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Abstract 

Commutative rings is a branch of abstract Algebra that deals with the multiplication oper- ation. It is 

the system that admits well-behaved operations of addition and multiplication. In the last two 

decades, commutative algebraist has shown very much interest in the study of commutative ring 

extensions with the same nonzero identity. The aim is to study the ring theoretic properties of 

intermediate rings of a ring extension. Many well known ring theoretic properties have been studied 

on intermediate rings like valuation, Proofer, etc. Many topological properties were also studied on 

ring extensions. 

 

Historical Background a nd Basic Results 

If R ⊂ T is a ring extension of commutative rings, then it is assumed that R and T have same 

nonzero unity. By an intermediate ring (resp., proper intermediate ring), we mean a subring (resp., 

proper subring) of T containing R (resp., properly containing R). The study of intermediate rings 

of a ring extension was first started by Ferrand and Olivier in 1970. They considered all those 

rings extensions where there is no proper intermediate ring and named them minimal ring 

extensions. Thus, a ring extension R ⊂ T is a minimal ring extension if there is no proper 

intermediate ring between R and T.  In 1972 and 1978, Modica and Dechéne in recalled these ring 

extensions in their unpublished thesis and used the terms maximal subring and adjacent extension, 

respectively. Since then, minimal ring extension became the famous topic of commutative ring 

theory in 20th and 21st century and algebraist started working on this. In the starting of 21st century, 

the main question for the algebraist was the existence of a minimal ring extension for arbitrary 

commutative ring which was solved by Dobbs in 2006. Ferrand and Olivier classified the minimal 

ring extensions of a field. Following this, Dobbs and many algebraist worked on classifying the 

minimal 

ring extensions of an arbitrary domain and certain commutative rings. If R ⊂ T is a minimal 

ring extension, then R is called a maximal subring of T. Note that not every ring has a maximal 

subring, for example, take Z. Azarang et al. 

studied the rings for which maximal subrings exist. In 1974, Gilmer and Huckaba generalized the 

concept of minimal ring extensions by introducing the concept of ∆-extension of rings. A ∆-

extension of rings is a ring extension where the sum of any two intermediate rings is again an 

intermediate ring. The study of intermediate rings of a ring extension became more famous when 

Gilbert in 1994 introduced a generalization of minimal ring extensions. Motivated by the concept of 

∆- extension of rings, Gilbert in his unpublished thesis introduced λ-extension of rings, a ring 

extension where the set of intermediate rings is linearly ordered by inclusion. Thus, we have the 

following implications: 

Minimal ring extension ⇒ λ-extension of rings ⇒ ∆-extension of rings 

However, the reverse implications are not true. For example, Q ⊂ Q(21/4) is a λ- extension of rings 

but not minimal, and Z ⊂ Z[1/2, 1/3] is a ∆-extension of rings but not a λ-extension of rings. 

The study of intermediate rings found more interest when algebraist started working on certain 
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ring theoretic properties which are not satisfied by a proper subring R of a domain T but every proper 

intermediate domain including T satisfies these properties. The study of these properties and 

extension of integral domains started by Visweswaran in 1990, see [96]. He found a non 

Noetherian subring of a Noetherain domain such that each intermediate ring is Noetherian and 

these subrings are called maximal non Noetherian subrings. Then algebraist started working on 

maximal non P-subrings of a domain for well known ring theoretic properties P in the literature, 

namely P=: PID, 

Prü fer, valuation, pseudo-valuation, Jaffard, ACCP etc., One more concept of intermediate rings 

found attention when Badawi in 1999 extended the concept of integral domains to rings in which the 

set of all nilpotent elements is a prime ideal and comparable to every ideal of that ring. He named 

them φ-rings. Since then, φ-rings become the centre of attraction for many commutative algebraist. 

Badawi and his co-authors extended many well known concepts in the literature. They defined 

φ-chained rings, φ-pseudo-valuation rings,  φ-Prü fer rings,  φ-Dedekind rings,  etc.   which are 

generalizations of well known integral  domains  like  valuation  domains,  pseudo-valuation  

domains,  Prü fer  domains, Dedekind domains, etc. 

In this chapter, we discuss the existing literature on commutative ring theory and ring extensions of 

commutative rings which are used throughout the thesis. We recall the existing results and standard 

terminology from commutative ring extensions. We also give a summary of the thesis. 

