

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

AN EXPERIMENTAL STUDY TO ASSESS THE EFFECTIVENESS OF GARDEN CRESS SEEDS ON ANEMIC LEVEL OF ADOLESCENT GIRLS IN THE AGE GROUP OF 18-19 YEARS IN CUDDALORE DISTRICT

R Devi, Research Scholar, Annamalai University, Annamalai Nagar, India-608 002. **A Anbumalar,** Lecturer, Annamalai University, Annamalai Nagar, India-608 002.

ABSTRACT

Adolescent girls' anemia is a serious public health concern, especially in poor nations. It has a negative impact on cognitive and physical development, which lowers work capacity and academic achievement. This study examines how well garden cress seeds (Lepidium sativum), a naturally occurring iron source, can treat anemia in teenage girls in Cuddalore District, Tamil Nadu, who are between the ages of 18 and 19. Three hundred teenage girls between the ages of eighteen and nineteen participated in the study. (150 female students from Shree Raghavendra Arts and Science college, Keezhamoongiladi and 150 female students from Annamalai University). Information gathered about physical activity patterns, anemia prevalence, nutritional status, and nutritional understanding. All 150 teenage females receive nutritional education, and 50 anemic teenage girls from Annamalai University were chosen for the experimental group after their blood samples were taken after a month. For 45 days straight, they were given a health mix ball consisting of Health mix ball consisting of garden cress seeds along with 100ml of lemon juice. Blood samples were obtained for these 50 students following this supplementation. Fifty anemic teenage females were chosen for the control group at Shree Raghavendra Arts and Science college, Keezhamoongiladi, Cuddalore district, Tamil Nadu.. They received simply nutritional education, and after a month, blood samples were taken to check their hemoglobin levels.

Keywords:

Hemoglobin levels, Physical activity patterns, Health mix ball, Annamalai University. Cuddalore District.

I. Introduction

Teenage females in underdeveloped nations are disproportionately affected by anemia, a global health issue [1]. Iron deficiency, lack nutritional awareness, and poor dietary intake are the main causes. Anemia can have a serious negative influence on adolescence, a time of essential growth and development, academic achievement, and future maternal health. In order to successfully treat the concerningly high prevalence of anemia among adolescents in India, specific interventions are required [2]. Many teenage females in Tamil Nadu's Cuddalore District suffer from anemia, which is a microcosm of this pervasive problem.

Given their high iron content and bioavailability, garden cress seeds (Lepidium sativum) offer a potentially effective natural remedy for anemia [3]. They are high in folic acid and vitamin C, which improve iron absorption and help with nutritional inadequacies, in addition to iron. In spite of their promise, nothing is known about using garden cress seeds as a dietary intervention in India [10, 11]. The purpose of this study is to close this gap by determining if garden cress seeds may raise hemoglobin levels in teenage girls and how health education can raise awareness and promote healthy habits [4].

By determining the incidence of anemia, identifying important lifestyle and demographic characteristics linked to its severity, and analyzing the effects of focused nutritional interventions and education, this study takes a comprehensive approach to understanding and preventing anemia [5]. The study aims to offer a sustainable and economical method of treating anemia in teenage females by fusing health education with garden cress seed supplementation. It is anticipated that the results of this

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

study will influence public health regulations and aid in the creation of all-encompassing initiatives to treat teenage anemia in environments with limited resources [6, 12].

Adolescent females should receive special attention since they are a demographic that is in a transitional stage between childhood and adulthood, marked by rapid physical growth and higher nutritional needs [7]. In addition to improving immediate health outcomes, treating anemia in adolescence lowers the chance of difficulties during pregnancy and childbirth and lays the groundwork for improved reproductive health [13, 14]. Additionally, raising hemoglobin levels and promoting general health can improve their quality of life, productivity, and academic achievement. This study supports national and international efforts to lower the prevalence of anemia and highlights the significance of long-term therapies catered to the particular requirements of teenage girls in marginalized communities.The major objective of this work is outlined as;

To assess the prevalence of anemia among the selected adolescent girls in the age group of 18-19 years using anthropocentric, biochemical and dietary pattern.

To study the association between demographical variables with the level of anemia, knowledge on anemia of the selected girls.

 \Box To assess the nutritional status, nutritional knowledge on anemia and physical activity pattern of adolescent girls.

