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ABSTRACT: 
The valve-point effects of generation units in the economic dispatch (ED) problem make it a non-
smooth and non-convex problem. This work offers an algorithm for differential evolution based on 
multi-population (MPDE) to handle by consideration of valve-point effects in economic load 
dispatch problems. Negative aspects of the conventional differential evolution algorithm are 
overcome by the suggested MPDE algorithm, which uses the evolutionary methods of multiple 
populations. Each set of populations in a multiple population has its own parameters and mutation 
method to improve the capacity for searching. Additionally, information sharing between various 
populations can boost the diversity of unique individuals within a single population. Furthermore, the 
technique comprises the normal distribution function to dynamically modify the scaling factor and 
crossover rate, hence expediting the rate of convergence. Tests of the suggested approach are 
conducted using the IEEE 13 unit test systems. The MPDE algorithm can achieve far fewer 
variations than other intelligent algorithms, according to simulation data. When it comes to solving 
economic dispatch problems involving valve-point effects, the proposed algorithm performs 
noticeably better in terms of accuracy. 

Keywords—Differential Evolutions, Multi-Populations, Valve Point Effects, Economic Load 
Dispatch(ELD) Problems. 
 
INTRODUCTION : 

One of the most significant problems in modern computer-aided power system design is 
Economic Load Dispatch (ELD). The ELD problem focuses on how to distribute load among the 
committed producing units while meeting capacity and power balance requirements and reducing 
overall operating costs.[1]. The ELD problem aims to decrease the cost of power generation while 
optimizing the output power of each unit. Numerous measures and studies have been implemented to 
achieve significant cost reductions in operations. 

 
In accordance with valve-point effects [8], the generation unit's characteristic curve deviates from 
linearity. Furthermore, the power system contains a large number of power producing units, which 
might make calculations more challenging and more likely to result in local optimal solutions. 
Certain mathematical techniques, such as the linear programming algorithm (LP) [9], quadratic 
programming algorithm (QP) [10], and dynamic programming algorithm (DP) [11], cannot 
effectively solve ELD problems due to their numerous non-linearity, non-convexity, and multi-
dimensionality. Many researchers concentrate on heuristic intelligence optimization algorithms, such 
as simulated ecosystem algorithms, evolutionary algorithms that mimic the evolution of biological 
organisms, and swarm intelligence algorithms that mimic the behavior of biological swarms, in an 
effort to get around the drawbacks of traditional mathematical techniques. 
 
   The Chebyshev polynomial fitting problem led Rainer Storn and Kenneth Price to create the 
differential evolution algorithm (DE), an intelligent optimization method that mimics the evolution 
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of natural organisms. Due to its powerful search capability, the DE algorithm has been enhanced by 
numerous researchers[12].The multi-population differential evolution algorithm (MPDE) proposed 
in this research utilizes distinct mutation methods for each population. The following is a list of this 
paper's key contributions in comparison to previous research:  
 
1) A plan for many populations is suggested. Various combinations of factors and mutation 
procedures within each population will result in distinct search features. The multi-population 
approach deftly blends several mutation tactics to improve search performance.  
 
2) A population-level learning technique was created.  
In order to maximize individual diversity within a single population and prevent it from settling on a 
local optimal solution, this technique encourages information transmission between populations.  
 
3) The scaling factor and crossover rate are dynamically adjusted using the normal distribution 
function to quicken the rate of convergence. 
4) The MPDE algorithm can converge to the ideal value and has a lower standard deviation in the 
test of 13 unit test systems. 
   The structure of this paper is as follows: The conventional differential evolution algorithm is 
explained in Section II. The MPDE algorithm is proposed in Section III. The MPDE algorithm is 
used in Section IV to solve the ED problem. The analysis and results of the simulation are covered in 
Section V. Section VI provides a summary of this work's conclusion. 
 

II. CONVENTIONAL DE ALGORITHM 
Initialization, mutation operation, crossover operation, and selection operation are the four primary 

operational operations of the DE algorithm. 
A. Initialization 

The population consists of several individuals, each of whom can be viewed as a potential 
solution in the search space. In the event that the population contains IN members, the population can 
be represented as follows: 

,1 ,2 ,3 ,4 ,{ | ( , , , ,......., ) }, 1,2,3,...,r r r r r r r r R
m m m m m m mD NN y y y y y y y m I  

            (1) 

    Where D is the number of dimensions of the individual vector, 
r
my  is the m-th individual vector, 

NR is the population at the r-th generation, and r is the current number of evolutions.  
  The technique generates the initial answers using a uniformly distributed random function in 

order to cover the whole search space as much as feasible for the beginning population. 
0

,m ny  is 
computed in this way:  

0 min max min
, (0,1) ( )m n n n ny y rand y y   

 
            (2) 

Where (0,1) rand is a uniformly distributed random number in the interval (0,1), 
max
ny  is the 

maximum boundary value of the n-th dimension of the individual, 
min
ny  is the minimum boundary 
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value of the n-th dimension of the individual and finally 
0

,m ny  is the value in the n-th dimension of 
the individual m. 
 
