

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 401

UVM VERIFICATION OF WISHBONE SPI MASTER CORE

S SRIKANTH REDDY1, J V K RATNAM2, S SURYANARAYANA3

1PG Students, 2Professor, 3Professor & Head

Department of Electronics and Communication Engineering,

Kallam Haranadhareddy Institute of Technology (Autonomous),

Guntur, Andhra Pradesh, India.

ABSTRACT:

In today’s world, more and more functionalities

in the form of IP cores are integrated into a

single chip or SOC. System-level verification of

such large SOCs has become complex. The

modern trend is to provide pre-designed IP

cores with companion Verification IP. These

Verification IPs are independent, scalable, and

reusable verification components. The System

Verilog language is based on object-oriented

principles and is the most promising language to

develop a complete verification environment

with functional coverage, constrained random

testing and assertions. The Universal

Verification Methodology, written in System

Verilog, is a base class library of reusable

verification components. This paper discusses a

Universal Verification Methodology based

environment for testing a Wishbone compliant

SPI master controller core. A multi-layer test

bench was developed which consists of a

Wishbone bus functional model, SPI slave

model, driver, scoreboard, coverage analysis,

and assertions developed using various

properties of System Verilogan the UVM

library. Later, constrained random testing using

vectors driven into the DUT for higher

functional coverage is discussed. The

verification results shows the effectiveness and

feasibility of the proposed verification

environment.

Keywords: SOC, IC, SV, UVM, DUT.

I INTRODUCTION

The rapid development of modern integrated

circuits not only increased the complexity of

integrated circuit (IC) design, but also made the

IC verification equally challenging. Around 70%

to 80% of the entire design cycle time is allotted

to verification, and traditional verification

methodologies are no longer able to support

current verification requirements [1]. In 2002,

the Accellera Systems Initiative released

System Verilog (SV) a a unified hardware

design and verification language. System

Verilog language was an amalgamation of

constructs from different languages such as

Vera, Super Log, C, Verilog and VHDL

languages. Moreover, in 2005 IEEE

standardized (1800-2005) System Verilog.

System Verilog supports behavioral, register

transfer level, and gate level descriptions.

System Verilog also supports testbench

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 402

development by the inclusion of object-oriented

constructs, cover groups, assertions, constrained

random constructs, application specific interface

to other languages [2]. Universal Verification

Methodology (UVM) is a standardized

verification methodology for test benchcreation

an is derived from Figure 1 the Open

Verification Methodology (OVM), and also

inherits some features from Verification

Methodology Manual (VMM). Use of the UVM

standard enables an increase in verification

productivity by creating a reusable verification

platform and verification components. The

verification results of this work show the

effectiveness and feasibility of the proposed

verification environment [3] System on Chip

(SoC) is used for intelligent control feature with

all the integrated components connected to each

other in a single chip. To complete a full system,

every SoC must be linked to other system

components in an efficient way that allows a

faster error-free communication. Data

communication between core controller

modules and other external devices like external

EEPROMs, DACs, ADCs. is critical. Different

forms of communication protocols exist such as

high throughput protocols like Ethernet, USB,

SATA, PCI-Express which are used for data

exchanges between whole systems. The Serial

Peripheral Interface (SPI) is often considered as

light weight communication protocol. The

primary purpose of the protocol is that it is

suited for communication between integrated

circuits for low and medium data transfer rates

with onboard peripherals and the serial bus

provides a significant cost advantage.

This paper is organized as follows. Section I

deals with introduction of the paper.Section II

deals with Main Aim of the paper. Survey of

Research is given in section III. The System

Design is discussed in section IV. Results are

explained in section IV. FinallyConclusion of

the paper is given in section VI.

II MAIN AIM

The major contributions if this work include:

1. Research the SPI sub-system architecture, the

Universal Verification Methodology, and

System Verilog.

2. Development of a WISBONE bus function

model acting as an interface between the test

bench and the SPI master Device Under Test

(DUT) and SPI slave model in order to make

the verification closed loop testing.

3. Build hierarchical test bench components

using UVM libraries and System Verilog

constructs, constrained random

stimulus,coverage and assertions.

4. Verify transmission of data with different

character width and data formats.

III SURVEY OF RESEARCH

SPI protocol is one of the widely used serial

protocols used in a SoC compared to other

protocols such UART and I2C simply because

SPI can operate in higher bandwidth and

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 403

throughput [4]. SPI Protocol typically provides

communication between the hosts side

microcontroller and slave devices. It is widely

used owing to fewer control signals to operate

with [5]. At the host side, the specific SPI core

studied in this work acts like a WISHBONE

compliant slave device. The SPI master core

controller consists of three main parts, Serial

shift interface, clock generator and

WISHBONE interface. The SPI core controller

has five 32-bit registers which can be

configured through the WISHBONE interface.

