

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

QUALITY ASSURANCE IN MIXED-MODEL ASSEMBLY LINES THROUGH VISION-BASED DEEP LEARNING

Vijay Gurav, Industrial Engineering, University of Texas, Arlington, Email Id: vijayuttam.gurav@mavs.uta.edu Ashwini Upadhyay, Department of Computer Science, Long Island University

ABSTRACT

Quality assurance (QA) is a vital part of assuring efficiency and dependability in mixed-model assembly (MMA) lines, which produce a range of items simultaneously. Vision-based deep learning (DL) has become a successful technique for automatic fault detection with unmatched accuracy and scalability. This approach applies strong neural networks (NNs) to the visual input, which enables the real-time detection of defects over a range of product model types. Although a tremendous amount of progress has been made, problems like adaptability to dynamic contexts, real-time input integration, and model explainability persist. Recent advances in multi-task learning, hybrid architectures, and transformer-based models look promising to overcome these constraints. This article presents an exhaustive overview of the methodologies in place, significant gaps in research, and analyses of how vision-based DL might be transformative for quality assurance systems. For this systematic literature review, a total of 80 existing studies were selected from the year 2017-2024 respectively. Among that, the number of reviewed articles has also gradually increased year by year. In 2017, only one article was reviewed, while in 2018 it increased to two, then to eight in 2019. The same pattern went on in 2020 at 6 papers, 7 in 2021 and 2022, 11 in 2023, and finally exploded to 38 publications in 2024, signifying that research interest has been on the increase. The future approach will be focused on scalable, interpretable, and efficient solutions in line with the requirements of current production systems.

Keywords:Quality Assurance, Mixed-Model Assembly Lines, Vision-Based Deep Learning, Defect Detection, Manufacturing Automation, Explainable Artificial Intelligence (XAI), Real-Time Feedback Systems

INTRODUCTION :

Modern manufacturing has progressed significantly from a single-model assembly line to a highly flexible MMA line (Piero & Schmitt, 2017). These systems allow for the production of numerous product versions on one line, thereby satisfying diverse client needs and market trends. However, this has made it difficult to maintain uniform quality across all models, which has increased the need for better quality assurance systems. QA is a part of the manufacturing process; it ensures that products meet specifications and have no defects. The MMA lines usually fail the traditional quality assurance procedures because of the higher variability in the product designs and processes (Bauters, 2019). Manual inspection may be tedious and prone to errors, while traditional automated solutions may lack agility in such dynamic scenarios. Vision-based solutions changed quality assurance by using cameras and sensors to capture more detailed visual data of an item during assembly.

Flaws can be detected, dimensions measured, and assemblies done with higher precision and accuracy than manual techniques. Operating in real-time and the ease of integration into lines of production have made such solutions indispensable in today's industry. Deep Learning (DL) has opened up the doors for vision-based systems as powerful algorithms capable of learning complex patterns and making exact conclusions (Zamora-Hernandez et al. 2021). Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) are two techniques that allow systems to detect flaws, classify parts, and adapt to new product models with minimal human intervention. Together, vision-based systems and DL hold unparalleled potential for quality assurance in mixed models (Riedel et al. 2021). This research discusses vision-based DL applications

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

for quality inspection in MMA lines. An overview of issues associated with the application is made, the technology and approach considered are reviewed, and the performance is evaluated. Moreover, it deals with the present limitations and options for further research on increased application and effectiveness of the technology.

