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ABSTRACT 

A (𝑝, 𝑞) graph 𝐺 is said to be a Lucas antimagic graph if there exists a bijection                        𝑓: 𝐸(𝐺) →
{𝐿1, 𝐿2, ⋯ 𝐿𝑞} such that the induced injective function 𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑ 𝐿𝑞} given by 𝑓∗(𝑢) =
∑ 𝑓(𝑒)𝑒∈𝐸(𝑢)   are all distinct (where E(u) is the set of edges incident to u). 

In this paper the Lucas Antimagic Labeling of some trees of diameter less than five are found. 

KEYWORDS: Tree,Diameter, Lucas Antimagic graph. 

 

1.INTRODUCTION 

In this study, we explore graph G(V,E) characterized as finite, simple, and undirected with p vertices 

and q edges. Graph labeling stands as a cornerstone concept in graph theory, involving the assignment 

of integers to vertices or edges. This concept's vast applications across fields such as astronomy, coding 

theory, and beyond, have brought it to the forefront of research. 

The journey into this intriguing research domain was profoundly inspired by the seminal contributions 

of Gallian, whose comprehensive survey [1] serves as a cornerstone in the field. Gallian's work 

meticulously catalogues numerous labeling methods and their diverse applications, providing a robust 

foundation upon which we have embarked on our own research endeavors. 

A pivotal and intriguing concept that particularly captivated our attention is Antimagic labeling, 

introduced by the pioneering efforts of N. Hartsfield and G. Ringel in the year 1990. This innovative 

labeling method has sparked a surge of interest and subsequent investigations, opening new vistas for 

exploration within the rich landscape of graph theory. Antimagic labeling, with its unique properties 

and potential applications, offers a fertile ground for further inquiry and discovery. 

Inspired by these groundbreaking contributions, we have introduced the novel concept of Lucas 

Antimagic labeling. This labeling scheme builds upon the principles of Antimagic labeling, integrating 

the properties of Lucas numbers to create a distinctive and versatile labeling method. Our research 

delves into the intricacies of Lucas Antimagic labeling, exploring its applicability on various tree 

graphs whose diameter is less than five. 

 

2.DEFINITIONS 

Definition 2.1: Lucas number is defined by  

𝐿1 = 2, 𝐿2 = 1, 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 , 𝑖𝑓 𝑛 > 2 

The first few Lucas numbers are 2,1,3,4,7,11,18,29,47,… 

Definition 2.2:[3] A (𝑝, 𝑞) graph 𝐺 is said to be a Lucas antimagic graph if there exists a bijection 

𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, ⋯ 𝐿𝑞} such that the induced injective function 𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑ 𝐿𝑞} given by 

𝑓∗(𝑢) = ∑ 𝑓(𝑒)𝑒∈𝐸(𝑢)   are all distinct (where E(u) is the set of edges incident to u).  

Definition 2.3:[4] A connected graph without any cycle is called a tree. 

LIST OF NOTATIONS 

1. 𝑇1
2- the tree of diameter two acquired by attaching n pendant edges to the internal vertex of the 

path 𝑃3. 
2. 𝑇1

3- the tree of diameter three acquired by attaching n pendant edges to the first internal vertex 

of the path 𝑃4. 
3. 𝑇2

3- the tree of diameter three acquired by attaching n pendant edges to the second internal 

vertex of the path 𝑃4. 
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4. 𝑇3
3- the tree of diameter three acquired by attaching m,n pendant edges to the first and second 

internal vertex of the path 𝑃4. 
5. 𝑇4

3- the tree of diameter three acquired by attaching n leaves through a bridge to the mid vertex 

of the path 𝑃3. 
6. 𝑇1

4- the tree of diameter four acquired by attaching n pendant edges to the first internal vertex 

of the path 𝑃5. 
7. 𝑇2

4- the tree of diameter four acquired by attaching n pendant edges to the second internal vertex 