 \Box To evaluate the effectiveness of the health education on nutritional status, nutritional knowledge on Anemia and physical activity pattern.

 \Box To evaluate the effectiveness of garden cress seeds in improving hemoglobin level of the adolescent girls.

Rest of the paper is organized as: Section 2 summarizes the materials and methods followed by the results discussed in Section 3 and concluded in Section 4.

II. Materials and Methods

In order to determine whether garden cress seeds can improve anaemia levels in adolescent females in the Cuddalore District who are between the ages of 18 and 19, this study uses an experimental design with a pre-test/post-test control group method. Participants will be randomised to either the control group, which will consume their regular diet without supplements, or the experimental group, which will supplement with garden cress seeds every day [8]. To ensure comparability, baseline haemoglobin levels and other health metrics will be assessed for both groups prior to the intervention. Over the course of the 8–12 week trial, progress and adherence will be routinely assessed.

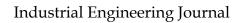
The study's main result is the change in haemoglobin levels, which are measured using standardised laboratory techniques at the conclusion of the intervention. Serum ferritin levels and participants' self-reported well-being are examples of secondary outcomes. In order to distinguish the impact of garden cress seeds from other factors, the control group will be used. To guarantee ethical behaviour throughout the study, informed consent from participants and their guardians will be obtained, along with ethics approval.

III. Results and Discussion

Distribution of the subjects based on their demographic variables by group wise is tabulated in Table 1. The demographic details of the individuals in the intervention and control groups are contrasted in the table. While the columns display the corresponding frequency and percentage of participants within each group, each row represents a distinct demographic variable. Participants were divided into agebased subgroups, such as 18 and 19 years old. Divided into three income brackets: low, middle, and high [9]. Participants were categorized according to their greatest educational attainment. Distinction between shared and nuclear households. A mixed, vegetarian, or non-vegetarian diet either rural or urban.

Table 1. Distribution of the subjects based on their demographic variables by group wise

ISSN: 0970-2555


Volume : 54, Issue 1, No.2, January : 2025

Variables	Experi	mental	Contr	rol	Chi-square test value	d.f.	P-value
	No.	%	No.	%			
			Age i	n yeai	S		
18 years	22	44	31	62	3.25	1	0.071
19 years	28	56	19	38			
		I	Place of	reside	ence		
Urban	36	72	37	74	0.51	1	0.822
Rural	14	28	13	26			
			Birth	Orde	r		
First child	2	4	2	4	1.813	3	0.612
Second child	24	48	20	40			
Third child	20	40	26	52			
Fourth child	4	8	2	4			
		Fam	ily Inco	me (N	Ionthly)		
<10000	15	30	22	44	2.153	2	0.341
10000-15000	19	38	16	32			
>15000	16	32	12	24			
		Eati	ng Outs	ide in	a week		
Rare	17	34	26	52	7.301	3	0.063
Once	15	30	16	32			
Twice	11	22	7	14			
Thrice	7	14	1	2			
			Fami	ly typ	e		
Joint Family	9	18	13	26	0.934	2	0.627
Nuclear Family	32	64	29	58			
Separated Family	9	18	8	16			

Table 2 provided the distribution of the subjects based on their parent's related variables by group wise. A comparison of the parental traits in the intervention and control groups is shown in this table. These traits are essential for comprehending how the socioeconomic and educational backgrounds of the teenage participants may affect their nutritional and overall health. The participants' socioeconomic and educational environments can be inferred from the distribution of the factors connected to their parents. Given that family history might have a substantial impact on adolescents' health habits and response to interventions, this information is essential for evaluating the study's findings. Finding commonalities between groups guarantees that variations in results are caused by the intervention and not by outside influences.

Table 2. Distribution of the subjects based on their parent's related variables by group wise

Variables	Experi	mental	Control		Chi-	d.f.	P-
					square		value
	No.	%	No.	%	test		
	1.01	/0	1101	70	value		
	Father's	Educatio	n				
Illiterate	4	8	8	16	6.98	5	.222
Primary	8	16	9	18			
High School	16	32	19	38			
Secondary School	9	18	9	18			
College Education	10	20	2	4			
No more	3	6	3	6			

