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Abstract 

Plant diseases pose a significant threat to global agricultural productivity, leading to substantial 

economic losses. Traditional methods of disease detection rely heavily on visual inspection and manual 

assessment, which can be time-consuming and subjective. The emergence of hyperspectral imaging 

technology, combined with deep learning techniques, has opened new avenues for the early detection 

and diagnosis of plant leaf diseases. Hyperspectral imaging captures detailed spectral information 

beyond the visible range, enabling the identification of subtle biochemical changes associated with 

plant health. This review paper aims to synthesize current research on the application of deep learning 

algorithms in processing hyperspectral images for plant leaf disease detection. A comprehensive 

analysis of various deep learning architectures, including Convolutional Neural Networks (CNNs) and 

other advanced models, is presented, highlighting their strengths and limitations. Additionally, the 

paper discusses preprocessing techniques, data augmentation strategies, and evaluation metrics that 

enhance detection accuracy. By analyzing existing literature, this review identifies key trends and 

advancements in the field while also addressing challenges such as data availability, computational 

requirements, and model interpretability. The findings underscore the superiority of deep learning 

approaches over traditional methods, paving the way for more efficient and reliable plant disease 

management solutions. Ultimately, this paper serves as a foundational resource for researchers and 

practitioners seeking to leverage hyperspectral imaging and deep learning for improved agricultural 

outcomes. 

Keywords: Deep learning, hyperspectral imaging, plant disease detection, convolutional neural 

networks, agricultural technology. 

 

1. Introduction  

Plant diseases are a major cause of economic loss in global agriculture, significantly affecting crop 

yields and quality. Early detection and precise diagnosis of plant diseases are crucial for implementing 

effective management strategies and reducing the spread of pathogens[1]. Traditional methods for 

plant disease detection rely on manual visual inspection, which is labor-intensive, time-consuming, 

and prone to human error. Such methods also depend on the visible manifestation of symptoms, 

typically occurring in the later stages of infection, which limits timely intervention [2]. 

Determining uncertainty is crucial in many facets of climate change research, including biological 

systems where little is known or understood, as well as assumptions for stochastic or deterministic 

models. When the effects of climate change on food security are taken into account, however, it might 

be argued that the uncertainties increase[3]. However, a more straightforward definition might be "the 

risk of adequate food not being available." Food security can be defined as "when all people, at all 

times, have physical and economic access to sufficient, safe, and nutritious food to meet their dietary 

needs and food preferences for an active and healthy life" or "fair prices, choice, access through open 

and competitive markets[4], continuous improvements in food safety, transition to healthier diets, and 

a more environmentally sustainable food chain". It combines a number of problems with food access, 

availability, and utilisation. These risks are exacerbated by a variety of circumstances, including 

economic slump, currency fluctuations, water pollution, political turmoil, HIV/AIDS, conflict, trade 

agreements, and climate change[5]. Food insecurity is also attributed to a number of factors, including 
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property rights, unemployment, limited market access, poverty, education, and rising food prices. 

These have led to the creation of several "hotspots" for food security worldwide, especially in areas 

where several variables coexist. Countries in Sub-Saharan Africa rank highly on this list[6]. 

With advancements in imaging technologies, hyperspectral imaging (HSI) has emerged as a powerful 

tool for detecting plant diseases by capturing subtle changes in leaf biophysical and biochemical 

properties [7]. Unlike conventional RGB imaging, hyperspectral imaging provides detailed spectral 

data across hundreds of narrow bands, enabling the detection of early-stage stress indicators that are 

invisible to the naked eye. These indicators may include variations in chlorophyll content, leaf 

structure, or water retention, which are closely linked to the health of the plant [8]. 

 
Fig Various techniques discussed for plant disease detection

The integration of deep learning techniques with hyperspectral imaging has revolutionized plant 

disease detection by automating the process of classifying healthy and diseased plants with high 

accuracy [9]. Deep learning models, particularly Convolutional Neural Networks (CNNs), have 

demonstrated significant potential in learning both spectral and spatial features from hyperspectral 

data, outperforming traditional machine learning approaches. These models can process large amounts 

of data and extract complex patterns, making them well-suited for hyperspectral image analysis [10]. 

we explore the current advancements in using deep learning for plant leaf disease detection through 

hyperspectral imaging. We analyze various deep learning architectures, data preprocessing methods, 

and evaluation metrics employed in existing research [11]. The paper discusses the challenges 

associated with hyperspectral imaging, such as data complexity, computational requirements, and the 

need for large labeled datasets. By summarizing the latest developments and identifying potential gaps 

in research, this review aims to provide a comprehensive understanding of the role of deep learning in 

hyperspectral-based plant disease detection and its potential for improving agricultural practices [12]. 