of the path 𝑃5. 
8. 𝑇3

4- the tree of diameter four acquired by attaching n pendant edges to the third internal vertex 

of the path 𝑃5. 
9. 𝑇4

4- the tree of diameter four acquired by attaching n,m pendant edges to the first and second 

internal vertex of the path 𝑃5. 
10. 𝑇5

4- the tree of diameter four acquired by attaching n,m pendant edges to the first and third 

internal vertex of the path 𝑃5. 
11. 𝑇6

4- the tree of diameter four acquired by attaching m,n pendant edges to the second and third 

internal vertex of the path 𝑃5. 
12. 𝑇7

4- the tree of diameter four acquired by attaching n,m and l pendant edges to the internal 

vertices of the path 𝑃5. 
Observation: 

𝑇1
3 ≅ 𝑇2  

3 , 𝑇1
4 ≅ 𝑇2  

4 ,  𝑇4
4 ≅ 𝑇6

4  

 

3.MAIN RESULTS 

Tree of Diameter two 

Theorem 3.1: 

The tree 𝑇1
2 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇1
2 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 3, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 } 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 2 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿2 

𝑓(𝑝2𝑣𝑖) =  𝐿2+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿2 + ∑ 𝐿2+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿2  

𝑓∗(𝑣𝑖) = 𝐿2+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Trees of Diameter three 

Theorem 3.2: 

The tree 𝑇1
3 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇1
3 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 4, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 } 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 3 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   
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𝑓(𝑝1𝑝2) = 𝐿2   
𝑓(𝑝2𝑝3) = 𝐿1 

𝑓(𝑝3𝑝4) = 𝐿3 

𝑓(𝑝2𝑣𝑖) =  𝐿3+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿2 

𝑓∗(𝑝2) =  𝐿1 + 𝐿2 + ∑ 𝐿3+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿1 + 𝐿3  

𝑓∗(𝑝4) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿3+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Theorem 3.3: 

The tree 𝑇3
3 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇3
3 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 4, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 , 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚} 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 3 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛, 𝑝3𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿2   
𝑓(𝑝2𝑝3) = 𝐿1 

𝑓(𝑝3𝑝4) = 𝐿3 

𝑓(𝑝2𝑣𝑖) =  𝐿3+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑝3𝑢𝑖) =  𝐿3+𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑚 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿2 

𝑓∗(𝑝2) =  𝐿1 + 𝐿2 + ∑ 𝐿3+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿1 + 𝐿3 + ∑ 𝐿3+𝑛+𝑖
𝑚
𝑖=1   

𝑓∗(𝑝4) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿3+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖) = 𝐿3+𝑛+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Theorem 3.4: 

The tree 𝑇4
3 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇4
3 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 3, 𝑝, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 } 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 2 ,  𝑝2𝑝 , 𝑝𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿2 

𝑓(𝑝2𝑝) = 𝐿3 

𝑓(𝑝𝑣𝑖) =  𝐿3+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿2 + 𝐿3 

𝑓∗(𝑝3) = 𝐿2 
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𝑓∗(𝑝) = 𝐿3 + ∑ 𝐿3+𝑖

𝑛

𝑖=1

 

𝑓∗(𝑣𝑖) = 𝐿3+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Trees of Diameter four 

Theorem 3.5: 

The tree 𝑇1
4 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇1
4 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 5, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 } 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 4 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿4 

𝑓(𝑝3𝑝4) = 𝐿2 

𝑓(𝑝4𝑝5) = 𝐿3 

𝑓(𝑝2𝑣𝑖) =  𝐿4+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿4 + ∑ 𝐿4+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿4 + 𝐿2  

𝑓∗(𝑝4) = 𝐿2 + 𝐿3 

𝑓∗(𝑝5) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿4+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Theorem 3.6: 

The tree 𝑇2
4 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇2
4 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 5, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 } 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 4 , 𝑝3𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿4 