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

	Mother's	s Educatio	on				
Illiterate	9	18	14	28	9.61	5	.087
Primary	11	22	16	32			
High School	14	28	6	12			
Secondary School	6	12	9	18			
College Education	8	18	2	4			
No more	2	4	3	6			
]	Father's	Occupatio	on				
Unemployed	3	6	8	16	6.54	4	.162
Unskilled	20	40	24	48			
Semi-skilled	16	32	13	26			
Skilled	8	16	2	4			
No More	3	6	3	6			
Ν	/lother's	Occupati	on				
House wife	33	66	31	62	1.10	4	.893
Unskilled	5	10	7	14			
Semi-skilled	4	8	5	10			
Skilled	6	12	4	8			
No More	2	4	3	6			

Table 3 describes the distribution of the subjects based on their physiological variables by group wise. The physiological traits of individuals in the intervention and control groups are analysed and contrasted in this table. In order to evaluate how the intervention affected the participants' physiological parameters, it is crucial to have a baseline understanding of their health status, which these variables offer. A thorough summary of the physiological health conditions of the individuals in the intervention and control groups is given in this table. Comparing these factors helps determine how well the intervention improved these parameters and guarantees that the two groups were physiologically comparable at baseline. The physiological alterations that follow the intervention will shed light on the advantages of garden cress seed supplementation for health.

		1 • 1 • 1 • 11	· ·
Table 3. Distribution of the sub	lects based on their r	nhysiological variables	hy group wise
Tuble 5. Distribution of the sub	jeets bused on them p	physiological valiables	by group mise

Variables	Experi	•	Contro		Chi-	d.f.	P-value
					square		
	No.	%	No.	%	test		
					value		
	I	Height in	cms				
<= 140	1	2	5	10	21.73	4	< 0.002
141-150	9	18	25	50			
151-160	22	44	17	34			
161-170	16	32	3	6			
>170	2	4	0	0			
	V	Weight in	ı kgs				
31-40	6	12	11	22	6.232	4	0.182
41-50	23	46	26	52			
51-60	14	28	10	20			
61-70	4	8	3	6			
71-80	3	6	0	0			
		BMI					
<=18.50 (Under weight	17	34	10	20	8.281	4	.082

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

18,51-23.00 (Normal)	21	42	33	66		
23.01 - 25.00	6	12	6	12		
(Over weight)						
25.01-30.00 (Obese I)	4	8	1	2		
>30.00 (Obese II)	2	4	0	0		

Table 4 delineates the distribution of the subjects based on their preference of snacks by group wise. The snack choices of participants in the intervention and control groups are analyzed in this table. Knowing snack preferences is crucial because they can affect dietary patterns in general, which may have an impact on how well nutritional interventions like supplementing garden cress seed work. We can determine the possible impact of dietary supplements or health education on food choices by comparing the snack preferences of the two groups. A change in the intervention group's snack choices toward healthier options may indicate that the instruction and supplements have improved their eating patterns. The dietary patterns and snack preferences of the teenage females in the intervention and control groups are shown in this table.

Table 4. Distribution of the subjects based on their preference of snacks by group wise

Variables	Experi	mental	Control		Chi-	d.f.	P-
	No.	%	No.	%	square		value
					test		
					value		
Tea	6	12	20	40			
Coffee	12	24	3	6			
Juice	23	46	9	18			
Ice cream	11	22	22	44			
Samosa	18	36	28	56			
Panipuri	15	30	27	54			
Puffs	26	52	6	12			
Burger	2	4	3	6			
Pizza	1	2	3	6			
Noodles	8	16	7	14			
Channa Masala	2	4	4	8			
Chips	5	10	8	16			
Chocolates	7	14	6	12			
Biscuits	3	6	13	26			
Poori	6	12	4	8			
Mushroom puff	2	4	7	14			
Briyani	4	8	10	20			
Shawarmma	1	2	4	8			
Cake	13	26	2	4			
Popcorn	0	0	1	2			
Sandwich	2	4	0	0			
Chicken roll	3	6	0	0			
Fruits	5	10	4	8			

Table 5 delineates the distribution of the subjects based on their frequency of healthy snacks intake by group wise. The frequency of consumption of nutritious snacks by participants in the intervention and control groups is shown in this table. A balanced diet must include nutritious snacks since they are a great source of vitamins, minerals, fiber, and healthy fats—all of which are particularly vital for the growth and development of adolescents. This table aids in evaluating the effect of the intervention on participants' eating patterns by examining the frequency of consumption of nutritious snacks. This

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

chart offers important information about how frequently teenage girls in both groups consume nutritious snacks. We can determine how well the garden cress seed supplementation and health education are working to improve eating habits by evaluating these patterns of intake. The intervention group's increased consumption of nutritious snacks would indicate that the intervention had a favourable.