Throughout the thesis, it is assumed that all rings are commutative with nonzero identity; all ring 

extensions, ring homomorphisms, and algebra homomorphisms are unital. The symbol ⊆ is used for 

inclusion and ⊂ used for proper inclusion. Let R and T be rings. Then by R ⊆ T and R ⊂ T, we mean 

that R is a subring of T and R is a proper subring of T, respectively. For any ring (resp., domain) R, 

let tq(R) (resp., qf(R)) denotes the total quotient ring (resp., the quotient field) of R, dim(R) 

denotes the Krull dimension of R, R′ denotes the integral closure of R in tq(R). The spectrum 

(resp., maximal spectrum) of a ring R, denoted by Spec(R) (resp., Max(R)), is the set of all prime 

(resp., maximal) ideals of R. We use Nil(R) to denotes the set of all nilpotent elements and Z(R) to 

denotes the set of all zero-divisors of R. For an ideal a, Rad(a) denotes the radical of a. All the 

elements of R \ Z(R) are said to be regular elements of R and an ideal is said to be regular if it 

contains a regular element. By an overring (resp., proper overring) of R, we mean any subring of 

tq(R) which contains R (resp., properly). For any ring extension R ⊂ T, the conductor (R : T) is the 

set {t ∈ T | tT ⊆ R}, RadR(R : T) denotes the radical of (R : T) in R, and [R, T] denotes the set 

of all subrings of T which contains 

R. By a local ring (resp., semi-local ring), we mean a ring with a unique maximal ideal 

(resp., finitely many maximal ideals). As usual, if E is an R-module, then Ep denotes the localization 

of E on a prime ideal p of R and Supp(E) denotes the set of prime ideals p of R such that Ep /= 0. 

For any ideals a, b of R, (a : b) = {x ∈ tq(R) | xb ⊆ a}. For 

further study.  

We start with the concept of a minimal ring extension which was initiated by Ferrand and Olivier.  

DEFINITION 1.1.1. Let f : R ‹→ T be an injective ring homomorphism that is not an isomorphism. 

Then f is called a minimal ring homomorphism if any factorization f = g ◦ h of f produce that 

one of the ring homomorphisms g, h is an isomorphism. Let R be any proper subring of a ring T. 

Then T is called a minimal ring extension of R or equivalently, R is a maximal subring of T if the 

inclusion map R ‹→ T is a minimal ring homomorphism, that is, if |[R, T]| = 2 (as usual, || is used for 

cardinality). 

By a minimal overring of R, we mean any overring of R which is a minimal ring extension of R. It is 
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easy to see that if R ⊂ T is a minimal ring extension, then either it is an integral extension or R is 

integrally closed in T. If the latter holds, then f : R ‹→ T is a flat epimorphism, by [Théorème 

2.2].  Note that by [Théorème 2.2(i)] and [Lemme 1.3], a ring extension R ⊂ T is a minimal ring 

extension if and only if there exists a unique maximal ideal q of R such that Rq ‹→ Tq := TR\q is not 

an isomorphism; moreover, Rq ‹→ Tq is then a minimal ring extension, and Rp ‹→ Tp is an 

isomorphism for all p ∈ Spec(R) \ {q}.  The maximal ideal q appearing in the above statement is 

called the crucial maximal ideal, see [Definition 2.9]. 

In Dobbs proved that every ring R has a ring extension T such that R ⊂ T is a minimal ring 

extension. Azarang called this ring R a maximal subring of T. Note that not every ring has a 

maximal subring, for example, take Z. Azarang et al. studied fields, domains and rings for which 

maximal subrings exist.  

The concept of minimal ring extensions generalized by Gilmer and Huckaba. They introduced the 

concept of ∆-extension of rings as follows: 

DEFINITION 1.1.2. A ring extension R ⊆ T is said to be a ∆-extension of rings or R is called a 

∆-subring of T if [R, T] is closed under addition. Moreover, if T = tq(R), then R is called a ∆-ring. 

Throughout the thesis, by ∆-extension we mean ∆-extension of rings. 

Gilbert introduced the concept of λ-extension of rings which was motivated by the concept of 

minimal ring extensions and ∆-extensions. The definition of λ-extension of rings is as follows: 

DEFINITION 1.1.3.  A ring extension  R  ⊆  T  is said to be a  λ-extension of rings or  R is 

called a λ-subring of T if [R, T] is linearly ordered under inclusion. Moreover, if R is a domain 

and T = qf(R), then R is called a λ-domain. Throughout the thesis, by λ-extension we mean λ-

extension of rings. 