Plant conditions can be monitored byobserving howleavesreflectlight. Hyperspectral imaging (HSI) is 

used to detect subtle changes in the spectral reflectance of plants [1]. HSI can collect spectral and 

spatial data from wavelengths outside human vision, providing more valuable data for disease 

detection than visual assessment, which only uses visible wavelengths. Additionally, HSI offers a 

potential solution for the scalability and repeata bility issues associated with traditional field inspection 

[13]. Agriculture is one of the most important economic activities of the Indian subcontinent and two-

third population is directly involved in farming and related occupations. Agriculture has long been 

considered India’s backbone, dating back to the Indus Valley civilization. To earn income, mankind 

established their residence land according to agricultural facilities and favorable conditions. 

Agriculture is important in most developing countries because it provides jobs and contributes a 

significant portion to GDP [14]. 
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Traditional machine learning for plant disease detection 

Machine learning methods are utilized to find important fundamental patterns within complex data. 

Early work in the area of disease detection used traditional machine learning methods for the 

classification of images. The generic steps used for plant disease recognition and classification with 

traditional machine learning algorithms. The first step is to create a database which may involve 

capturing the images using a suitable imaging system or using a publicly available dataset [15]. Image 

preprocessing is a vital start required to enhance image characteristics and to reduce the time required 

for processing in further steps. Some of the popular pre-processing steps involve image resizing, noise 

removal, contrast enhancement, conversion of color space, etc. Image segmentation is done to get the 

target region from the entire image. Few popularly used segmentation techniques are thresholding, K-

means clustering, etc. After segmentation is done, relevant features such as shape, size, texture, and 

color are extracted from the segmented images. With the help of these extracted feature vectors, the 

machine learning algorithms are trained to label the images into given categories. Numerous 

classifiers, e.g., support vector machine (SVM), naive Bayes, artificial neural network (ANN), etc., 

are used for classifying images. The use of test data is done on the trained model to categorize the new 

data into one of the distinct classes. The potential of the model is assessed using various evaluation 

metrics such as accuracy, precision, F1-score, and area under curve (AUC) [16]. 

 
Fig General steps in traditional machine learning 

1.1 Plant Disease 

plant disease, an impairment of the normal state of a plant that interrupts or modifies its vital functions. 

All species of plants, wild and cultivated alike, are subject to disease. Although each species is 

susceptible to characteristic diseases, these are, in each case, relatively few in number. The occurrence 

and prevalence of plant diseases vary from season to season, depending on the presence of the 

pathogen, environmental conditions, and the crops and varieties grown. Some plant varieties are 

particularly subject to outbreaks of diseases while others are more resistant to them. See also list of 

plant diseases [17]. 

 
Fig Various Plant Diesease [18]. 
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1. Fungi 

Most phytopathogenic fungi are Ascomycetes or Basidiomycetes. They reproduce both sexually and 

asexually via the production of spores and other structures. Spores may be spread long distances by 

air or water, or they may be soil borne. Many soil inhabiting fungi can live saprotrophically, carrying 

out the role of their life cycle in the soil. These are facultative saprotrophs. [19]. 

 
Fig Fungi Diesease 

2. Bacteria 

Most bacteria associated with plants are saprotrophic and do no harm to the plant itself. However, a 

small number, around 100 known species, cause disease, especially in subtropical and tropical regions 

of the world. Most plant pathogenic bacteria are bacilli. Erwinia uses cell wall–degrading enzymes to 

cause soft rot. Agrobacterium changes the level of auxins to cause tumours with phytohormones[20]. 

 
Fig Bacterial Diesease 

3. Mollicutes 

Phytoplasma and Spiroplasma are obligate intracellular parasites, bacteria that lack cell walls and, like 

the mycoplasmas, which are human pathogens, they belong to the class Mollicutes. Their cells are 

extremely small, 1 to 2 micrometres across. They tend to have small genomes (roughly between 0.5 

and 2 Mb). They are normally transmitted by leafhoppers (cicadellids) and psyllids, both sap-sucking 

insect vectors. These inject the bacteria into the plant's phloem, where it reproduces [20]. 

 
Fig Mollicutes Diesease 
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4. Viruses 

Many plant viruses cause only a loss of crop yield. Therefore, it is not economically viable to try to 

control them, except when they infect perennial species, such as fruit trees. These may encode only 

three or four proteins: a replicase, a coat protein, a movement protein to facilitate cell to cell movement 

through plasmodesmata, and sometimes a protein that allows transmission by a vector[21]. 