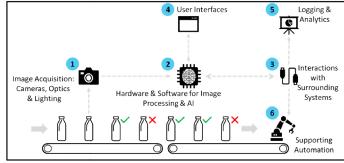


Figure 1: QA with AI vision (Mokuwe et al. 2022)

Importance of QA in MMA: QA is a very essential part of production, which ensures that all products meet set performance, reliability, and safety standards. MMA lines require high importance for QA since several product versions are manufactured simultaneously (Mokuwe et al. 2022). To maintain uniformity among all models, design, component, and assembly processes have to be monitored strictly since they have variability built into them. Defects can easily spread if proper QA is not followed, and it may lead to consumer dissatisfaction and reputational damage. QA processes are important in the discovery of faults early, minimization of rework, and reduction of waste, which is particularly relevant in MMA lines. Faulty products are costly and disrupt production schedules, thereby reducing operational efficiency. Effective QA systems make the process easier as they can detect anomalies in real-time, prevent faults from being propagated further downstream, and eventually save both time and resources (de Souza Silva & Paladini, 2024). Increasingly strict industry rules and greater customer expectations have created the need for solid quality assurance systems in place for compliance and market competitiveness. Quality assurance in MMA lines ensures that each product variant meets not only the regulatory requirements but also the expectations of customers. By sustaining high-quality output, manufacturers can secure a competitive advantage in this dynamic industrial scene. Role of Vision-Based DL in QA: These tools have emerged as great in automating quality assurance processes: vision-based systems enable a noninvasive manner, by which flaws can be detected in real-time as minute visual data is acquired from cameras and sensors (Zhou & Wen, 2024). This improves the systems and involves algorithms that can make their way through complicated patterns such that they are capable and much more efficient as compared to standard QA practices. DL techniques are particularly effective in dealing with complex visual input, especially convolutional neural networks (Ugo-Njoku & Opara, 2024). In MMA lines, this system adapts to wide-ranging shapes, sizes, and assembly configurations because product variation is extreme. In addition to diagnosing problems with precision, vision-based DL works in real time, so manufacturers may correct issues without disrupting the production line.

Scalability is a large advantage of vision-based DL. Once trained, these systems can be executed to perform a wide array of functions across several lines of products, including defective part identification and component checks (Sikora & Tiacci, 2024). Moreover, they tend to improve continuously since their learning is based on fresher data, which is great for dynamic mixed model scenarios. Manufacturers may reduce downtime, increase accuracy levels, and improve efficiency overall in quality assurance with the integration of DL systems into vision systems (Alfaiz et al. 2024).

PROBLEM STATEMENT:

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

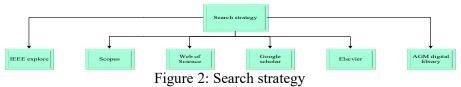
MMA lines introduce unique quality assurance challenges as they manufacture many product variations simultaneously, each with a different configuration and standards. Maintaining consistent quality in all products is challenging due to the inherent variability in design, assembly processes, and parts. Traditional solutions for quality assurance, including manual inspections and strict rulebased automation, have been unable to effectively address the dynamic nature of mixed-model systems. These methods often involve high inspection costs, longer processing times, and more errors that lead to inefficiency and possibly undetected defects in products during the production Although vision-based technologies have significantly enhanced defect detection and process. process monitoring in manufacturing, several of these have limitations when applied to MMA lines. Traditional vision systems would often fail to cope with the complexities of model differences, lighting differences, or changing product mixes. Often, these systems require adjustments or retraining for each new version of a product. To overcome these limitations, there is an acute need for novel DL methods that can automatically learn to adapt to different manufacturing conditions, recognize complex patterns, and make accurate error detections with speed. This research aims to address such gaps by exploring the capability of vision-based DL for quality assurance in MMA lines, with its ability to make the process more flexible, scalable, and dependable.