B. Operation for Mutation 

Through mutation operation, the differential evolution algorithm preserves the population's 
diversity. The following lists the most popular DE mutation techniques [13,14]:  

DE/Rand/1:  

1 2 3
( )t t t t t

m r m r rv x F x x     (3) 
DE/Rand/2: 

                     1 2 3 4 5
( ) ( )t t t t t t t t

m r m r r m r rv x F x x F x x      
  (4) 

DE/Best/1: 

 

                        1 2
( )t t t t t

m best m r rv x F x x   
     (5) 

DE/Best/2: 

 

1 2 3 4
( ) ( )t t t t t t t t

m best m r r m r rv x F x x F x x      
   (6) 

 

DE/current to best/1: 

 

   1 2
( ) ( )t t t t t t t t

m m m best m m r rv x F x x F x x      
  (7) 

 

DE/rand to best/1: 

 

   1 1 2 3
( ) ( )t t t t t t t t

m r m best r m r rv x F x x F x x      
  (8) 

C. Crossover Operation 
The DE algorithm carries out the crossover operation based on t

mx , whereas t generates t through 

mutation operation and t to produce the trial vector t. Examine the random number and the crossover 
rate to produce each trial vector dimension. The equation for updating is provided by: 
 

                            (9) 
where (0,1) rand is a uniformly distributed random number in the interval (0,1) ; nrand is a random 
integer in the interval [1, ] D ; CRm

t is the crossover rate of individual m at the t-th generation. 
D. Selection Operation 
The selection process is carried out by the DE algorithm using the greedy selection strategy. The 
vector with the higher fitness value is chosen as the next generation of individuals after comparing 
the values of the fitness function corresponding to the t

mx  and t
mv . Consequently, the following is a 

definition of the selection operation:  
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    (10) 
 
III. MPDE ALGORITHM: 
This work proposes a multi-population (MPDE)-based differential evolution algorithm that 
outperforms the conventional DE algorithm in two ways.  

 
FIGURE 1. The schematic diagram of the MPDE algorithm 

 
 

A. MULTI POPULATION CO-EVOLUTION  
Multi-population co-evolution is the fundamental component of the MPDE method. For the 
DE algorithm, a multi-population approach is developed in this research, with distinct 
mutation techniques used by each population. Multiple populations can share knowledge and 
learn from one another, increasing the diversity of the single population.  

B. DYNAMICALLY ADJUST ALGORITHM PARAMETER 
 

The DE algorithm's global search capability and convergence speed are significantly impacted by the 
scaling factor and crossover rate. The command  of the diversity of parameters in the standard DE 
algorithm is somewhat low, and the effect of fixed parameters is not very effective for certain special 
issues because the parameters are chosen from pre-set values. The control parameters are changed 
from fixed to dynamic in this paper's proposed method of dynamic parameter adjustment.  
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IV. APPLICATION OF MPDE ALGORITHM 
The MPDE algorithm is proposed in section III. This section presents the use of the MPDE algorithm 
for ED issue solving. Among its primary contents is the goal function, limitations, and handling of 
the ED problem. Furthermore, the precise procedures for using the MPDE algorithm to solve the ED 
problem are presented.  
 
The ED's goal is to minimize the overall cost of power generation by optimizing the generator unit's 
power output while meeting the power system's limits. When taking valve-point effects into account, 
the cost function can be expressed as follows:  

A. CONSTRAINTS:  
1. Unit Power In equality constraints :  

max min
j j jP P P     (11) 

 
2. Ramp Rate Constraints : 

 
0

j j jp p UR   and 0
j j jp p DR      (12) 

 
3. Prohibited Operating zone constraints: 

 

 (13) 
 

4. System power Equality Constraints:  
 

  (14) 
 

B. CONSTRAINTS HANDLING: 
1. INEQUALITY RAMP RATE CONSTRAINT HANDLING  
Following the crossover operation, the algorithm may produce a new individual vector that 
does not meet the criteria of inequality and ramp-rate. When this occurs, the altered each 
generating unit's output power is computed as follows:  
 