 
Fig Viruses On Leaf 

5. Nematodes 

Some nematodes parasitize plant roots. They are a problem in tropical and subtropical regions. Potato 

cyst nematodes (Globodera pallida and G. rostochiensis) are widely distributed in Europe and the 

Americas, causing $300 million worth of damage in Europe annually. Root knot nematodes have quite 

a large host range, they parasitize plant root systems and thus directly affect the uptake of water and 

nutrients needed for normal plant growth and reproduction, whereas cyst nematodes tend to be able to 

infect only a few species[22]. 

 
Fig Nematodes On Root 

 

Leaf Disease Detection by Well Known Deep Learning Architectures 

Since each disease region has its own characteristics, discussed the use of individual lesions and spots 

rather than considering the whole leaf. The advantages of this method were that occurrence of multiple 

diseases on the same leaf could be detected and the data can be augmented by cutting up the leaf image 

into multiple sub-images. diseases of 14 species of plants in the experimental environment and 

complex field environment as the research object and used the GoogLeNet model to identify diseases. 

The overall accuracy of using a single lesion and spot was 94%, which was higher than using the whole 

image (82%). put forward a new view of leaf disease detection that focused on identifying diseases 

disease area method (i.e. by the common name of disease rather than crops - diseases on the target 

category), and through the experiments showed that whatever crops, the model training with the 

common disease were more universal, especially for the new data obtained in different fields or that 

crops have not been seen[23]. 
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Hyperspectral Images 

Hyperspectral imaging is a technique that collects and processes information across the 

electromagnetic spectrum to obtain the spectrum for each pixel in an image. This allows for the 

identification of objects and materials by analyzing their unique spectral signatures. Applications of 

hyperspectral imaging include food quality & safety, waste sorting and recycling, and control and 

monitoring in pharmaceutical production [24]. 

 
A standard RGB image consists of 3 subcomponents; on the other hand, the hyperspectral image 

consists of hundreds of subcomponents. After the image is acquired, a data cube (hypercube) 

consisting of spatial and spectral information appears. The dimensions of the data cube are the 

resolution of the image and the number of bands in the image. The 'X' and 'Y' components of the 

hyperspectral data cube are derived from the resolution of the image and the depth is related to the 

number of bands in the image. In Figure 2, the comparison between RGB and Hyperspectral Images 

can be seen [25]. 

 
Fig Hyperspectral and RGB Image Components 

For each pixel in the hyperspectral image, there is a vector consisting of reflections in each 

electromagnetic band. At the same time, this vector expresses a spectral signature for each pixel in the 

hypercube. Figure 3 shows a sample pixel vector and a sample spectral signature. 
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Fig Hyperspectral data cube, pixel vector, and spectral signature[26] 

Dl-Based Architectural Proposal for Vineyard Disease Detection 

Considering the key-knowledge that will extract relevant information from the acquired hyperspectral 

data, the remainder of this paper is dedicated to the proposal of a methodology - depicted in Figure 1 

- that explores UASbased high-resolution spectroscopy for vineyard diseases early detection and 

further monitoring. 

 
Fig Methodology proposal for a full-stack vineyard early disease detection and monitoring system. 

The underlying processes rely on the following: (1) data acquisition, (2) pre-processing, (3) data 

computation (4) analysis and interpretation and (5) decision support for intervention. Data acquisition 

refers to the auto-pilot mode flight campaigns carried out with UAS to gather hyperspectral data with 

a lightweight push broom VNIR hyperspectral sensor with on-board data processing, data storage of 

480GB, GPS and IMU for small UAV applications. Spectral range of the sensor is (400-1000 nm) with 

270 bands. Next, acquired data must undergo a preprocessing step that usually consists of calibrating 

imagery regarding radiometry, atmospheric noise, etc., as well as performing orthorectification - 

required when a push broom sensor is used, as it is the case - for spatial correction purposes. 

Afterwards, data computation is responsible for highlighting the occurrence of diseases, using DL[27]. 

Convolution layer 

The network is trained to differentiate the plant leaves from surroundings. The first layer of CNN 

obtains the features from an input leaf image. Using leaf input data to maintain the association among 

pixels by feature information of image. It holds image matrix and kernel as two inputs. An image in 

convolution layer executes the process like blur with different filters and edge detection. After the 

convolution layer the hidden layers generate the feature map. It shares the same weight and bias. The 

weights allow to be modifies during network training. The weights can be assigned based on the pixels 

by learning image features [28]. 