The serial interface consists of slave select lines,

serial clock lines, as well as input and output

data lines. The data transfers are full duplex in

nature and number of bits per transfer is

programmable [6]. It is possible to have high

speed SPI Master/Slave Implementation of

range 900 – 1000 MHz. The core can be

designed with greater ways to control SPI-bus

such as the flexibility of handling two slaves at

a time. One important feature is configured by

programming the control register of the core

through which the SPI module can be made to

either operate in master or slave mode. During

operation, the SPI status register gives

information such as the current position of the

data transfer operation, whether the data transfer

has completed or not, etc. [7]. Another key

feature is the flexibility of designing the SPI

Interface IPs for multiple devices using

parameterization method. Advanced design

techniques, such as Time Sharing Multiplex

(TSM), are used to automatically identify the

master/slave devices and achieve multi-master

devices. Using TSM the disadvantage of

communication among multiple devices are

overcome [8]. Owing to the increasing

complexity of the modern SoC, the verification

has become more challenging. In fact 70% of

the product development time is spent on

complex SoC verification. Reducing the

verification effort is the key for time to market

challenge. In order to cater to such growing

complexity advanced verification

methodologies are employed. IP verification

requires in depth functional coverage with

constraint random simulation technique.

Various components such as coverage monitors

and scoreboards are used for this purpose [9].

For a communication protocol like the SPI

communication protocol, it has to be verified as

per the design specifications. Applying

constrained random technique for higher

functional coverage provides effective

verification result [10]. For many years, EDA

vendors have been proposing newer verification

methodologies and languages. For any system

level verification methodology and language to

be successful, the key lies in the scalability and

reusability of the verification components

developed. SystemVerilog with object-oriented

programming is considered as one of the most

promising techniques for high level function

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 404

verification for current complex SOC designs.

System Verilog provide complete verification

environment, with direct and constrained

random generation, assertion based verification

and coverage driven metrics.

IV SYSTEM DESIGN

Hardware description languages are tools used

by engineers to specify abstract models of

digital circuits to translate them into real

hardware, as the design progresses towards

completion, hardware verification is performed

using Hardware verification languages like

System Verilog. The purpose of verification is

to demonstrate the functional correctness of a

design. Verification is achieved by means of a

test bench, which is an abstract system that

provides stimulus to the inputs of design under

test (DUT). Functional verification shows that

design implementation is in correspondence to

the specification. Typically, the testbench

implements a reference model of the

functionality that needs to be verified and

compare the results from that model with the

results of the design under test. The role of

functional verification is to verify if the design

meets the specification but not to prove it [10].

The traditional approach to functional

verification relies on directed tests. Verification

engineers conceive and apply a series of critical

stimulus directly to the device under test, and

check if the result is the expected one. This

approach produces quick initial results because

little effort is required for setting up the

verification infrastructure. But as design

complexity grows, it becomes a tedious and

time-consuming task to write all the tests

needed to cover 100% of the design. Random

stimuli help to cover the unlikely cases and

expose the bugs. However, in order to use

random stimuli, the test environment requires

automating process to generate random stimulus,

there is a need of a block that predicts, keeps

track of result and analyses them: a scoreboard.

Additionally, functional coverage is a process

used, to check what cases of the random

stimulus were covered and what states of the

design have been reached. This kind of

testbench may require a longer time to develop,

however, random based testing can actually

promote the verification of the design by

covering cases not achieved with directed tests.

Fig.1. UVM hierarchy

WISHBONE Interface

The WISHBONE System-on-Chip

Interconnection Architecture shown in Figure

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 405

2for portable and flexible IP Cores enables a

design methodology for use with semiconductor

IP cores. The WISHBONE interface alleviates

System-on-Chip integration problems and

results in faster design reuse by allowing

different IP cores are connected to form a

System-on-Chip. As defined, the WISHBONE

bus uses both MASTER and SLAVE interfaces

as part of the architecture. IP cores with

MASTER interfaces initiate bus cycle

transactions, and the participating IP cores with

SLAVE interfaces can receive the designated

bus cycles transactions. MASTER and SLAVE

IP cores communicate through an

interconnection interface called the INTERCON.

The INTERCON is best thought of as a cloud

that contains circuits and allows the

communication with SLAVEs. INTERCON

includes Point-to-point interconnection, Data

flow interconnection, Shared bus

interconnection and Crossbar switch

interconnection [6]. WISHBONE Bus protocols

include the implementation of an arbitration

mechanism in centralized or distributed bus

arbiters. The bus contention issue during the

configuration of WISHBONE bus protocol is

settled with the help of a Handshaking protocol

and through the deployment of various

arbitration schemes such as TDMA, Round

Robin, CDMA, Token Passing, Static Priority

etc. These strategies are applied based on the

specific application in WISHBONE Bus.

Fig.2. Wishbone Interface.