In [cf. Nagata, 1962, p.2], Nagata introduced the concept of idealization of a module. For a ring R 

and an R-module E, the idealization R(+)E is the ring defined as follows: its additive structure is 

that of the abelian group R ⊕ E, and its multiplication is defined by 

(r1, e1) (r2, e2) := (r1r2, r1e2 + r2e1) for all r1, r2 ∈ R and e1, e2 ∈ E. It will be convenient to view R as a 

subring of R(+)E via the canonical injective ring homomorphism that sends r to (r, 0). Now, we 

recall some basic results on the idealization of a module. 

RESULT 1.1.4. [2, Theorem 3.1] Let R be a ring, a be an ideal of R, E be an R-module and F be 

a submodule of E. Then a(+)F is an ideal of R(+)E if and only if aE ⊆ F. 

Moreover, if a(+)F is an ideal of R(+)E, then (R(+)E)/(a(+)F) =∼ (R/a)(+)(E/F). 

RESULT 1.1.5. Let R be a ring and E be an R-module. Then the following hold: 

(i) Max(R(+)E) = {m(+)E : m ∈ Max(R)}, see [2, Theorem 3.2(1)]. 

(ii) Spec(R(+)E) = {m(+)E : m ∈ Spec(R)} and so dim(R(+)E) = dim(R), see [66,     

  Theorem 25.1(3)]. 

(iii) Nil(R(+)E) = Nil(R)(+)E, see [2, Theorem 3.2(3)]. 

RESULT 1.1.6. [66, Theorem 25.3] If R is a ring and E is an R-module, then Z(R(+)E) = 

{(r, e) :  r  ∈ Z(R) ∪  Z(E), e  ∈ E} where Z(E) = {r  ∈ R  : there exists nonzero e  ∈  

E such that re = 0}. 

RESULT 1.1.7. [Corollary 25.5] Let R be a ring and E be an R-module. Then the following 

hold: 

(i) tq(R(+)E) =∼ RS(+)ES, where S = R \ (Z(R) ∪  Z(E)). 

(ii) (R(+)E)p(+)E  
∼= Rp(+)Ep for prime ideal p of R. 

(iii) If  Z(E)  ⊆  Z(R),  then  tq(R(+)E)  ∼=  tq(R)(+)ES,  where  S   =  R \ (Z(R) ∪  

Z(E)). 
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RESULT 1.1.8. [2, Theorem 3.3(4)] Let R be a domain and E be a divisible R-module. Then 

every nonzero ideal of R(+)E is of the form a(+)E, where a is an ideal of R. 

RESULT 1.1.9. [39, Lemma 2.3] Let R be a ring and E be an R-module. Then R[(r, m)] = 

R(+)Rm for all r ∈ R and for all m ∈ E. 

RESULT 1.1.10. [39, Remark 2.9] Let R be a ring and E be an R-module. Then any 

R-subalgebra of R(+)E is of the form R(+)F for some R-submodule F of E. 

For a ring R, Aut(R) denotes the set of all automorphisms of R. Let R ⊂ T be a ring extension. 

Throughout the thesis, we assume that G is a subgroup of Aut(T) such that σ(R) ⊆ R for all σ ∈ G, 

unless otherwise stated. We denote the orbit of t ∈ T under G by θt = {σ(t) : σ ∈ G}. We call that 

G is locally finite if θt is finite, for all t ∈ T, and if G is locally finite, then we define t˜ := ∏ti ∈ θt 

ti. By TG, we mean the set of all elements of T left fixed by every element of G. Obviously, t˜ ∈ TG, 

for all t ∈ T. Let R (resp, R ⊆ T) satisfies a ring theoretic property P. We say that P is a G-invariant 

property if RG (resp, 

RG   ⊆ TG) also satisfies P.  Now, we recall some results on group invariant which are used 

frequently in this thesis. 

RESULT 1.1.11. [49, Lemma 2.1(b)] Let (R, m) be a local ring and G be a subgroup of Aut(R). 

Then (RG, mG) is a local ring. 

RESULT 1.1.12. [49, Lemma 2.2] Let R be a ring and G be a subgroup of Aut(R). If G 

is locally finite, then RG ⊆ R is an integral extension. 

Let R be a domain and G be a subgroup of Aut(R). Then G can be extended to qf(R) via σ(r/s) = 

σ(r)/σ(s) for all σ ∈ G, r ∈ R and nonzero s ∈ R. 

RESULT 1.1.13. [49, Lemma 2.3] Let R be a domain and G be a subgroup of Aut(R). If 

G is locally finite, then qf(RG) = (qf(R))G. 

DEFINITION 1.1.14. Let R be an integral domain. Then R is said to be a valuation domain if for 

each nonzero x ∈ qf(R), we have x ∈ R or x−1 ∈ R. 

