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Abstract:   

Let G be a connected graph on n vertices ,for each vertex v of a graph G, take a new vertex 'v .  

Join  'v  to all the vertices of G adjacent to v.  If q is the parameter, the Wiener polynomial of  G is  

 

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),(),(
GVvu

vudqqGW .  Here the sum is taken over all set of vertices. In this paper we obtain a relation 

between the Wiener polynomial of Splitting graph S(G) and the graph G when 
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1. Introduction:  A topological index (TI) is a number associated with a chemical structure presented by 

a connected graph where atoms are represented by vertices (points) and covalent bonds by edges (lines) 

connecting adjacent vertices [1] . Since then, many new Topological Indices have been added for 

quantitative structure-property relationship (QSPR). Apparently, the chemist Harry Wiener was the first 

to point out in 1947 that W(G) is well correlated with  certain physico-chemical properties of organic 

compound from which G is  derived.  In 1976, Entringer, Jackson and Snyder published a paper [5  ] 

which is historically the first mathematics paper  on W(G). The graphical invariant W(G) has been 

studied by many researchers [2,3,4 ] under different names such as distance, transmission, total status 

and sum of all distances.   A quantity closely related to W(G)  is the mean distance between the vertices 

or the average distance between the vertices of G when G represents a network.(eg. An interconnection 

network connecting many processors).  The average distance of G between the nodes of the network is 

the measure of the average delay of messages for traversing from one node to another.  Today , the 

wiener index is one of the most widely used topological index in chemical graph theory.  Due to its 

strong connection to chemistry, it is related to boiling  point , heat of evaporation, heat of formation, 

surface tension, total energy of polymers, ultra sonic sound velocity ,internal energy etc.[6 ]. For this 

reason wiener index is widely studied by chemists. 

 

The Wiener index of a connected graph is defined as the sum of the distances between all 

unordered pairs of vertices of the graph, where the distance between two vertices is the length of the 

shortest path connecting them in the graph.    
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where d(u, v) denote the distance between vertices u and v in a graph G. The Wiener polynomial is a 

related generating function which was first defined by HaruoHosoya [7] with this name, in honor of  

Harry Wiener but also known today as Hosoya polynomial, extends this concept  to capture the 

complete distribution of distances in graph. If q is a parameter, then the Wiener polynomial of G is 
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This paper  gives the expressions for Wiener polynomial of Splitting graph of  path, cycle, wheel, 

tadpole, and sunlet graphs. 

2. Splitting graph of a graph : The splitting graph  is introduced by Prof . E. Sampath Kumar, Prof. 

H.B. Walikar in [1]. For a graph G , Splitting  graph is denoted by S(G). For each vertex v of a graph G, 

take a new vertex 'v .Join  'v  to all the vertices of G adjacent to v.  The graph S(G) thus obtained is 

called  Splitting graph or Duplicate graph of G.  In [1], they  have studied  some properties of S(G) and 

obtained the characterization of S(G).  Prof. Jan Mycielski, in his work in sets and logic used a graph 

called shadow graph S(G). For a graph G , the shadow  graph S(G) is obtained from G by adding for 

each vertex v of G ,a new vertex  'v  called shadow vertex of  v, and joining  'v  to the neighbour of v in 

G. The splitting graph of P6 is shown in the Figure 1. 

 

3. Observations on S(G):   

  1.  A vertex of G and its duplicate vertices are not adjacent  in S(G) 

  2. All duplicate vertices induces a null graph.   

  3. )()'()( GSinvdGinvd ii  . 
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 4. )()'(2)()( GSinvdGSinvd ii 
 

 5. By definition of splitting graph,    )(,',,', GSvvdGvvd jiji   

Note: As the splitting graph consists of the vertices of given graph and its duplicate vertices, for 

convenience sake, partition the vertex set of S(G) into the sets A,B as below. 

)}())((/{

)}(/{
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GVGSVvvB
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ii
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In order to demonstrate the validity of the theorem, we adopt the following notation: 

icedisaatAsettheinverticesofpairsofnumberiGd A tan,),(   

icedisaatBsettheinverticesofpairsofnumberiGdB tan,),( 
 

icedisaatarethatBsetthe

inisothertheandAsettheinisonewhichofverticesofpairsofnumberiGd AB

tan,

),( 

 

Asettheofverticestheamongvvverticesthebetweencedisvvd jijiA ,tan),( 
 

Bsettheofverticestheamongvvverticesthebetweencedisvvd jijiB ,tan),( 
 

BAsettheofverticestheamongvvverticesthebetweencedisvvd jijiAB ,,tan),(   

With the above notation, the Wiener polynomial of Splitting graph is given as  

i

iqaqaqaqaqGSW  .........)),(( 3

3

2

21  

It can be easily observed that ),(),(),( iGdiGdiGda ABBAi   

By computing these three terms we found the coefficients of wiener polynomial. 

Note:  In the following   proofs consider  j as n whenever )(mod0 nj  .  

Theorem1:For a given integer 2n and a path Pn on n vertices, the Wiener polynomial of )( nPS is given 

by 
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Proof:  Since S(P2) is isomorphic to P4.It follows that 
32

42 23),()),(( qqqqPWqPSW   We now consider 

the case when 𝑛 ≥ 3
  

We first observe in this case that the diam(S(Pn)) = n-1.  