Table 5. Distribution of the subjects based on their frequency of healthy snacks intake by group wise

Food items	Group	Rare	Once a	Once	Almost	Chi-	d.f.	P-
			month	a	daily	Square		value
				week		test value		
DRY FRUITS - Dates	Exp	25	3	6	16	5.923	3	.115
	Control	19	7	13	11			
Dry Fruits - Figs	Exp	40	3	3	4	3.229	3	.358
	Control	34	7	6	3			
Dry Fruits - Raisins	Exp	39	3	1	7	1.272	3	.736
	Control	37	4	3	6			
DRY NUTS								
Badam	Exp	35	2	1	12	10.243	3	.017
	Control	25	3	11	11			
Pista	Exp	44	3	0	3	11.253	3	.010
	Control	31	6	7	6			
Walnut	Exp	45	2	1	2	9.747	3	.021
	Control	32	5	5	8			
Pea nut	Exp	37	2	3	8	3.719	3	.293
	Control	28	3	4	15			

Table 6 delineates the distribution of the subjects based on their frequency of healthy snacks intake by group wise. The frequency of healthy snack consumption by participants is shown in this table, categorized by the intervention and control groups. Healthy snacks are critical for sustaining optimal nutrition and supplying necessary nutrients, particularly for teenagers going through a period of rapid growth and development. This table aids in determining if the participants' dietary preferences and frequency of consumption of healthful snacks have been impacted by the intervention (garden cress seeds and health education). The frequency of healthy snack consumption by participants in the intervention and control groups is clearly compared in this table. It is a helpful tool for assessing how well the intervention is working to encourage adolescent females to adopt healthy eating habits. The information aids in determining whether a greater consumption of nutrient-dense snacks resulted from the supplements and health education.

Table 6. Distribution of the subjects based on their frequency of healthy snacks intake by group wise

Food items	Group	Rare	Once a	Once	Almost	Chi-	d.f.	Р-
			month	a	daily	square		value
				week		test value		
CITRUS FRUITS								
Lemon	Exp	31	2	5	12	10.173	3	.017
	Control	17	2	16	15			
Orange	Exp	34	1	7	8	4.230	3	.238
	Control	24	1	12	13			
Musambi	Exp	38	4	5	3	3.463	3	.326
	Control	33	4	4	9			
Amla	Exp	40	1	0	9	8.295	3	.040
	Control	30	5	4	11			

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

GREEN LEAFY	Exp	22	2	15	11	0.533	3	.912
VEGETABLES	1							
	Control	21	3	13	13			
SPROUTS	Exp	33	3	4	10	1.162	3	.762
	Control	36	4	2	8			
NON-VEGETARIAN								
Meats	Exp	34	2	5	9	5.427	3	.143
	Control	28	1	14	7			
Fish	Exp	35	3	7	5	20.276	3	.000
	Control	14	2	15	19			
Egg	Exp	21	3	10	16	5.704	3	.127
	Control	16	0	9	25			
Liver	Exp	40	5	5	0	1.512	3	.679
	Control	41	5	3	1			

The distribution of the subjects based on their dietary practice by group wise is outlined in Table 7. The table compares the frequency of coffee/tea consumption and breakfast skipping between the experimental and control groups. In terms of skipping breakfast, the experimental group contained 18 participants who did so infrequently and 9 who did it every day, while the control group had 9 and 12 participants, respectively. There is no discernible difference between the groups, according to the p-value of 0.105. The experimental group's coffee/tea intake likewise showed no significant difference, with 14 persons consuming it infrequently and 22 consuming it regularly, compared to 13 and 22 in the control group (p-value of 0.712). These findings imply that the food habits of the two groups were similar, guaranteeing that there were few confounding influences on the study's findings. Table 7. Distribution of the subjects based on their dietary practice by group wise

Dietary Practice	Group	Rare	Once a	Twice a	Thrice	Daily	Chi-		
	-		week	week	a week		square		
							test p-		
							value		
Do you have practice of missing breakfast?									
	Experimental	18	5	14	4	9	0.105		
	Control	9	13	14	2	12			
Intake of coffee or tea									
	Experimental	14	4	6	4	22	0.712		
	Control	13	8	5	2	22			