 

Deep Learning 

The Deep learning algorithm is used for plant disease recognition and classification problems. The 

disease identification of plant has become a universal problem. The quality as well as quantity of the 

agriculture product can be reduced due to plant disease. The quick identification of disease is important 

for crop growth industry. The main task is to enhance the trait of farm production by the defect 

identification and disease classification of plant [29]. Traditionally with experience or training the 
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humans carried out the crop inspection. In crop protection system early identification of plant disease 

and accurate result is important. Deep learning approach presents to detect the plant disease and 

classify the type of disease. Using continuous image capturing the autonomous agriculture vehicles 

accurately locate psychopathological problem in large cultivation field. The type of disease and disease 

harshness in plants can be identified by feature extraction and machine learning. The success of 

machine learning is train an algorithm by access the large amount of data and graphics processing unit 

(GPU) provides high computation power to achieve the parallelism in data computing [30]. 

Algorithms 

Naive Bayes (NB)  

Naive Bayes classifier is a “probabilistic classifier”. On the basis of Baye’s theorem, Naive Bayes 

classifier is implemented with the independence presumption among the features. It presumes that the 

prior probabilities of the patterns are well-known and the posterior probabilities are assigned to the 

class labels. With these hypotheses, the posterior probability is computed with highest probability 

which belongs to a specific class label. Though these hypotheses usually do not hold in the real-life 

environment, it is quite doing well in many classification applications [31].  

K-Nearest Neighbors (KNN)  

KNN classifier makes the categorization of unidentified instances based on a similarity measures or 

distance function. It is a supervised ML, lazy learning and nonparametric model. Normally, it uses in 

pattern recognition. It is based on the principle of nearest neighbor rule. For model generation, this 

classifier does not require any training pattern. All training patterns are utilised in testing phase to 

classify the test pattern dependent on similarity function. It behaves as a kind of instance-based 

learning where the functions are locally estimated and all the calculations have varied until the 

completion of classification method. The result of the KNN classifier is a class membership value that 

it belongs to [32]. 

Decision Tree  

It is a supervised classification and regression model. In supervised learning, which constructs the 

classifiers, divided the data into numerous smaller trees and sub-tree structures dependent on the 

division to construct the higher inconsistency. The attribute selection measures such as Gini index, 

entropy are usually employed as disparity measures. For implementers, evaluation of the results using 

this model will be easy. If the tree had learned with no restriction of tree depth, then DT would have 

generate minimum training error. Several types of decision trees like CART, C4.5 and ID3 are most 

commonly used in ML and data mining applications[33].  

Random Forest (RF)  

It is an ensemble model of randomized DT classifiers. At the training time, multiple DTs are 

constructed. The testing dataset’s class labels are determined by the voting of all classification trees, 

which becomes the result of this classifier. While building of each individual tree, this classifier model 

uses bagging and random features. This model endeavors to make an unrelated forest of trees. The 

prediction of forest of tree’s performance will be more accurate than the individual tree [34]. 

Artificial neural networks 

Deep learning is a subset of machine learning, a subset of artificial intelligence. Deep learning relies 

on deep artificial neural networks to learn patterns and draw inferences from provided data. There are 

three different deep learning and more generally machine learning approaches based on the availability 

of labeled data, namely supervised learning, where all the training data is labeled, semi-supervised 

learning, where part of the training data is labeled, and unsupervised learning, where only unlabeled 

data is provided [35]. 

Using deep learning techniques, plant disease identification has proven to be a promising approach  

as convolutional layers have been successfully used to automatically identify important plant features, 

including the colors and textures of lesions. Furthermore, similar performance was attainable while 

removing 75% of the parameters, further emphasizing the usefulness and practicality of deep learning. 

CNNs can also identify the features within images and perform classification concurrently. However, 
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this approach is limited and time-intensive due to the need for large datasets. More researchers are 

starting to adopt these techniques as more authors are beginning to provide their datasets for public 

use and push research further [9,46,107] [36]. 

Deep learning is being promoted in precision agriculture and phenotyping as it holds a lot of promise 

for developing the research area. However, one limitation of deep learning-based solutions for plant 

disease identification is the interpretability of the results. Therefore, a thorough review of deep 

learning-based plant disease identification studies is crucial for understanding the techniques, the 

ability to derive useful information from the results, and the importance of different evaluation metrics 

[37]. 