𝑓(𝑝3𝑝4) = 𝐿2 

𝑓(𝑝4𝑝5) = 𝐿3 

𝑓(𝑝3𝑣𝑖) =  𝐿4+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿4  

𝑓∗(𝑝3) = 𝐿4 + 𝐿2 + ∑ 𝐿4+𝑖

𝑛

𝑖=1

 

𝑓∗(𝑝4) = 𝐿2 + 𝐿3 

𝑓∗(𝑝5) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿4+𝑖, 1 ≤ 𝑖 ≤ 𝑛 
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We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Theorem 3.7: 

The tree 𝑇4
4 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇4
4 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 5, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 , 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚} 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 4 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛, 𝑝3𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿4 

𝑓(𝑝3𝑝4) = 𝐿2 

𝑓(𝑝4𝑝5) =  𝐿3 

𝑓(𝑝2𝑣𝑖) =  𝐿4+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑝3𝑢𝑖) =  𝐿4+𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑚 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿4 + ∑ 𝐿4+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿4 + 𝐿2 + ∑ 𝐿4+𝑛+𝑖
𝑚
𝑖=1   

𝑓∗(𝑝4) = 𝐿2 + 𝐿3 

𝑓∗(𝑝5) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿4+𝑖, 1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖) = 𝐿4+𝑛+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

Theorem 3.8: 

The tree 𝑇7
4 is a Lucas antimagic graph. 

Proof: 

Let G be 𝑇7
4 

Let 𝑉(𝐺) = {𝑝𝑖: 1 ≤ 𝑖 ≤ 5, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 , 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚 , 𝑤𝑖: 1 ≤ 𝑖 ≤ 𝑙} 

      𝐸(𝐺) = {𝑝𝑖𝑝𝑖+1  ∶ 1 ≤ 𝑖 ≤ 4 , 𝑝2𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛, 𝑝3𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚 , 𝑝4𝑤𝑖: 1 ≤ 𝑖 ≤ 𝑙} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑝1𝑝2) = 𝐿1   
𝑓(𝑝2𝑝3) = 𝐿4 

𝑓(𝑝3𝑝4) = 𝐿2 

𝑓(𝑝4𝑝5) =  𝐿3 

𝑓(𝑝2𝑣𝑖) =  𝐿4+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑝3𝑢𝑖) =  𝐿4+𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑝4𝑤𝑖) =  𝐿4+𝑛+𝑚+𝑖 ,1 ≤ 𝑖 ≤ 𝑙 
The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑝1) = 𝐿1 

𝑓∗(𝑝2) =  𝐿1 + 𝐿4 + ∑ 𝐿4+𝑖
𝑛
𝑖=1   

𝑓∗(𝑝3) = 𝐿4 + 𝐿2 + ∑ 𝐿4+𝑛+𝑖
𝑚
𝑖=1   

𝑓∗(𝑝4) = 𝐿2 + 𝐿3 + ∑ 𝐿4+𝑛+𝑚+𝑖

𝑙

𝑖=1

 

𝑓∗(𝑝5) = 𝐿3 

𝑓∗(𝑣𝑖) = 𝐿4+𝑖, 1 ≤ 𝑖 ≤ 𝑛 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 1, No.4, January : 2025 
 

UGC CARE Group-1                                                                                                                         45 

𝑓∗(𝑢𝑖) = 𝐿4+𝑛+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑓∗(𝑤𝑖) = 𝐿4+𝑛+𝑚+𝑖, 1 ≤ 𝑖 ≤ 𝑙 
We observe that the vertices are all distinct. 

Hence G is a Lucas antimagic graph. 

 

4.CONCLUSION: 

In this article, we establish that several tree graphs exhibit Lucas Antimagic properties. Additionally, 

parallel investigations into various other graph structures are currently in progress, expanding the 

breadth of our research. These findings highlight the potential and applicability of Lucas Antimagic 

labeling in diverse graph theoretic contexts. 
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