The chi-square test is used to compare the prevalence of anemia-related symptoms in the experimental and control groups, which is summarised in the table 8. There were no statistically significant differences between the groups in symptoms such as angular stomatitis, reddish-brown hair, brittle or spoon-shaped nails, or pallor skin since their p-values (e.g., 0.161, 0.110, 0.211, and 0.140) were higher than the significance level of 0.05. Interestingly, with a p-value of 0.022, cheilosis was substantially more common in the experimental group (10%) compared to the control group (0%). Additionally, the experimental group had considerably greater levels of symptoms related to mood and attention, such as mood swings (p = 0.000) and lacking attentiveness in class (p = 0.000). Table 8 Distribution of the subjects based on their clinical symptoms by group wise

Table 6. Distribution of the subjects based			symptom	5 UY 510	up wise		
Symptoms	Experimental		Control		Chi-	d.f.	P-
					square		value
	No.	%	No.	%	test		
					value		

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

Pallor skin	5	10	10	20	1.961	1	.161
Brittle / Spoon shaped nail	3	6	8	16	2.554	1	.110
Colour of Hair (Reddish Brown)	15	30	21	42	1.563	1	.211
Colour of Eye : Pallor	9	18	9	18			
Angular Stomatitis	6	12	2	4	2.174	1	.140
Mouth Ulcer	9	18	7	14	0.298	1	.585
Cheilosis	5	10	0	0	5.263	1	.022
Loss of hair	45	90	44	88	.102	1	.749
Weight loss	16	32	15	30	.047	1	.829
Weight gain	10	20	6	12	1.190	1	.275
Missing attentiveness in class	22	44	4	8	16.84	1	.000
Mood Swing	29	58	11	22	13.50	1	.000
Eating raw rice, chalk, mud	17	34	16	32	0.081	1	.776
Worms in the Stool	2	4	2	4			

Table 9 compares the experimental and control groups in terms of lifestyle factors, such as engagement in outdoor games, yoga/meditation, and other physical activities. With a p-value of 0.668, which indicates no significant difference, 70% of individuals in the experimental group reported not playing outdoor games, compared to 66% in the control group. Similarly, with a p-value of 0.749, indicating no significant difference, 88% of the experimental group and 90% of the control group did not engage in yoga or meditation. With a p-value of 0.538, which likewise shows no significant difference, 90% of the experimental group and 86% of the control group did not perform any other activities.

Table 9. Distribution of the subjects based on physical exercises related variables by group wise

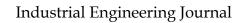
Variables	Experimental C		Contro	Control		d.f.	P- value
	No.	%	No.	%	test value		
Do you play any outdoor games							
No	35	70	33	66	0.184	1	0.668
Yes	15	30	17	34			
Yoga and meditation							
No	44	88	45	90	0.102	1	0.749
Yes	6	12	5	10			
Do you do any other exercise		·	•	•	·	•	•
No	45	90	43	86	0.379	1	0.538
Yes	5	10	7	14			

Menstruation-related variables are compared amongst the experimental and control groups in the table 10. With 80% of the experimental group and 68% of the control group reporting regular periods, there is no discernible change in menstrual status (p = 0.171). With a p-value of 0.186, menstrual flow duration does not significantly differ between groups such as three, four, or five days, and more than five days. Similarly, there is no significant difference between groups in uncomfortable menstrual symptoms such fatigue, sluggishness, and stomach pain (p = 0.102). There is no discernible variation in college attendance trends during the menstrual cycle (p = 0.794). Nonetheless, there is a significant difference (p = 0.043) in the number of pads used daily, with a larger percentage of people in the experimental group utilising three or more pads.