A typical convolutional neural network consists of an input layer, hidden layers, convolutional layers, 

pooling layers, fully connected layers, and an output layer cost function used during training. In 

addition, different activation functions are used and, in some cases, dropout layers as a regularization 

technique [38]. 

HSI datasets for agriculture analysis 

The advent of HSI cameras has ushered in a new era in agricultural research and applications, leading 

to the collection and labelling of extensive datasets for Agricultural analysis using HSI data. These 

datasets have significantly expanded the possibilities for machine learning techniques, particularly DL, 

which requires considerable data for training and evaluation. Table 1 serves as a concise 

summarization of the available HSI datasets, in which the details of each dataset are highlighted. This 

table presents crucial details about each dataset, such as its size, spatial resolution, spectral channels, 

and the number of distinct classes it encompasses [39].

Table 1 Comparison of different HSI agricultural datasets with Source, Spatial Dimensions (SD), 

Spectral Bands(SB), Wavelength (WL), Spatial Resolution (SR). 

Dataset Year Source 

SD 

(pixels) 

SBWL 

(nm) Samples Classes 

SR 

(m) 

Indian Pines 1992 NASA AVIRIS 145 x 145 220-2500 10,249 16 20 

Salinas 1998 NASA AVIRIS 512 x 217 224-2500 54,129 16 3.7 

Pavia 

University 2001 ROSIS-03 sensor 610 x 610 115-860 42,776 9 1.3 

Botswana 2004 NASA EO-1 

1496 x 

256 242-2500 32,481 4 30 

Chikusei 2014 

Headwall Hyperspec-VNIR-

C imaging sensor 

2517 x 

2335 128-1018 75,921 9 2.5 

WHU-Hi-

HanChuan 2016 

Headwall Nano-Hyperspec 

imaging sensor 

1217 x 

3032 744-1000 25,753 10 160.1 

WHU-Hi-

HongHu 2017 

Headwall Nano-Hyperspec 

imaging sensor 940 x 475 704-1000 38,669 3 220 

WHU-Hi-

LongKou 2018 

Headwall Nano-Hyperspec 

imaging sensor 550 x 400 704-1000 20,454 2 90.5 
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Table 2. Summary of Recent Works 

Author(s) & 

Year 

Title/Focus Key Points Techniques/Algorithms 

[40] (2022) UAV-Borne Hyperspectral 

Imaging for Plant Disease 

Detection 

Overview of using 

UAVs and deep 

learning for disease 

detection. 

Deep learning, 

Hyperspectral Remote 

Sensing (HRS) 

[41] (2024) Hyperspectral Image 

Analysis and Machine 

Learning Techniques for 

Crop Disease Detection 

Reviews applications of 

hyperspectral imaging 

and machine learning in 

agriculture. 

Machine learning, Deep 

learning 

[42] (2023) Hyperspectral Imaging for 

Early Plant Disease 

Detection 

Provides an overview of 

hyperspectral sensors 

and disease detection. 

Hyperspectral imaging, 

Disease detection 

[43] (2022) Hyperspectral Imaging and 

Machine Learning in 

Agriculture 

Reviews datasets and 

algorithms for 

agricultural 

applications. 

CNN, SVM, Random 

Forest 

[44] (2021) Hyperspectral Detection of 

Grapevine Viral Diseases 

Examines using 

hyperspectral imaging 

for classifying 

grapevine diseases. 

SVM, RF, 3D-CNN, 

Vegetation indices 

[45] (2019) Detection of Yellow Rust in 

Winter Wheat Using UAV 

Hyperspectral Imaging 

Proposes deep learning 

for yellow rust detection 

in wheat. 

DCNN, Random Forest 

[46] (2022) Hyperspectral and Deep 

Learning for Basal Stem Rot 

(BSR) Detection in Oil Palm 

Uses deep learning and 

hyperspectral imaging 

to detect BSR disease in 

oil palm. 

VGG16 CNN, Mask 

RCNN 

Materials And Methods 

A dataset comprising 54,343 photos of diverse plant species, including pictures of healthy and sick 

plants as well as pictures of different fruits and vegetable crops, was collected for this suggested 

method.  

Three sets of the dataset were created: the training set, the validation set, and the testing set. Training 

is carried out by fine-tuning the final network layers using the pre-trained model Inception V3[47]. 