Table. 1 refers to the wishbone interface

signals used for our Serial Peripheral

Interface communication

•wb_clk_i: All internal WISHBONE logic are

sampled at the rising edge of the wb_clk_i clock

input.

• wb_rst_i:wb_rst_i is active low asynchronous

reset input and forces the core to restart. All

internal registers are preset, to a default value

and all state-machines are set to an initial state.

• wb_int_o: The interrupt request output is

asserted back to the host system when the core

needs its service.

• wb_cyc_i: When the cycle input wb_cyc_i is

asserted, it indicates that a valid bus cycle is in

progress. It needs to become true on (or before)

the first wb_stb_i clock and stays true until the

last wb_ack_o. The logical AND function of

wb_cyc_i and wb_stb_iindicates a valid transfer

cycle to/from the core. This logic is usually

taken care of by the bus master.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 406

• wb_stb_i: The strobe input wb_stb_i is true

for any bus transaction request. While wb_stb_i

is true, the other wishbone slave inputs

wb_we_i, wb_addr_i, wb_data_i, and wb_sel_i

are valid and reference the current transaction.

The transaction is accepted by the slave core

any time when wb_stb_i is true, and at the same

time, wb_stall_o is false.

Table 1 :WISHBONE I/O Ports

Serial Peripheral Interface

A Serial Peripheral Interface (SPI) from Figure

3 module allows synchronous, serial and full

duplex communication between a

Microcontroller unit and peripheral devices and

was developed by Motorola in the mid 1980s.

Figure represents the structural connection

between master and slave core. The SPI bus is

usually used to send and receive data between

microcontrollers and other small peripherals

units such as shift registers, sensors, SD cards,

etc.

Fig.3. SPI Protocol

V RESULTS EXPLANATION

The SPI master core is verified along with the

SPI slave model. Initially, the SPI master and

slave have configured appropriately (for

example at the master end no. of bits-32,

transmit-posedge, receive-negedge). The basic

idea of the verification is to send data from both

master and slave ends. And after the transfer is

completed, verify the exchanged data at both

the ends. The Figure 4 shows the test bench

module approach. Below each of the

components is explained.

Test top

The top-level module is responsible for

integrating the test bench module with the

device under test. This module instantiates two

interfaces, one for the master and another for

the slave. Then the master interface is wired

with SPI master core and likewise slave

interface with SPI slave model. The top module

also generates the clock and registers the

interface into the config database so that other

subscribing blocks can retrieve. Finally, the

module calls the run_test function which starts

to run the uvm_root.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 407

Fig.4. UVM Test bench model

spi_interface

The interface block declares all the

WISHBONE slave logic signals. The

communication with the master and slave core

happens through WISHBONE bus function

model. The block also samples the input and

output signals using two different clocking

blocks, one for driver and another for the

monitor. Clocking block helps to synchronize

all logic signals to a particular clock. It also

helps to separate the timing details from the

structural, functional and procedural elements

of the test bench.

spi_package

The package class typically includes all System

Verilogtest bench components and make the

scope available to the entire build process.

spi_test

The test class is created by extending the

uvm_test class. Then the class is registered to

factory using uvm_component_utils macro. In

the build phase, the lower level SPI

environment class is created and configured.

Instead of the run phase, the test class contains

two of the twelve scheduled phases. Reset phase

typically resets the device under test. The main

phase used to create the sequences and start

running the sequencer for the required number

of tests. Whenever there needs to be a blocking

phase execution, phase raise objection is

invoked and like to unblock phase drop

objection is used.

spi_environment

SPI environment is a container

component containing the agent and scoreboard.

It is created using uvm_env virtual base class.

In the build phase components within the

environment are instantiated. And in the

connect phase, the connections are made

between components.

spi_agent

Currently, there is only one agent

container component is used within the project.

The SPI agent container is configured as an

active component. SPI agent is created using

uvm_agent virtual base class. In the build phase,

the agent builds Sequencer, Driver and Monitor

components. In the connect phase, the driver

and sequencer are connected as show in Figure

5.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 408

Fig.5. UVM Sequencer DriverCommunication

VI RESULTS

SPI Master Controller Synthesis Benchmarking

The project aims to create a functional

verification environment for SPI controller. For

this purpose the IP core was reused from Open

cores, but with some modification. The logic

synthesis of the module was performed in the

TSMC 180nm, 65nm and SAED 32nm

technology.Area, Power and Timing of the final

module were captured Table 2.

Table 2 :Synthesis Report

WISHBONE to SPI Master communication

using BFM

The communication between the

WISHBONE and SPI master is performed using

WISHBONE bus function model. The model

mainly implements read, write and reset

functionalities w.r.t WISHBONE B.3 protocol.