Table 10. Distribution of the subjects based on their menstrual related variables by group wise

Variables	Experimental		Control		Chi-	d.f.	P-
					square		value
	No.	%	No.	%			

ISSN: 0970-2555


Volume : 54, Issue 1, No.2, January : 2025

					test		
					value		
Menstruation status							
Regular	40	80	34	68	1.871	1	0.171
Irregular	10	20	16	32			
Menstrual flow							
Three days	13	26	10	20	4.817	3	0.186
Four days	20	40	13	26			
Five days	12	24	22	44			
More than Five days	5	10	5	10			
Uncomfortable feelings during mens	trual perio	d					
Tired	13	26	23	46	6.198	3	0.102
Lethargy	1	2	0	0			
Stomach pain	32	64	26	52			
Others	4	8	1	2			
College attendance during menstrual	period						
Present	34	68	32	64	0.461	2	0.794
Absent	4	8	6	12			
sometime absent	12	24	12	24			
No.of pads required per day		•	•	•			
1	1	2	2	4	9.848	4	0.043
2	10	20	22	44			
3	21	42	14	28			
4	12	24	11	22			
5-6	6	12	1	2			

The experimental and control groups' various sanitation and hygiene-related characteristics are contrasted in Table 11. In terms of lavatory amenities, there is a substantial difference (p 0.001): 66% of the experimental group had access to a shared lavatory for more than ten rooms, while just 4% of the control group did. On the other hand, a larger percentage of participants (62%) in the control group have a single toilet in each room. A significant difference between the groups was indicated by the p-value of 0.023, which showed that 26% of the experimental group and 48% of the control group reported going barefoot outside. 34% of the experimental group and 52% of the control group said they washed their hands with soap before eating, although the p-value was 0.069.

Table 11. Distribution of the subjects based on their sanitation practices related variables by group wise

Variables	Exper	imental	Control		Chi- square	d.f.	P-value
	No.	%	No.	%	test value		
1. Toilet facility							
Single toilet for each room	2	4	31	62	53.08	2	< 0.001
Common toilet for more than 5 rooms	15	30	17	34			
Common toilet for more than 10 rooms	33	66	2	4			
Do you walk in barefoot outside the hou	ise?						
Yes	13	26	24	48	5.191	1	0.023
No	37	74	26	52			
Do you wash your hands with soap befo	re takir	ig food?	•	•	•	•	•
Yes	17	34	26	52	3.305	1	.069

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

		-								
No	33	66	24	48						
Do you wash your hands with soap after using toilet?										
Yes	42	84	47	94	2.554	1	0.110			
No	8	16	3	6						
How frequent do you cut your nails?										
Once in a week	30	60	32	64	7.157	3	0.67			
Twice in a month	8	16	11	22						
Once in a month	10	20	2	4						
rare	2	4	5	10						

The frequency with which the experimental and control groups consumed different foods is shown in the table 12, which is divided into three categories: "Rare," "Sometimes," and "Frequently." Since all p-values are higher than the 0.05 cutoff, the chi-square test findings show that there are no significant differences between the groups for any of the food items. For instance, the p-values for pasta, pizza, and burgers are 0.134, 0.092, and 0.300, respectively. Noodles, cake, samosas, and puffs have p-values of 0.293, 0.226, 0.190, and 0.095, respectively. These results imply that the experimental and control groups' eating patterns for these foods are similar.

Table 12. Distribution of the subjects based on their frequency of junk food intake by group wise

Food items	Group	Rare	Some	Frequently	Chi-Square	d.f.	P-
			times		test value		value
PIZZA	Exp	3	27	20	2.406	2	.300
	Control	6	20	24			
BURGER	Exp	5	29	16	4.778	2	.092
	Control	11	19	20			
PASTA	Exp	3	30	17	4.024	2	.134
	Control	5	20	25			
NOODLES	Exp	5	14	31	2.458	2	.293
	Control	4	8	38			
CAKE	Exp	6	14	30	2.978	2	.226
	Control	4	8	38			
SAMOSA	Exp	4	6	40	3.322	2	.190
	Control	1	11	38			
PUFFS	Exp	3	9	38	4.710	2	.095
	Control	1	18	31			
FRENCH FRIES	Exp	5	31	14	2.041	2	.360
	Control	6	24	20			
CHIPS	Exp	5	17	28	3.326	2	.190
	Control	1	22	27			
PANI POORI	Exp	3	15	32	3.923	2	.141
	Control	5	7	38			
CUTLET	Exp	4	30	16	1.983	2	.371
	Control	5	23	22			
CHOCOLATES	Exp		20	30	0.041	1	.839
	Control		21	29			
ICE-CREAM	Exp	4	8	38	0.261	2	.878
	Control	3	7	40			
SWEETS	Exp	4	16	30	1.362	2	.506
	Control	2	13	35			

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

MILK SHAKES	Exp	5	22	23	0.902	2	.637
	Control	8	22	20			

The outcomes of a t-test comparing the means of the experimental and control groups are shown in the table 13. The control group's mean is 5.80 with a standard deviation (SD) of 1.82, but the experimental group's mean is 6.56 with an SD of 1.87. With 98 degrees of freedom (d.f.), the t-test value is 2.051, and the p-value is 0.043. There is a statistically significant difference between the two groups, as indicated by the p-value being less than 0.05. As a result, we may say that the experimental group's mean is much higher than the control group's.