  (15) 
 
 
2. PROHIBITED OPERATING ZONE CONTRAINT HANDLING 

The output power of each generator unit is modified as follows if the generator units of the new 
individual vector produced by the algorithm are located in areas where operation is prohibited: 
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   (16) 
3.  EQUALITY CONSTRAINT HANDLING  
 
 
In this manner, the generator unit can be adjusted to meet equality criteria while also reducing the 
influence caused by output power variance and altering the generator unit's output power less. The 
following is an analysis of the particular steps:  
 
Step-1 : 
If violates formula(24)or satisfies formula(25),set the transition variable, else Tj = 0  TP=Tj .  

Step-2 : 
Calculate the difference   between the current total output and the demand output. 

1

M

j D Loss
j

P P P


        (17) 

 
Step-3 : 
Modify the output of Pj in order to satisfy the equality constraints (26) with following formula :  
 

 (18) 
 
Step-4 : 
Check all the modified Pj, if there is any violation of the inequality constraints, Perform Formula 
(15)and (16),back to step1. 
 

C. STEPS OF APPLYING MPDE ALGORITHMS TO ED PROBLEMS: 
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FIGURE2.The flow chart of MPDE algorithm in solving ED problem 
 
V. SIMULATION AND RESULT ANALYSIS: 
To verify the all-round performance of the improved algorithm, we test  here cases of 13 unit test 
systems using this algorithm. All the cases are coded in C++ and implemented in Visual Studio 
2013, which is tested on a PC with an Intel i5 2.3GHz processor, 4GB of RAM and Windows 10 
Professional, each case runs 50 times independently, and we compare them with the results of other 
intelligent algorithms. 

A. Setting Algorithm Parameter: 
population min  max min max 

pop1 0.7 1 0.1 0.6 

pop2 0 0.3 0 0.6 

pop3 0.6 0.9 0 0.6 

 
Table -1 : The parameters of the MPDE algorithm for solving the unit ED problems 
 

Cases Case1 Case2 Case3 Case4 Case5 Case6 
M 13 13 40 40 80 140 

VPE √ √ √ √ √ √ 
TL X √ X √ X X 

POZs X X X X √ X 
RRL X X X X X √ 

PD (MW) 1800 2520 10500 10500 21000 49342 
NP 90 90 240 240 240 240 

tmax 12000 10000 10000 10000 20000 20000 

Table – 2: Input parameters and the brief introduction to test cases. 
 

B. For 13 – Unit Test System : 
 

One example of the cases in 13- unit test system, which includes the valve-point effects and 
its load demand is 1800 MW. Two sets of data are used for fuel consumption cost 
coefficients. In this case, One set of the data of fuel consumption cost coefficients and 
generation limits were referred from [44]. The Second set, DataSet2 (13-unit), for fuel 
consumption cost coefficients and generations limits refer to [4]. The difference between 
them is the E fuel consumption cost coefficient of 3-th unit. Case 1 was run independently for 
50 times with the MPDE algorithm. Figure 4 shows the convergence characteristics of the 
MPDE algorithm when solving case 1. Table III shows the output of each generator unit at 
the 
Lowest total generation cost with the different fuel consumption cost coefficients. 
 

Unit  DataSet1(13-unit) DataSet2(13-
unit)  

Output (MW) Output (MW) 
1# 628.3185307 628.3185307 
2# 149.5996502 222.7490688 
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3# 222.7490688 149.5996502 
4# 109.8665501 109.8665501 
5# 109.8665501 109.8665501 
6# 109.8665501 109.8665501 
7# 109.8665501 109.8665501 
8# 109.8665501 109.8665501 
9# 60 60 
10# 40 40 
11# 40 40 
12# 55 55 
13# 55 55 

Load (MW) 1800 1800 
 Cost($/h) 17960.366122 17963.829201

  
Table 3 : Output power of the generator for the best result for case 1 
 
 
 
 

  
Figure 3 : The convergence characteristics for 13 Unit Bus System 
 

DataSet1(13-unit)       
Methods Minimum($/

h) 
Maximum($/
h) 

Mean($/h) Std. dev Time(s
) 

