cl_i(s^{-1}(\mathcal{J}cl(H))) = s^{-1}(\mathcal{J}cl(H))$. Now $\mathcal{J}cl_i(s^{-1}(H)) \subseteq \mathcal{J}cl_i(s^{-1}(\mathcal{J}cl(H))) = s^{-1}(\mathcal{J}cl(H))$. Since s^{-1} is $\mathcal{J}i$ -irresolute mapping and $\mathcal{J}cl_i(s^{-1}(H))$ is an $\mathcal{J}i$ -closed in A, $(s^{-1})^{-1}(\mathcal{J}cl_i(s^{-1}(H))) = s(\mathcal{J}cl_i(s^{-1}(H)))$ is an $\mathcal{J}i$ -closed in B. Now $H \subseteq (s^{-1})^{-1}(s^{-1}(H)) \subseteq (s^{-1})^{-1}(\mathcal{J}cl_i(s^{-1}(H))) = s(\mathcal{J}cl_i(s^{-1}(H)))$. Therefore $\mathcal{J}cl(H) \subseteq \mathcal{J}cl(s(\mathcal{J}cl_i(s^{-1}(H)))) = s(\mathcal{J}cl_i(s^{-1}(H)))$ since B is an $\mathcal{J}i$ - $T_{1/2}$ space. Hence $s^{-1}(\mathcal{J}cl(H)) \subseteq s^{-1}(s(\mathcal{J}cl_i(s^{-1}(H)))) \subseteq \mathcal{J}cl_i(s^{-1}(H))$. Hence, $s^{-1}(\mathcal{J}cl(H)) \subseteq \mathcal{J}cl_i(s^{-1}(H))$. Thus we get $\mathcal{J}cl_i(s^{-1}(H)) = s^{-1}(\mathcal{J}cl(H))$ and hence the proof.

III. Conclusion

In this paper we have defined the $\mathcal{I}i$ -homeomorphism and intuitionistic strongly i-

homeomorphism and studied their properties. We conclude that the results of $\mathcal{I}i$ -homeomorphism and intuitionistic strongly *i*-homeomorphism is very useful for future works in Intuitionistic Topological Spaces.

References

- [1] P.Suganya and J. Arul Jesti, On intuitionistic i-open sets in Intuitionistic Topological Spaces, Journal of Algebraic Statistics, Volume 13, No. 2, 2022, p.3182-3187
- [2] P.Suganya and J. Arul Jesti, *Ji*-continuous functions in Intutionistic Topological Spaces, GIS Science Journal, Volume 9, Issue 6(2022),824-831.
- [3] P.Suganya and J. Arul Jesti, Some New Open and Closed Maps in Intutionistic Topological Spaces, Shodhasamhita : Journal of Fundamental & Comparative Research Vol. VIII, No. 11(XII) : 2022 ,59-65
- [4] S.Selvanayaki and Gnanambal Ilango, Homeomorphism on intuitionistic topological spaces, Annals of Fuzzy Mathematics and Informatics, 6:3, 2015,90-98
- [5] D. Coker. An introduction to intuitionistic topological spaces. BUSEFAL, 81(2000), 51-56.
- [6] D. Coker. A note on intuitionistic sets and intuitionistic points. Turkish J. Math., 20(3)(1996), 343-351.