Let },......,,,{ 321 nvvvv   be the vertices of nP
 taken in order  

and },......,{
//

2

/

1 nvvv  be the corresponding 

replication of vertices in ).( nPS
 Then, for each i, 
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The distance between the vertices of A and B is 
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The distance between the vertices of B is 
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By adding  all the polynomials ,we get 

4)1()1(),(4)),(( 32  nforqnnqqnqPWqPSW nn

 

Theorem2:  The wiener polynomial of splitting graph of cycle  )( nCS is  



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 7, No. 5, July : 2023 
 

UGC CARE Group-1,                                                                                                                 45 

3339

4,)(),(4)),((

32

32





nforqqq

nqqqnqCWqCSW nn
 

Proof:  For odd n 

Let }......,,{ 321 nvvvv   be the vertices of nC and },......,{
//

2

/

1 nvvv  be the corresponding duplicate vertices in 

)( nCS  

The distance between the vertices of A is  
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The distance between the vertices of A,B is 
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The distance between the vertices of B is 
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The wiener polynomial in this case becomes  
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By adding all the polynomials ,we get the wiener polynomial of splitting graph of cycle  for odd n is 

)(),(4)),(( 32 qqqnqCWqCSW nn 

 

For even n: 

The distance function between the vertices  ofAis given as  
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Distance between the vertices of the set A,B of the cycle is given as  
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The corresponding wiener polynomial is given as 
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The  distance between the vertices of B   is defined as  
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Thus the wiener polynomial in this case becomes  
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Thus the corresponding Wiener polynomial is given as 

)(),(4)),(( 32 qqqnqCWqCSW nn   

Theorem3:  The wiener polynomial of  )( ,1 nWS is 
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  4,16)),(( 22
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Proof:  Let 0v  be the centralvertex  and nvvv ...,, 21 be the rim  vertices of the wheel
nW ,1

.And 
//

2

/

1

/

0 ,...,,, nvvvv  

be the corresponding duplicate vertices in ).( ,1 nWS To find the wiener index we find the distance between the 

vertices as in the following . 

The distancebetween the vertices of A is given as  
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The central  vertex 0v is at a distance 2 
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polynomial for the vertices belongs to B is given as  
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Thus the corresponding wiener polynomial is 
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Theorem 5:  The wiener polynomial of splitting graph of sunlet graph )( 2KCS n  is ∑ (𝑛
𝑘
)𝑥𝑘𝑎𝑛−𝑘

𝑛
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Proof: Let nnn aaaCVvvv ,...,,),(,..., 2121    be the pendent vertices that are adjacent to iv  in )( 2KCn  . 

//

2

/

1

//

2

/

1 ,...,),(,..., nnn aaaCVvvv  be the corresponding duplicate vertices. For convenience sake we partition 

the vertex set into the following subsets andfind the distances between them.  
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Further the sets A,B are partitioned as 

graphsunletofverticespendentofSetA
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1
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 The distances between the vertices from the above sets are given in ten combitions as follows. 

Case1: For odd n 

The distance between the vertices  of A1is given as in theorem2 

Wiener polynomial in this case is given by 

 











2

1

1

2

1

321

)1(,

),(
...

n

i

i

n

AVvv

vv
qnnqnqnqnqq

ji

ji

 

case 2:  The distance function between the vertices  of A2 is given as 
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case3:   

The distance function ,between the vertices of A1, A2  is given as  
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Case 4:  Distance function between  the vertices of the set B1is given as  
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Thus the wiener polynomial in this case becomes 
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case5:  Distance function between    the vertices B2is given as 
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Thus the wiener polynomial in this case becomes  
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Case 6: Distance between the duplicate vertices of the sets B1,B2 is given as distance function   
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Thus the wiener polynomial in this case becomes  
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Case7:  Distance between the vertices of A1,B2 is given as 
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Case 8:  Distance between the vertices of A1,B1 is given as 
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Case 9: Distance between thesets A2,B1 is  
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case10:  Distance between the sets A2,B2 is  
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By adding all the polynomials ,we get the wiener polynomial of splitting graph of sun let graph  for odd n is 

  5,2)(4))(( 32
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For even n: 

case1:  The distance between the vertices of A1 is given as in theorem 2 
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case 2:  Distance between the vertices of the set A2 
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case3:  Distance between the vertices of A1,A2 is given as 
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Case 4:  Distance between the vertices of B1 is given as  
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Thus the wiener polynomial in this case becomes  
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case5:  Distance function between the vertices  of B2 is given  as  
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case 6:  Distance function between the vertices of B1,B2 is given as  
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Thus the wiener polynomial in this case becomes  
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Case7:  Distance between the vertices of A1,B2 is given as 
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Case8:  Distancebetween the vertices of A1,B1 
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The corresponding wiener polynomial is given as 
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Case 9: Distance function between thevertices of A2,B1 is same as that of A1,B2. Thus the polynomial is  
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Case 10:  Distance between the vertices of A2,B2 is given as 
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By adding all the polynomials ,we get the wiener polynomial of splitting graph of sun let graph  for odd n is 

  5,2)(4))(( 32

22  nqqqnKCWKCSW nn  

4. Conclusion: 

In this paper we have obtained the relation between the distance between two vertices and the 

diameter of  S(G). Further Wiener polynomial of the splitting graph of a graph G where G is isomorphic 

to Pn, Cn ,Kn, W1,n, 2KCn   are obtained. Further we will establish the relation between the wiener index 

of splitting graph of an arbitrary graph G and the graph G in our future work. 
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