Transfer learning architectures now contain four additional unique convolutional and max-pooling 

layers. Finally, two thick layers containing 64 neutrons and 2 neurones each were used[48]. Softmax 

is the activation function used for classification in the last layer. The model was trained using 20 

epochs, or iterations, in which different parameters such as batch size, optimiser, pre-trained weights, 

and learning rate were changed. to minimise overfitting between ideals. Along with a few data 

generators for training and testing data[49], the model also used the assessment measure known as 

Multi-Class Log Loss. These generators assist in converting the batches into training data and training 

models and assist in loading the necessary quantity of data straight from the source folders with batch 

sizes according to the detection requirements. An effort has been made to standardise hyper-parameters 

throughout all experiments and studies in order to conduct a fair comparison of the outcomes of all 

trials. 30% dropouts were used in conjunction with batch normalisation and several layers to lessen 

the internal covariate shift, which actually aids the model in avoiding being trapped in the local[49]. 
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Model preprocessing and training: The first thing that is done to the photographs is pre-processing. 

This stage involves pre-processing the database, which includes reshaping, resizing, and converting 

images into array form (Fig. 1). The test photos are likewise pre-processed in the same manner. There 

are 54,343 photos of various plant species in the database, and any photo may be used as a test picture 

[50]. In addition to helping to identify the test picture and its ailment, the database is utilised to train 

the dataset using the Inception V3 model. The program can identify plant illnesses that have previously 

been recorded in the database after the model has been trained. The assessment between the test and 

trained model to forecast the illness is carried out after the completion of training and pre-processing 

[51]. 

Database Collection: The first stage of any project involving image processing is obtaining a 

legitimate database collection. There are several approaches to creating the database, such as storing 

every picture or gathering photographs from various sources and creating your own database for 

processing.  

The current research made use of the Kaggle Plant Village Dataset database[52]. Prior to image 

processing, the data was first cleaned and labelled. To guarantee a high-accuracy algorithm 

identification system, photos with excellent resolution and angles were chosen for image processing. 

A thorough understanding of various plants and their illnesses was acquired after the selection of every 

photograph from the database. This processing method was used to study various plant disease kinds 

and their symptoms. Following the thorough and in-depth analysis, picture segregation was carried out 

to label the photographs, and the further actions were taken[53]: 

• Pre-processing was carried out in accordance with the acquisition of the input test picture. 

Following pre-processing, the picture was transformed into an array format for analysis. 

• After that, the dataset was divided up and pre-processed. 

• Following pre-processing, the dataset was trained using the Inception V3 model, and further 

classification was finished. 

• The test and training models were compared in the next stage, and the final findings were 

generated based on system inputs. 

• The program indicated whether the plant was healthy or unhealthy in the last stage[54]. 

Classification Models: To classify datasets, two models were used: SRCNN (Super-Resolution 

Convolutional Neural Network) Model and Bicubic Model [55]. 

A neural network, or CNN, is used to classify images.  

Recovering high-resolution pictures from low-resolution photographs is the aim of Super-Resolution 

(SR). Reconstruction, non-linear mapping, feature extraction, and pre-processing are the four primary 

functions of the SRCNN network [56]. 

• Upscaling low-resolution photos to high-resolution is known as pre-processing.  

• The collection of feature maps is extracted from the upscaled low-resolution picture in the 

feature extraction process.  

• Mapping feature maps representing low-resolution to high-resolution patches is known as non-

linear mapping.  

• Reconstruction: Using high-resolution patches, the high-resolution picture is created or rebuilt. 
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Agricultural Big Data using Hyperspectral Analytical Tools 

A number of exemplary studies for the use of big data and hyperspectral analytics in agriculture are 

included in this subsection. Table 2 provides an overview of the representative works. For agriculture 

to produce high-quality crops and pastures, good soils are essential. The field of soil spectroscopy, 

which seeks to discover and create soil spectral libraries (SSLs) and signatures, is where one of the 

real-world Big Data issues starts [57]. An evolving fuzzy rule-based system was put out by the authors 

in and used with actual agricultural big data. Large datasets from the field of soil spectroscopy (GEO-

GRADLE and LUCAS SSL libraries) were used in their study. The authors of this paper suggested a 

two-phase MapReduce framework along with a number of modifications for handling large amounts 

of data [58]. Their method modified DECO3RUM, an innovative fuzzy rule-based technique for big 

data. Their experimental effort combined hyperspectral information from the field of soil spectroscopy 

with real-world Big data. A wide range of soil and land cover types were included in the data samples. 

Eight virtual servers running a hardware setup with two Intel Xeon processors and 128GB of RAM 

were used to simulate the model and assess it in a Hadoop cluster [59].   