RESULT 1.1.15. [49, Proposition 2.7] Let R be a valuation domain and G be a subgroup of 

Aut(R). Then RG is a valuation domain. 

RESULT 1.1.16. [95, Lemma 2.4] Let R ⊂ T be a ring extension, |G| be finite and a unit 

of T, and let t ∈ TG be nonzero. If t = ∑n rixi for some ri  ∈ R and xi  ∈ TG, then t = 

|G|−1(∑ntixi) for some ti ∈ RG. 

Let P be a ring theoretic property and R ⊂ T be a ring extension. Then (R, T) is said to be a P-

pair if each ring in [R, T] satisfies the property P. Also, R is a maximal non P-subring of T if R does 

not satisfy the property P but each ring in [R, T] \ {R} satisfies the property P. 

DEFINITION 1.1.17.  [74] A domain R is said to be a Prü fer domain if each finitely gener- ated 

ideal of R is invertible. A well known characterization of Prü fer domain is as follows: A domain R 

is said to be a Prü fer domain if and only if Rp is a valuation domain for each 

p ∈ Spec(R) if and only if Rm is a valuation domain for each m ∈ Max(R), see [74, 

Theorem 64].  For example, Z is a Prü fer domain.  Note that every overring of a Prü fer domain R 

is an intersection of localizations of R on prime ideals of R. 

DEFINITION 1.1.18.  [74] A domain R is said to be a Bézout domain if each finitely gener- ated 

ideal of R is principal. It follows that a semi-local Prü fer domain is a Bézout domain, see [74, 

Theorem 60]. 

For a ring extension R ⊂ T of domains, R is said to be a maximal non valuation subring of T if R is 

not a valuation domain but each ring in [R, T] \ {R} is a valuation domain, see [91].  Similarly,  R  is 
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said to be a maximal non Prü fer subring (resp., maximal non 

integrally closed subring) of T  if R  is not a Prü fer domain (resp., not integrally closed) but each 

ring in [R, T] \ {R} is a Prü fer domain (resp., integrally closed domain).  

The next two definitions generalizes the definition of valuation domain. 

(1) Let R ⊂ T be a ring extension of integral domains. Then R is said to be a valuation subring of T 

(R is a VD in T, for short), if whenever nonzero x ∈ T, we have x ∈ R or x−1 ∈ R, see [10]. 

(2) An integral domain R is said to be a valuative domain, if for each nonzero x ∈  

qf(R), R ⊆ R[x] or R ⊆ R[x−1] has no proper intermediate ring, see [33]. 

A divided prime ideal is a prime ideal q of a ring R such that qRq = q, see [37]. Badawi characterized 

the divided prime ideal of R. as a prime ideal which is comparable to every ideal of R. In [21], 

Badawi introduced the class 

H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R} 

In [3], Anderson and Badawi used the notation H0 to denote the subset of H such that Nil(R) = Z(R).  

For R ∈ H, Badawi in [21] considered a ring homomorphism φ from tq(R) to RNil(R) given by 

φ(r/s) = r/s for r ∈ R and s ∈ R \ Z(R). Note that the restriction of φ to R is also a ring 

homomorphism given by φ(r) = r/1 for r ∈ R. Thus, we also conclude that φ(R) = R for R ∈ H0. We 

now list some results on φ-rings which are already in literature and are frequently used in this thesis. 

Note that the first five results are proved in [21] whereas the last one is proved in [4]. Let R ∈ H. 

Then 

(a) φ(R) ∈ H0. 

(b) Ker(φ) ⊆ Nil(R). 

(c) Nil(tq(R)) = Nil(R). 

(d) Nil(RNil(R)) = φ(Nil(R)) = Nil(φ(R)) = Z(φ(R)). 

(e) tq(φ(R)) = RNil(R) is a local ring with maximal ideal Nil(φ(R)), and 

RNil(R)/Nil(φ(R)) = tq(φ(R))/Nil(φ(R)) = qf(φ(R)/Nil(φ(R))). 

(f) (R/Nil(R))′ = R′/Nil(R) provided R ∈ H0. 

We have the following observations on φ-rings: 

RESULT 1.1.19. [3, Lemma 2.5] Let R ∈ H and p be a prime ideal of R. Then R/p is ring 

isomorphic to φ(R)/φ(p). 

RESULT 1.1.20. Let R ∈ H. Then R is local if and only if φ(R) is local. 