MOTIVATION :

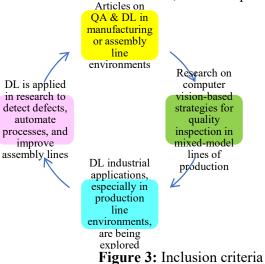
Increasing complexity and demand for customization in modern manufacturing, especially in MMA lines, emphasize the great need for more efficient and scalable quality assurance systems. Traditional quality assurance methods such as manual inspection and rule-based automation have been proven ineffective in dealing with the dynamic unpredictability of product variants; the defect rate is high, the operational cost is higher, and production is delayed. The advantage presented by vision-based systems means a great deal, though limits persist in adjusting constantly shifting production conditions and diversified designs. AL assimilation with vision-based QA therefore represents a disruptive technology - to wit: one wherein real-time fault detection might become possible automatically, adaptatively set within new models and under any kind of production. This breakthrough promises to enhance not only the accuracy and efficiency of quality control processes but also improve the general competitiveness and sustainability of manufacturing operations through the reduction of waste, downtime, and other operational inefficiencies. Thus, the exploration of vision-based DL for QA in MMA lines is critical for meeting modern industry's expansive demands.

OBJECTIVES:

- To install high-resolution cameras and sensors in key areas of the assembly line, capturing real-time visual data for automated defect detection and replacing manual inspection tasks.
- To preprocess and augment the visual data captured by vision systems, ensuring consistency in image quality and improving the effectiveness of DL models in detecting defects.
- To train DL models, such as CNNs, using labeled datasets that enable the system to recognize defects across a variety of product variants.
- To deploy DL models in the production environment, enabling real-time defect detection and classification, and automating the identification of defective products for immediate action.
- To continuously monitor system performance and refine DL models by retraining them with new data, ensuring sustained accuracy and adaptability to evolving production conditions and product designs.


RESEARCH METHODOLOGY

Method for SLR on QA in MMA Lines Through Vision-Based DL Search Strategy


ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

INCLUSION CRITERIA:

- Articles on QA & DL in manufacturing or assembly line environments.
- Research on computer vision-based strategies for quality inspection in mixed-model lines of production.
- DL industrial applications, especially in production line environments, are being explored.
- DL is applied in research to detect defects, automate processes, and improve assembly lines.

EXCLUSION CRITERIA :

- Papers that do not relate to manufacturing or MMA lines.
- Research focusing on non-vision-based QA methods.
- Non-peer-reviewed publications or abstracts without sufficient technical detail.

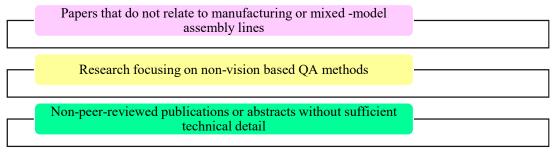


Figure 4: Exclusion criteria

KEYWORDS & BOOLEAN EXPRESSIONS :

"Quality Assurance" OR "Mixed-Model Assembly Lines" OR "Mixed-Model Manufacturing" OR "Computer Vision" OR "Deep Learning" OR "CNN" OR "Manufacturing" OR "Industrial Process" AND "Assembly line quality control" AND "Production line QA" AND "Machine learning" AND "Neural Networks" AND "AI in Manufacturing" AND "Vision-based quality inspection" AND "Vision-based defect detection" AND "Smart manufacturing" AND "Industry 4.0" AND "Object detection" AND "Image classification" AND "Deep neural networks". The search strategy is

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

illustrated in Figure 2, figure 3 shows the Inclusion criteria and the following figure 4 is the Exclusion criteria. Moreover, the Figure 5 shows the Prisma chart.

DATA EXTRACTION :

Article Information: Title, authors, journal, publication year.

Study Focus: The DL model outperformed traditional methods in defect detection and Significant productivity gains were realized within the assembly line.

Methodology: Qualitative or quantitative approach, data sources, analysis techniques.

Findings and Conclusions: Main findings related to the QA in MMA Lines through Vision-Based DL models

Quality assessment

Each study was evaluated for quality and relevance using criteria suchas,

- Clarity of research questions and objectives.
- Suitability of the methodology.
- Strength of data analysis and clarification.
- Relevance to the QA in MMA Lines through Vision-Based DL models
- Contribution to the field.