At the regional and farm levels, the FLTL structure provides a framework for managing big data and 

remote sensing for precision agriculture. The creation of crop maps is necessary for both crop 

identification and categorisation. The enormous amount of input data and the spectrum similarity 

provide two difficulties for crop identification and classification. To solve the spectral similarity 

problem for Big data in agriculture, a crop classification method that combines many characteristics 

(spectral, spatial, and vegetation index features) [60]. Using PCA (principal component analysis) and 

MNF (minimal noise transform) in the first step, their method reduces dimensionality before moving 

on to support vector machine (SVM) supervised classification. Six crops were employed in their study 

to conduct the experimental evaluation: potatoes, winter wheat, cucumbers, onions, maize silage, and 

sugar beets.  

According to their findings, the classification accuracy increased to 98% when the vegetation index 

characteristics were combined with the spectral and spatial information. For a research conducted in 

Florida using unsupervised learning for hyperspectral agricultural photos, the authors in suggested an 

image classification method called ISODATA (Iterative Self-organising Data Analysis Technique 

Algorithm) [61]. The ENVI (Environment of Visualising Images) program for geographic images was 

used in their experimental work. Following PCA, the hyperspectral images were classified using the 

ISODATA method for several class types (Water, Shadow, Wet, Fertile Soil, Land, and Forest). After 

performance evaluation, the classification process's total accuracy came out to be 75.6%. For 

dimensionality reduction, the authors of another work in [80] suggested a graph-based learning 
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strategy called local geometric structure Fisher analysis (LGSFA). The authors' experimental findings 

provided classification results similar to other state-of-the-art approaches, and they proved that their 

methodology was successful in exposing the manifold structure for high-dimensional hyperspectral 

data.  

The authors' survey work from has further details on graph-based learning strategies for hyperspectral 

data [62]. 

Methods of Machine Learning for Agricultural Hyperspectral Data Analysis 

In the field of agricultural remote sensing, hyperspectral image classification has become an important 

topic [63]. Hyperspectral data have complex characteristics and a nonlinear relationship amongst the 

spectral bands and its various component materials. This makes the accurate classification of the 

sensed scene a challenging task. This subsection presents a review of more recent works on machine 

learning techniques for multispectral and hyperspectral data analytics in agriculture [63]. 

A large-scale crop mapping using Google Earth Engine and multisource remote sensing pictures. Their 

method is divided into three phases: (1) using spectral characteristics from satellites (Landsat-8 and 

Sentinel-2) in conjunction with NDVI data for harmonic analysis; (2) using previous crop distribution 

and dominance limitations; and (3) using Google Earth Engine for information processing[64]. Three 

crop types—wheat, rapeseed, and corn—were employed in their studies to assess their regression tree 

classification methodology. They showed an overall accuracy of 84.25% in their findings. Their 

research also shown that the terrain, agricultural climate, and cultivation methods all had an impact on 

the distribution of the crops in the studied area [65]. the authors presented a method for using spatial, 

spectral, and temporal S2-SITS data to analyse the development of agricultural fields. Their 

methodology was divided into three main steps: (1) creating a vegetation map by fusing temporal 

NDVI data with spatial and spectral data[66]; (2) building an NDVI time series for a crop field and 

establishing an adaptive regression model using a multilayer perceptron neural network (MLP-NN); 

and (3) extracting and analysing the spatial-temporal information from the NDVI time series. 

Experiments using S2-SITS data collected across a region near Barrax, Spain, confirmed the 

effectiveness of their methodology [67]. 

 
Fig Framework for FLTL remote sensing data management. 
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Rainbow Concatenation 

The original SSD algorithm has two main drawbacks: One is that the same object can be detected in 

multiple scales of feature maps because each layer in the feature pyramid is used independently as an 

input to the classifier network. The other is that the performance of SSD in detecting small objects is 

limited. Thus, an algorithm that is dedicated to solving these two problems, namely, R-SSD, is 

proposed, which applies Rainbow concatenation to the SSD algorithm [68]. The methodology of 

Rainbow concatenation, which is implemented in R-SSD, is applied to further improve the detection 

accuracy for small objects that correspond to apple leaf diseases. Figure 7 presents three approaches 

to increasing the number of feature maps to take advantage of the relationships among the layers in 

the feature pyramid. feature maps in the upper layers are concatenated to those of the lower layers via 

deconvolution. However, using pooling or deconvolution separately only allows the contextual 

information to flow in one direction. Therefore, in R-SSD, these two methods are both applied to 

produce an explicit relationship of feature maps among layers. By using Rainbow concatenation, the 

detection precision of small objects is substantially improved [69]. 

 
Data Augmentation Comparison Experiments 

Several techniques have been used in this research to avoid overfitting. Initially, the sick apple leaves 

were photographed in a range of settings and climates.  