PROOF. Let R be local with a unique maximal ideal m. Then φ(m) is a maximal ideal of φ(R), 

by Result 1.1.19. Now, if n is any maximal ideal of φ(R), then n = φ(p) for some prime ideal p of 

R. Then p is a maximal ideal of R by Result 1.1.19. It follows that p = m. Consequently, n = φ(m). 

Thus, φ(m) is a unique maximal ideal of φ(R). 

Conversely, assume that φ(R) is local with a unique maximal ideal n. Then n = φ(p) for some 

maximal ideal p of R. Now, if m is any maximal ideal of R, then φ(m) is a maximal ideal of φ(R), by 

Result 1.1.19. It follows that φ(m) = φ(p). Since Ker(φ) ⊆ Nil(R) by (b), Ker(φ) contained in m and 

p. Thus, m = p and hence p is a unique maximal ideal of R. 

RESULT 1.1.21. Let R ∈ H. Then every overring of R is in H. 

PROOF. Let T be an overring of R. Then Nil(T) = Nil(R) by (c).   We assert that Nil(R) is a 

prime ideal of T. Let a/b, c/d ∈ T for a, c ∈ R and b, d ∈ R \ Z(R). If (a/b)(c/d) ∈ Nil(T) = Nil(R), 

then ac/bd = r/1 for some r ∈ R such that rn = 0 for some n ∈ N. It follows that (ac)n = 0. 

Since R ∈ H, Nil(R) is a prime ideal of R. Consequently, a ∈ Nil(R) or c ∈ Nil(R). Therefore, 

a/b ∈ Nil(T) = Nil(R) or c/d ∈ Nil(T) = Nil(R). Thus, Nil(R) is a prime ideal of T. It remains to 

show that Nil(R) is a divided ideal of T. Let a be a proper ideal of T and let b = a ∩ R. Since 
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Nil(R) is a divided ideal of R, Nil(R) ⊆ b or b ⊆ Nil(R). If Nil(R) ⊆ b, then Nil(R) ⊆ a as b ⊆ 

a. Let b ⊆ Nil(R). We claim that a ⊆ Nil(R). Let a/b ∈ a for some a ∈ R and b ∈ R \ Z(R). Then 

a ∈ b. It follows that a ∈ Nil(R) and hence a/b ∈ Nil(T) = Nil(R). Thus, a ⊆ Nil(R). 

RESULT 1.1.22. Let R ∈ H0. Then every overring of R is in H0. 

PROOF. Let T be an overring of R. Then T ∈ H, by Result 1.1.21. It remains to show that 

Nil(T) = Z(T). Obviously, Nil(T) ⊆ Z(T). Let a/b ∈ Z(T) for some a ∈ R and b ∈ R \ Z(R). Then 

(a/b)(c/d) = 0 for some nonzero c ∈ R and d ∈ R \ Z(R). It follows that ac = 0 and hence a ∈ Z(R) = 

Nil(R). Consequently, a/b ∈ Nil(T). Thus, Nil(T) = Z(T). 

A ring R ∈ H is said to be φ-integrally closed if φ(R) is integrally closed, see [4]. Griffin 

in [63] introduced the concept of Prü fer rings. A ring R is said to be a Prü fer ring if each finitely 

generated regular ideal of R is invertible, that is, if a is a finitely generated regular 

ideal of R, then aa−1  = R, where a−1 = {x ∈ tq(R) | xa ⊆ R}. A ring R ∈ H is said 

to be a φ-Prü fer ring if φ(R) is a Prü fer ring, see [3].  The concept of valuation domains 

generalized in [55] to the context of arbitrary rings, where Froeschl III defined a ring R to be a 

chained ring if for x, y ∈ R, x divides y or y divides x in R. Motivated by this, Badawi 

defined the concept of φ-chained rings in [23]. A ring R ∈ H is called a φ-chained ring 

if for each x ∈ RNil(R) \ φ(R), we have x−1 ∈ φ(R). Recall from [65] that a domain R is called a 

pseudo-valuation domain (PVD) if, whenever a prime ideal p of R contains the product xy for any 

x, y in the quotient field of R, then x ∈ p or y ∈ p. Every PVD R admits a canonically associated 

valuation overring V, in which every prime ideal of R is 

also a prime ideal of V and both R and V are local domains with the same maximal ideal, see [65, 