Table 13. Mean and Standard deviation of knowledge score by group wise at pre test

Group	Mean	SD	t-test value	d.f.	P-value
Experimental	6.56	1.87	2.051	98	.043
Group	5.80	1.82			

The results of a t-test comparing the means of the experimental and control groups are shown in the table 14. The control group's mean is 5.80 with a standard deviation (SD) of 1.82, but the experimental group's mean is 6.56 with an SD of 1.87. With 98 degrees of freedom (d.f.), the t-test value is 2.051, and the p-value is 0.043. There is a statistically significant difference between the two groups, as indicated by the p-value being less than 0.05. As a result, we may say that the experimental group's mean is much higher than the control group's.

Table 14. Mean and Standard deviation of Haemoglobin values by group wise at pre test

Group	Mean	SD	t-test value	d.f.	P-value
Experimental	9.174	0.864	1.846	98	.068
Group	8.798	1.152			

The results of a t-test comparing the experimental and control groups' means are shown in the table 15. The control group's mean is 7.66 with a standard deviation (SD) of 1.53, but the experimental group's mean is 9.34 with an SD of 0.93. With 98 degrees of freedom (d.f.), the t-test value is 6.606, and the p-value is 0.000. A statistically significant difference between the experimental and control groups is indicated by a p-value of less than 0.05, indicating that the experimental group's mean is significantly higher than the control group's.

Table 15. Mean and Standard deviation of knowledge score by group wise at post test

Group	Mean	SD	t-test value	d.f.	P-value
Experimental	9.34	0.93	6.606	98	.000
Group	7.66	1.53			

The results of a t-test comparing the experimental and control groups' means are shown in the table 16. The control group's mean is 9.46 with a standard deviation (SD) of 1.38, whereas the experimental group's mean is 10.26 with an SD of 1.12. With 98 degrees of freedom (d.f.), the t-test value is 3.162, and the p-value is 0.002. A statistically significant distinction amongst the experimental and control groups is indicated by a p-value of less than 0.05, which implies that the experimental team's mean is significantly greater than the control group's.

Table 16. Mean and Standard deviation of Haemoglobin values by group wise at post test

			101		-
Group	Mean	SD	t-test value	d.f.	P-value
Experimental	10.26	1.12	3.162	98	.002
Group	9.46	1.38			

A paired t-test comparing the mean difference between the experimental and control groups is shown in the table. The experimental group's mean difference was 2.78 with a standard deviation (SD) of 2.11, whereas the control group's mean difference was 1.86 with an SD of 1.92. With 98 degrees of freedom (d.f.), the t-test value is 2.459, and the p-value is 0.016. A statistically significant difference

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

in the mean differences between the two groups is indicated by a p-value of less than 0.05, which implies that the experimental group exhibits a significantly larger change than the control group. Table 17. Mean and Standard deviation of changes occurs in the knowledge score between the two groups

Group	Mean difference	SD	t-test value	d.f.	P-value
Experimental	2.78	2.11	2.459	98	.016
Group	1.86	1.92			

The results of a t-test comparing the experimental and control groups' means are shown in the table. In contrast to the control group, which has a mean of 0.66 with an SD of 0.81, the experimental group's mean is 1.08 with an SD of 0.89. With 98 degrees of freedom (d.f.), the t-test value is 2.459, and the p-value is 0.016. The experimental group may have a considerably greater mean than the control group since the p-value is less than 0.05, indicating a statistically significant difference between the two groups.