In the below Figure 6 shows the WISHBONE

protocol. Initially when there is a write data is

involved cycle, strobe and write enable signals

along with select lines of WISHBONE are

asserted to 0x1 by the bus master. The

WISHBONE address and data at the same time

is placed on the bus. The bus model waits until

a receive acknowledgment from the slave is

received. Then the bus master frees the bus by

terminating the cycle signal to 0x0. For example,

if the control register needs to be configured,

then control register address 0x10 is sent along

with the data value 0x2200,referred at reference

1 in the Figure 6 Correspondingly, the SPI

control select flag is selected, and in the next

cycle, the value is written to the local control

register of the device under test.

Fig.6. WISHBONE to SPICommunication

These two flags should have opposite values to

each other since the SPI read input and write

output takes place at the same single buffer in a

shift register fashion. The master also

configures its divider register and slave select

register. Once all SPI registers are initially set

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 409

up, then go flag of the control signal is asserted,

which starts the transfer. The test bench uses the

flag transfer in progress to synchronize driver

and monitor respective forever loop part.

Finally as given in Figure 7 after 32 clock

cycles, the transfer in progress signal is de-

asserted and thus informs the end of

communication for the WISHBONE interface to

collect the data.

Fig.7. SPI Master - SlaveCommunication

Functional coverage is essential to any

verification plan, in the project it the coverage is

retrieved using Cadence Integrated Metrics

Centre tool. Functional coverage is a way to tell

the effectiveness of the test plan. Functional

coverage infers results such if an end to end

code checked if an important set of values

corresponding to interface or design

requirement and boundary conditions have been

exercised or not. 100% Functional coverage

combined with 100% Code coverage indicates

the exhaustiveness of the verification plan

coverage.

VII CONCLUSION

In this work, a reusable System Verilog based

UVM environment is created for an SPI master

core controller. The verification environment is

built around WISHBONE System on Chip bus

thus making both core IP, and verification IP

easy to integrate. Configuration capability is

provided to configure the test bench to suit

different protocol characteristics. The test bench

enables to verify and validate the full duplex

data transfer between the master core and slave

core for various character lengths and data

formats respectively. An SPI slave model was

created to enhance the SPI master core

verification as end to end feasible. In addition, a

WISHBONE BFM was successfully established

to form the link between the test bench

components and the device under test. The

WISHBONE BFM provides basic read and

write functionalities. Functional coverage was

successfully integrated into the testing

environment in order to achieve coverage

driven verification metrics.

REFERANCES

[1] W. Ni and J. Zhang, “Research of

reusability based on UVM verification,” in 2015

IEEE 11th International Conference on ASIC

(ASICON), Nov 2015, pp. 1–4.

[2] K. Fathy and K. Salah, “An Efficient

Scenario Based Testing Methodology Using

UVM,” in 2016 17th International Workshop on

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 7, July : 2023

UGC CARE Group-1, 410

Microprocessor and SOC Test and Verification

(MTV), Dec 2016, pp. 57–60.

[3] P. Rajashekar Reddy, P. Sreekanth, and K.

Arun Kumar, “Serial Peripheral Interface-

Master Universal Verification Component using

UVM,” International Journal of Advanced

Scientific Technologies in Engineering and

Management Sciences, vol. 3, p. 27, 06 2017.

[4] R. Prasad and C. S. Rani, “UART IP CORE

VERIFICATION BY USING UVM,” IRF

International Conference, 15 2016.

[5] P. Roopesh D, P. Siddesha K, and B. M.

Kavitha Narayan, “RTL DESIGN AND

VERIFICATION OF SPI MASTER-SLAVE

USING UVM,” International Journal of

Advanced Research in Electronics and

Communication Engineering, vol. 4, p. 4, 08

2015.

[6] K. Aditya, M. Sivakumar, F. Noorbasha,

and P. B. Thummalakunta, “Design and

Functional Verification of A SPI Master Slave

Core Using SystemVerilog,” International

Journal Of Computational Engineering

Research, 05 2018.

[7] N. Anand, G. Joseph, S. S. Oommen, and R.

Dhanabal, “Design and implementation of a

high speed Serial Peripheral Interface,” in 2014

International Conference on Advances in

Electrical Engineering (ICAEE), Jan 2014, pp.

1–3.

[8] T. Liu and Y. Wang, “IP design of universal

multiple devices SPI interface,” in

AntiCounterfeiting, Security and Identification

(ASID), 2011 IEEE International Conference on.

IEEE, 2011, pp. 169–172.

[9] D. Ahlawat and N. K. Shukla, “DUT

Verification Through an Efficient and Reusable

Environment with Optimum Assertion and

Functional Coverage in SystemVerilog,”

International Journal of Advanced Computer

Science and Applications, vol. 5, no. 4, 2014.

[10] N. Gopal, “SPI Controller Core:

Verification,” SSRG International Journal of

VLSI & Signal Processing, vol. 2, 09 2015.