Theorem 2.7]. The study of PVD generalized to the context of arbitrary rings. A ring R is said to be 

a pseudo-valuation ring (PVR), if each prime ideal p 

of R is strongly prime, that is, if ap and bR are comparable for all a, b ∈ R. A ring R ∈ H 

is said to be a φ-pseudo-valuation ring (φ-PVR). If each prime ideal p of R is φ-strongly prime, that 

is, if xy ∈ φ(p) for x, y ∈ RNil(R), then x ∈ φ(p) or y ∈ φ(p). An integral domain R is called a Dedekind 

domain if every nonzero ideal of R is invertible, that is, if a is a nonzero ideal of R, then aa−1 = R, 

where a−1 = {x ∈ tq(R) | xa ⊆ R}. Recall from [54] that an integral domain R is a Krull-domain if 

R = ∩Vi, where each Vi 

is a discrete valuation overring of R, and every nonzero element of R is a unit of all but finitely many 

Vi. An ideal a of a ring R is said to be a nonnil ideal if a /⊂ Nil(R). A nonnil 

ideal a of a ring R ∈ H is is said to be φ-invertible if φ(a) is an invertible ideal of φ(R), 

see [4]. If every nonnil ideal of R ∈ H is φ-invertible, then R is said to be a φ-Dedekind ring, see [4]. 

A φ-chained ring R is said to be discrete if R has at most one nonnil prime ideal and every nonnil 

ideal of R is principal. Also, a ring R ∈ H is said to be a φ-Krull ring if φ(R) = ∩Vi, where each Vi 

is a discrete φ-chained overring of φ(R), and for every non nilpotent element x ∈ R, φ(x) is a unit 

of all but finitely many Vi, see [4]. 

Now, we list some definitions and results from the literature on ring theory and ring extensions 

which we used in this thesis. 

RESULT 1.1.23. [Proposition 2.9] Let R ∈ H. Then R is a φ-PVR if and only if 

R/Nil(R) is a PVD. 

RESULT 1.1.24. [21, Corollary 7(3)] Every PVR is a φ-PVR. 

RESULT  1.1.25.  [3, Theorem 2.6] Let R  ∈ H.  Then R  is a φ-Prü fer ring if and only if 

R/Nil(R) is a Prü fer domain. 

RESULT 1.1.26.  [3, Theorem 2.14] Every φ-Prü fer ring is a Prü fer ring. 

RESULT  1.1.27.  [3, Theorem 2.17] Let R  ∈ H.  Then R  is a φ-Prü fer ring if and only if every 
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overring of φ(R) is integrally closed. 

RESULT  1.1.28.  [3,  Example 2.18] Let  D  be a Prü fer domain with Krull dimension  n. Then 

R = D(+)qf(D) is a φ-Prü fer ring with Krull dimension n. 

RESULT 1.1.29. [4, Theorem 2.5] Let R ∈ H. Then R is a φ-Dedekind ring if and only if 

R/Nil(R) is a Dedekind domain. 

RESULT 1.1.30. [4, Theorem 3.1] Let R ∈ H. Then R is a φ-Krull ring if and only if 

R/Nil(R) is a Krull domain. 

RESULT 1.1.31. [21, Proposition 3(3)] Let R ∈ H and let x = a/b ∈ RNil(R) for some 

a ∈ R and for some b ∈ R \ Nil(R). Then x ∈ φ(R) if and only if b divides a in R. 

RESULT 1.1.32. [23, Proposition 2.2] A ring R ∈ H is a φ-chained ring if and only if for every a, 

b ∈ R \ Nil(R), a divides b in R or b divides a in R. 

RESULT 1.1.33. [23, Proposition 2.10] Every φ-chained ring is integrally closed and φ- integrally 

closed. 

RESULT 1.1.34. [3, Theorem 2.7] Let R ∈ H.  Then R is a φ-chained ring if and only if 

R/Nil(R) is a valuation domain. 

RESULT 1.1.35.  [3, Corollary 2.8] Every φ-chained ring is a φ-Prü fer ring. 

RESULT 1.1.36. [23, Proposition 2.9] Let R ∈ H be a φ-chained ring and let T be an a overring of R. 

Then T is a φ-chained ring and there exists a prime ideal p of R containing Z(R) such that T = Rp. 

RESULT 1.1.37. [23, Lemma 3.1(1)] Let R and T be φ-chained rings with the same maximal ideal 

and the same total quotient ring. Then R = T. 

DEFINITION 1.1.38. An integral domain R has property (#), if for any two distinct subsets Ω1 and 

Ω2 of Max(R), intersections ∩m∈ Ω1 Rm and ∩m∈ Ω2 Rm are distinct, see [62]. For example, 

every PID has property (#). 