Table 18. Mean and Standard deviation of changes occurs in the Haemoglobin values between the two group wise

Group	Mean	SD	t-test value	d.f.	P-value
Experimental	1.08	0.89	2.459	98	.016
Group	0.66	0.81			

IV. Conclusion

This study emphasizes how urgent it is to treat teenage girls' anemia, especially in underprivileged areas like Cuddalore District. The results emphasize how common anemia is and how lifestyle, diet, and demographic factors are linked to it. Because of their high iron content and bioavailability, garden cress seeds have showed potential as a dietary intervention to raise hemoglobin levels. Furthermore, anemia-related health education programs have been successful in increasing participants' understanding and promoting better eating and exercise habits. Adolescent girls can fight anemia and enhance their general health and well-being using a low-cost, sustainable strategy that combines education and supplementation. These findings have important ramifications for public health campaigns, highlighting the necessity of community-based activities and dietary interventions specifically designed to meet the needs of teenagers. To confirm the results and investigate the wider applicability of this intervention, more research with bigger populations and longer follow-up times is advised.

References

Azam, F.M.S.; Biswas, A.; Mannan, A.; Afsana, N.A.; Jahan, R.; Rahmatullah, M. Are famine food plants also ethnomedicinal plants? An ethnomedicinal appraisal of famine food plants of two districts of Bangladesh. Evidence-Based Complementary and Alternative Medicine. 2014, 1, 741712.
 Ahmed, S.; Akram, M.; Riaz, M.; Munir, N.; Tahir, I.M.; Ashraf, E.; Sarwar, G.; Rasool, G.; Shah, S.M.A. Ethnomedicinal Importance of Plants Used by the Nomads During Famine Conditions. Editorial Board Members. 2019, 62, 67.

[3] Azam, F.M.S.; Biswas, A.; Mannan, A.; Afsana, N.A.; Jahan, R.; Rahmatullah, M. Are famine food plants also ethnomedicinal plants? An ethnomedicinal appraisal of famine food plants of two districts of Bangladesh. Evidence-Based Complementary and Alternative Medicine. 2014, 1, 741712.
[4] Kalia, S. Tulsi-A Holy Plant with High Medicinal Values-A. AGRICULTURE & FOOD E-NEWSLETTER. 2022

[5] Angel, M.; Devi, K.V. Therapeutic impact of garden cress seeds incorporated ladoo among the selected anaemic adolescent girls (12–15 years). J Drug Discov. Ther. 2015, 3, 18-22.

ISSN: 0970-2555

Volume : 54, Issue 1, No.2, January : 2025

[6] Chaudhary, P.; Gupta, R. Impact assessment of dietary and nutrition education intervention on hemoglobin level moderately anemic adolescent girls. Indian Journal of Extension Education. 2021, 57, 145-149.

[7] Tufail, T.; Khan, T.; Bader Ul Ain, H.; Morya, S.; Shah, M.A. Garden cress seeds: a review on nutritional composition, therapeutic potential, and industrial utilization. Food Science & Nutrition. 2024.

[8] Gajanan, M.G.V. Preparation of Value Added Products Cookies and Biscuits From Garden Cress Seed (Doctoral Dissertation, Mahatma Phule Krishi Vidyapeeth). 2021

[9] Choudhury, S.S.; Chaudhary, G. Impact of Iron Rich Millet Biscuits in Alleviating Anaemia among Adolescent Girls of Samastipur District. Asian Journal of Dairy & Food Research. 2024, 43.

[10] Sharma, S.; Khandelwal, R.; Yadav, K.; Ramaswamy, G.; Vohra, K. Effect of cooking food in iron-containing cookware on increase in blood hemoglobin level and iron content of the food: A systematic review. Nepal Journal of Epidemiology. 2021, 11, 994.

[11] Mary, S.D.; Priyadharshini, P. Impact of Resistance Exercise Versus Diet Supplements on Iron Deficiency Anemia in Girls.

[12] Sharma, S.; Khandelwal, R.; Yadav, K.; Ramaswamy, G.; Vohra, K. Effect of cooking food in iron pot and with iron ingot on increase in hemoglobin level and iron content of the food. Nepal Journal of Epidemiology. 2021, 11, 994-1005.

[13] Kaur, N.; Agarwal, A.; Sabharwal, M. Food fortification strategies to deliver nutrients for the management of iron deficiency anaemia. Current Research in Food Science. 2022, 5, 2094-2107.

[14]Li, J.; Martin, C.; Fernie, A. Biofortification's contribution to mitigating micronutrient deficiencies. Nature Food. 2024, 5, 19-27.