NFE 

DE [45] 17968.3601 18133.4582 18002.909
9 

38.3352 10.5 25*1000 

SOMA [46] 17967.4219 18017.6161 17985.324
2 

20.6772 – 25*1000 

CDE [45] 17967.4 18065.8044 17995.585 27.0900 12.1 25*1000 
HS [47] 17965.6204 18070.1762 17986.562

6 
26.3702 – 22500 

HQPSO [44] 17963.9571 18633.6435 18273.861 123.224
2 

– 20*800 

DEC-SQP [48] 17963.94 17984.81 17973.13 – 0.34 30*600 
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ABC [49] 17962.4279 – – – – – 
CDEMD [45] 17961.944 18061.411 17974.686

9 
20.3066 12.6 25*1000 

MDE [32] 17960.39 17969.09 17967.19 – – 80*3500 
HCR-DE [34] 17960.38 17961.04 17960.59 0.069 4.91 26*100 
IPSO-TVAC [50] 17960.3703 17961.273 17960.641 – – 100*200 
ICA-PSO [51] 17960.37 17978.14 1797.94 – – – 
SDE [37] 17960.37 – – – – 60*300 
THS (t=2s) [52] 17960.37 – 17982.98 – – 100*5000 
THS (t=5s) [52] 17960.37 – 17985.15 – – 100*5000 
THS (t=8s) [52] 17960.37 – 17977.60. – – 100*5000 
IDE [36] 17960.3661 17969.4857 17961.471

7 
2.6499 7.535 150*3000 

HIS [47] 17960.3661 17971.6512 17965.415
2 

16.9531 – 22500 

CSOMA [46] 17960.3661 17970.8323 17967.870
8 

0.8858 – 25*1000 

DHS [53] 17960.3661 17968.3610 17961.122
6 

1.92 0.12 50*1200 

MPDE 17960.3661 17960.5044 17960.371
6 

0.027 3.0 90*12000 

DataSet2(13-unit)       
CEP [54] 18048.21 18190.32 18404.04 – – – 
IFEP [54] 17994.07 18267.42 18127.06 – – – 
EP-SQP [55] 17991.03 – 18106.93 – 121.93 100*100 
NDS [56] 17976.95 17976.95 17976.95 – 1.5634 – 
CGA_MU [57] 17975.34 – – – 27.91 – 
TLBO [58] 17972.81 18243.12 18080.87 – – 60*800 
PSO-SQP [55] 17969.93 – 18029.99 – 33.97 100*100 
CASO [59] 17965.15 – 18022.04 – 22.19 – 
FCASO-SQP [59] 17964.08 – 18001.96  19.62 – 
IGA_MU [57] 17963.9848 – – – 8.27 – 
ST-HDE [37] 17963.89 – 18046.38 – 1.41 NA*2500 
CE-SQP [60] 17963.85 – 17965.97 – 34.33 – 
FAPSO-NM [61] 17963.84 17964.21 17963.957

7 
– 6.8 26*300 

NSEO [62] 17963.8346 18186.9043 18052.719
1 

32.29 0.16 – 

CBA [18] 17963.83 17995.2256 17965.488
9 

6.8473 0.97 40*300 

DE [5] 17963.83 17975.36 17965.48 – – 78*1200 
UHGA [63] 17963.83 – 17988.04 – 8.48 28*30 
BA [61] 17963.83 18288 18085.06 – – 78*1200 
MsEBBO [23] 17963.8292 17969.0323 17964.046

8 
1.9215 – 80*1000 

MABC [64] 17963.8292 17963.8305 17963.829
3 

0.0002 38.2 12*18000 

FAPSO–VDE [35] 17963.8292 17963.832 17963.828 – 4.1 26*100 
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4 
MPDE 17963.8292 17963.8292 17963.829

2 
0 3.0 90*12000 

 
V. CONCLUSION 

Here we present an ED problem for the same with valve point effects, but using differential 
evolution as its basis and also showing a multi-population based on this algorithm. In order to 
create MPDE, different mutations or parameters must be present in each MPDEA as it 
evolves. An essential component is present in MPDE. Because information flow can be 
carried between and around any single population of differential evolved populations, the 
algorithm's ability to learn solutions from an individual difference is much faster than 
traditional Differential Evolution Algorithm. Moreover, the normal distribution function in 
MPDE algorithm is used to dynamically change the scaling factor and crossover rate. MPDE 
algorithm is tested using the 13-, 40–4, 80–, and 140– unit test systems.. The MPDE 
algorithm is deemed more accurate and robust than other intelligent algorithms, with 
statistical evidence that it can offer adequate global optimization solutions. The MPDE 
algorithm is a suitable solution for solving the valve point effects of the ED problem. This 
conclusion suggests that it is an effective tool. 
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