A small number of infected apple photos with homogeneous backgrounds were taken in a lab setting, 

while the majority of diseased apple photos with intricate backgrounds were gathered in the apple 

orchard [70]. The generalisation of the suggested model may be guaranteed by using different shooting 

backgrounds, which lowers the likelihood of overfitting. Second, to replicate the real acquisition 

environment and boost the variety and quantity of apple leaf training images, a variety of digital image 

processing technologies, including rotation transformations, mirror symmetry, and intensity 

disturbance, were applied to the natural training images. This can help avoid overfitting and enhance 

the suggested model's generalisation performance throughout the training process [71]. 

 
Fig Influence of the expanded dataset. (a) Training loss. (b) Test accuracy [72]. 
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Data augmentation is a satisfactory option when the training dataset is insufficient or to prevent 

overfitting to make the model more robust. This paper performed two sets of experiments to estimate 

the performance of the dataset for the proposed model, which was trained separately before and after 

the expansion of the dataset. without data augmentation, the training process has high loss and low 

accuracy and finally reaches 71.89% mAP. However, the proposed model with data augmentation 

realizes 78.80% mAP, which corresponds to a detection precision improvement of 6.91% over the 

dataset without data augmentation [73]. 

 
Fig Activation visualization results. (a) Grey spot. (b) Brown spot. (c) Rust. (d) Mosaic. (e) Alternaria 

leaf spot [74]. 

Feature Visualization Process 

The weak explanatory ability of the CNN makes it a ‘‘black box’’ model. Other factors, such as its 

multi-layer hidden structure and massive number of parameters, also defy understanding. To determine 

how CNNs learn features for distinguishing among classes, visualization techniques are used to reveal 

CNN feature maps [75]. Through this experiment, the differences among the feature maps that are 

extracted from various diseased apple images can be better understood. Alternaria leaf spot is rounder 

and smaller than Grey spot. In this experiment, the activation visualization results for various apple 

leaf diseases demonstrate the strong performance of the proposed model in detecting diseases and 

clarify how CNNs learn features for distinguishing among classes [76]. 
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Fig Types of detection results. (a) Single object of a single class. (b) Multiple objects of a single class. 

(c) Multiple objects of multiple classes.

Plant Leaf Recognition Based On Deep Learning 

Image recognition technology is an important field of artificial intelligence. Image recognition 

technology is based on the main features of images. In-deep learning is the result of recent outstanding 

performance to solve the perception, planning, positioning, and control of various robot task areas. 

Learning its excellent ability indicates that the real environment of complex data acquisition makes it 

very suitable for various autonomous robot applications. The essence of leaf image segmentation is to 

classify pixels and use machine vision and image processing technology to segment plant leaves from 

the background. In feature preprocessing, we focus on the possible problems of non-uniform 

dimension, redundancy of information [77], non-acceptance of qualitative features by machine 

learning algorithms and models, lack of features and low utilization rate of information existing in 

unprocessed original features, and study the dimensionless and standardized features. If the degree of 

reflection exceeds the threshold of this kind of neuron, the neuron will only reflect, thus leading to the 

next neuron. People use functions that can take values continuously. The key to a general classification 

problem based on image sets is to consider how to model the image sets, and how to define the distance 

or similarity between the image sets to achieve classification [78]. 

When choosing the parameters outside the model, such as learning rate and iteration number, the 

training set is subdivided into actual training set and cross-validation set by using multi-fold cross-

validation method. By observing the different effects of various parameters. The deep model is also 
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very convenient to adjust. The model can be changed only by modifying the parameters [79]. It can 

meet different input and classification requirements and has strong flexibility and growth. In the actual 

deep learning model, some information will be lost for each layer, so the system parameters need to 

be adjusted continuously to make the errors between images as small as possible. After the noise is 

removed, the focused part can be marked out for subsequent processing, instead of dividing the whole 

blade. A large amount of plant digital image information is collected, whether in the training or testing 

stage, multiple plant digital images can be used to replace the traditional research on identification and 

classification methods of single plant images [80], that is, plant classification based on image sets. The 

detected patterns are combined to form a larger pattern, and subsequent layers detect objects that 

combine these patterns. Compared with traditional feature engineering, deep learning has changed the 

way of obtaining features. Because the image is high-dimensional and includes all kinds of huge 

changes. Even if the model has used convolution and pooling techniques to keep some of the comments 

unchanged, the operation of translating a few pixels along each direction of the training image can 

usually greatly improve generalization[81]. 
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