PRISMA chart

o Identification

Records identified through database searching (n = 200) Additional records identified through other sources (n = 10)

Total records identified (n = 210)

• Screening

Records after duplicates removed (n = 180)

Records screened (n = 150)

Records excluded (n = 30)

• Eligibility

Full-text articles assessed for eligibility (n = 100)Full-text articles excluded (n = 20)

un-text articles exclude

• Included

Studies included in qualitative synthesis (n = 80)

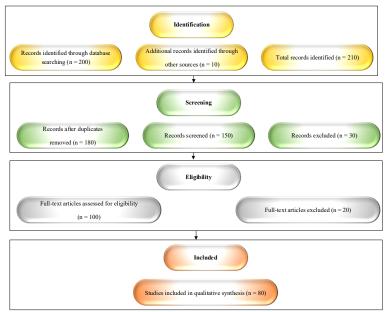


Figure 5: Prisma chart

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

CHARACTERISTICS AND COMPLEXITIES OF MMALINES :

In 2019, Jiahua et al. presented an integrated approach for the balancing and sequencing of un-paced buffered mixed-model manufacturing lines. Applying a combined precedence diagram transforms the balancing problem into a single-model problem, and by applying the NEH method for sequencing, the makespan is minimized. Three cases illustrate its usefulness. In 2022, Lakhdar Belkharroubi & Khadidja Yahyaoui, aimed to reduce the cycle duration in MMA lines by resolving the MiMALBP-II problem by the hybrid method of Reactive GRASP with RPW heuristic. It compares the results of the proposed algorithm with basic GRASP and tests it on three problems. In 2018, Zhang et al. suggested a new service model to reduce damage and transportation costs by incorporating the concept of an Assembly Distribution Centre (ADC).

Flexsim is used for simulating the effectiveness of the proposed model, which addresses all the challenges faced in China regarding final vehicle logistics using the new MMA line method. In 2021, Mohseni-Darabi et al. presenteda bi-objective mathematical design for mixed-model sequencing on assembly lines for reducing operator displacement and idle time, using GAMS and CPLEX with an improved *\varepsilon*-constraint approach to support decision-makers in choosing the best methods. In 2020, Yuwei et al. presented a Two-sided MMA line balancing modeled through a multi-objective scientific model. The model will optimize paired stations, the balancing rate of the assembly line, and the smoothness index with zoning and cooperative constraints under an updated genetic method for better efficiency. In 2019, Tong et al. addressed scheduling problems in MMA lines for urban rail cars using a model with optimization objectives including part set minimization, blocking, and reduction of hungry time. To prove its efficiency, the paper uses a genetic algorithm-based scheduling method on the Plant Simulation platform. In 2020, Nazari et al. focused on balancing and sequencing assembly lines in a competitive market by considering sequence-dependent setup times. It gives a simulated annealing approach to solving huge problems more efficiently compared to mixed integer programming models and ant colony optimization in terms of time. In 2020, Wang et al. developed a multi-objective cuckoo search approach utilized for resolving the car-sequencing issue in MMA lines. The program optimizes different aspects of this problem, like part usage rates, workstation workload, idle time, and switching costs, thus being useful for practical applications. In 2023, Huo & Lee presented a mixed-integer linear programming approach to balance and sequence multi-manned MMA lines. It utilizes Benders' decomposition method with valid inequalities to minimize workers, stations, and utility work. Using numerical data, the paper shows how well the model performs. In 2023, Zhang et al. used a resilient optimization model for balancing the mixedmodel multi-manned assembly lines under uncertain demand conditions. A reinforcement learningbased MOEA is proposed to achieve the reduction of production costs with penalty costs that outperform competitor MOEAs in experiments. In 2023, Nourmohammadi et al. used digital human modeling and posture assessment (REBA) to include ergonomic variables in MMA line balancing. It defines the problem as a MILP model with three objectives: cycle time, ergonomic risk, and total risks. The E-NSGA-II algorithm outperforms previous methods for generating optimal balanced workstation solutions. In 2021, Capela et al. presented a machine vision prototype for quality inspection of an automotive assembly line and focused on the use of Faster-RCNN and YOLOv3 to identify engine labels. With proprietary data from an automotive facility, the models performed extremely well with accuracy going as high as 100% with data augmentation; Faster-RCNN did outperform YOLOv3. In 2029, Mazzetto et al. suggested a deep learning-based system to recognize and classify different objects in car assembling without the need for specific interventions on the production lines. The system achieves quite acceptable accuracy and cycle length, showing that it behaves well in a real assembly line. In 2024, Karaklasa et al. developed a framework for object detection using 3D vision sensors, template matching, and CNN algorithms. It was implemented in the real world with an automotive scenario and had better efficiency, accuracy, and flexibility, with