RESULT  1.1.39.  [57,  Proposition 4.9] Let  R  be a one-dimensional Prü fer domain with 

property (#). Consider the map Φ: {overrings of R} → {subsets of the set of valuation 

overrings of R} by Φ(T) = {valuation overrings of T} and the map Ψ: {subsets of the 

set of valuation overrings of R} → {overrings of R} by Ψ({Vα}) = ∩Vα. Then Φ and Ψ 

are inverse maps and are both inclusion-reversing. 

COROLLARY  1.1.40.  Let R  be a one-dimensional Prü fer domain with property (#) and let Γ 

be the set of all valuation overrings of R. If T  = ∩V∈ Γ\{V1}V, then [R, T] = {R, T}. 

PROOF. First, note that R ⊂ T as Φ(T) ⊂ Φ(R) by Result 1.1.39. Now, let S ∈ [R, T].   

Since  R  is  a  one-dimensional  Prü fer  domain,  S   =  ∩V∈ ΓV.   Now,  by  Result 1.1.39, we have 

Φ(T) ⊆ Φ(S) ⊆ Φ(R). It follows that either S = R or S = T. 

COROLLARY  1.1.41.  Let R  be a one-dimensional Prü fer domain with property (#) and let Γ 

be the set of all valuation overrings of  R.  If T  = ∩V∈ Γ\{V1,V2}V, then [R, T] = 

{R, S1, S2, T}, where Si  = ∩V∈ Γ\{Vi }V  for i  = 1, 2.  Moreover, S1 and S2 are not com- 

parable. 

PROOF. First, note that S1 and S2 are distinct proper intermediate rings between R 

and T, by Result 1.1.39.  Now, let S  ∈ [R, T] \ {R, T}.  Since R  is a one-dimensional Prü fer 

domain, S = ∩V∈ΓV. Now, by Result 1.1.39, we have Φ(T) ⊂ Φ(S) ⊂ Φ(R). It follows that 

either S  = S1 or S  = S2.  Thus, [R, T] = {R, S1, S2, T}.  Finally, if S1 ⊂ S2, then Φ(S2) ⊂ Φ(S1), a 

contradiction. Similarly, S2 /⊂ S1. 

DEFINITION 1.1.42. A ring extension R ⊆ T is said to be a FIP-extension or R ⊆ T sat- isfies FIP if 

[R, T] is finite. For example, every minimal ring extension is a FIP extension. or the study of FIP 

property, see [1, 47, 69, 68, 43, 58, 44, 45, 13, 89, 88, 70, 7, 46]. 

DEFINITION 1.1.43. Consider the partially ordered set ([R, T], ⊆). Then R ⊆ T satisfies FCP if each 
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chain in [R, T] is finite, see [47]. For example, F2(X
2, Y2) ⊂ F2(X, Y) satisfies FCP. The length of 

[R, T], denoted by l [R, T], is the supremum of the lengths of chains of R-subalgebras of T. 

DEFINITION 1.1.44. Let R be an integral domain. If for each overring T of R, the canon- ical 

contraction map Spec(T) → Spec(R) is injective, then R is called an i-domain, see [92]. For 

example, Z is an i-domain. 

The following result on i-domain is used frequently in this thesis: 

RESULT 1.1.45. [92, Corollary 2.15] Let R be a domain. Then R is a local i-domain if and only 

if R′ is a valuation domain. 

DEFINITION 1.1.46. A proper ideal a of a ring R satisfying the condition that if xyz ∈ a for x, y, 

z ∈ R, then xy ∈ a or yz ∈ a or xz ∈ a is called a 2-absorbing ideal, see [27]. For example, p ∩ q is a 

2-absorbing ideal for any prime ideals p, q of R. 

DEFINITION 1.1.47. Let R ⊆ T be a ring extension. If each element of T is a root of some 

polynomial in R[X], then R ⊆ T is called an algebraic extension. Moreover, if at least one of the 

coefficients of that polynomial is a unit of R, then R ⊆ T is called a P-extension, see [60]. For 

example, Z ⊂ Z[1/2] is a P-extension. 

RESULT 1.1.48. [29, Theorem 2.2] Let R ∈ H0. Then R ⊆ tq(R) is a P-extension if and only if R′ is 

a Prü fer ring. 

RESULT 1.1.49. [47, Lemma 3.8] Let R ⊂ T be a ring extension such that R is integrally closed in T, 

let u ∈ T and p ∈ Spec(R). Suppose that u is a root of some polynomial in R[X] that has at least 

one coefficient in R \ p. Then u satisfies at least one of the following two conditions: 

(i) u/1 ∈ Rp; 

(ii) u/1 is a unit of Tp and (u/1)−1 ∈ Rp. 

RESULT 1.1.50. [47, Lemma 3.9] Let R ⊂ T be a P-extension such that R is integrally closed in T. If 

q ∈ Spec(T) and p = q ∩ R, then Rp = Tp. 

DEFINITION 1.1.51. Let R ⊆ T be a ring extension. If every intermediate ring is integrally closed in 

T, then the pair (R, T) is called a normal pair, see [35]. For example, (Z, Q) is a normal pair. 

RESULT 1.1.52. [51, Proposition 3.1] Let R ⊆ T be a ring extension. Then the following are 

equivalent: 

(i) (R, T) is a normal pair. 

(ii) (Rp, Tp) is a normal pair for all p ∈ Spec(R). 

(iii) (Rm, Tm) is a normal pair for all m ∈ Max(R). 

RESULT 1.1.53. [47, Theorem 6.8] Let (R, m) be a local ring and T be a ring containing 

R. Then the pair (R, T) is normal if and only if there exists q ∈ Spec(R) such that T = Rq, q = qT and 

R/q is a valuation domain. Under these conditions, T/q is necessarily the quotient field of R/q. 

DEFINITION 1.1.54.  Let  R  ⊆ T  be a ring extension.  If for any prime ideal q  of T  and p = q 

∩ R, the ring T/q is algebraic over R/p, then R ⊆ T is called a residually algebraic extension. 

Moreover, the pair (R, T) is called a residually algebraic pair if for any ring S in [R, T], the extension 

R ⊆ S is residually algebraic, see [42] and [11]. For example, (Z, Q) is a residually algebraic pair. 

RESULT 1.1.55. [11, lemma 2.9] Let (R, T) be a residually algebraic pair of integral domains such 

that R is integrally closed in T. Then the following hold: 

(i) If q ∈ Spec(T), then Rq∩R = Tq. 

(ii) Spec(T) = {pT : pT /= T, p ∈ Spec(R)}. 

DEFINITION 1.1.56. A ring R is said to be a quasi-valuation ring if x divides y or y divides x in R 

for all x, y ∈ R \ Z(R), see [55]. For example, tq(R) is a quasi-valuation ring for every ring R. 

DEFINITION  1.1.57.  Let R  ⊂ T be a ring extension.  Then R  ⊂ T satisfies INC if for any two 

distinct prime ideals q1, q2 of T such that q1 ∩ R = q2 ∩ R, we have q1, q2 are incomparable, see [74]. 
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Moreover, the pair (R, T) is said to be an INC-pair if R ⊂ S satisfies INC for all S ∈ [R, T] \ {R}, see 

[74]. For example, (K, K × K) is an INC-pair for any field K. Here, K is a subring of K × K via 

the diagonal map r → (r, r), for all r ∈ K. 

RESULT 1.1.58. [38, Corollary 4] An extension R ⊆ T is a P-extension if and only if 

(R, T) is an INC-pair. 

RESULT 1.1.59. [32, Theorem 3.1] Let V be a valuation domain with maximal ideal m such that 

V = F + m, where F is a field contained in V. Let D be a proper subring of F and set R = D + m. Let 

T be a ring containing R. Then T is an overring of R if and only if T is an overring of V or T = E + 

m for some subring E of F containing D. 

RESULT 1.1.60. Let R ⊂ T be a ring extension such that for each t ∈ T \ R, t−1 ∈ R. Then R is 

integrally closed in T. 

PROOF. Let t ∈ T \ R be integral over R. Then tn + rn−1tn−1 + · · · + r1t + r0 = 0 

for some r0, r1, . . . , rn ∈ R. It follows that t = −(t1−n)(∑n−1 rit
i) ∈ R. Thus, R is 

integrally closed in T. 

RESULT 1.1.61. [52, Theorem] Let R ⊆ T be an integrally closed extension such that there exist t1, 

t2, . . . , tn in T such that T is integral over R[t1, t2, . . . , tn]. If a prime ideal p of T is maximal and 

minimal with respect to prime ideals of T whose intersection with R is R ∩ p, then there exists an s 

∈ R \ (R ∩ p) such that Ts = Rs. 

RESULT 1.1.62. [5, Theorem 5.10] Let R ⊆ T be an integral extension and p be a prime ideal of R. 

Then there exists a prime ideal q of T such that p = q ∩ R. 

RESULT 1.1.63. [5, Corollary 5.8] Let R ⊆ T be an integral extension and m be a maxi- mal ideal 

of T. Then m ∩ R is a maximal ideal of R. 
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