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

applications in several industrial scenarios. In 2019, Busogi et al. introduced an information entropy approach to reduce complexity in mixed model assembly lines by sequencing products. Simulations are run to demonstrate how sequencing allows for increased predictability for the system and minimizes complexity, thus increasing productive output without increasing workload

In 2023, Li et al. developed anMMA line balancing issue that incorporates learning effects as well as the uncertainty of demand besides optimizing two conflicting objectives, namely, cost and cycle time by proposing a mixed integer-related heuristic & variable district searching technique, offering efficient solutions under different system response times. In 2020, Addy explored 'transition complexity' at the Nissan Smyrna plant, which can impact defect rates when shifting among different models of vehicles produced. It suggests several areas for simplification: simplifying kitting procedures and lavouts and also changes in manufacturing schedules. In 2022, Belkharroubi & Yahyaoui presented a Hybrid Reactive Greedy Randomized Adaptive Search Procedure (HRGRASP) for the MiMALBP-I problem that maximizes workstation numbers based on cycle times. The HRGRASP algorithm is performing better compared to other algorithms against a wide range of problems of sizes. In 2021, Mönch et al. propose the use of variable takt times against fixed takt times as an approach to improve productivity on MMA lines. It highlights the critical nature of balancing time against quality, using a customization-adaptive mixed-integer programming approach that outperforms set takt times. In 2022, Meng et al. discuss MMA line balancing with defensive maintenance (MALB PMs) and introduce a mixed-integer formulation and a cooperative coevolutionary method. The proposed method optimizes cycle times and task distribution, which is more efficient and provides more Pareto solutions than other algorithms.

	Manufacturing									
Author(s)	Proposed Technique	Performance	Research Aim	Problem Statement	Limitations					
Jiahua et al. 2019	An integrated methodcombining combined precedence diagram, combined priority rule, and NEH algorithm	Effectiveness verified by three cases.	To solve the balancing and sequencing problem of unpackedbuffered MMA line	Balancing and sequencing of assemblylines with buffers to ensure efficient operation	Limited to three cases for validation					
Lakhdar Belkharroubi & Khadidja Yahyaoui, 2022	A hybrid algorithmcombining Reactive GRASP and RPW heuristic	Compared with basic GRASP for better results	To solve MiMALBP-II and minimize cycle time	Need to minimize average cycle time in MMA lines	Limited problem scope for testing					
Zhang et al. 2018 Goal chasing method, Flexsim simulation		Shows better time performance compared to other methods	To optimize final vehicle assembly and logistics with a new service mode	High damage rate and costs in final vehicle transportation	Limited to on eillustrative example without a simulation experiment					

Table 1: Summary of Studies on MMA Line Balancing and Optimization Techniques in Automotive
Manufacturing

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Volume : 54, Issue 1, No.1, January : 2025							
Mohseni- Darabi et al. 2021	A bi-objective mathematical model with augmented ε- constraint method	Provides Pareto optimal solutions	To minimize displacement and idle time of operators in MMA lines	Sequencing problem in MMA line	No experimental validation for large-scale instances		
Yuwei et al. 2020	Multi-objective genetic algorithm (GA)	Improved efficiency with the modified GA	To minimize the number of paired stations, balance rate, and smoothness index	Balancing and sequencing in a two-sided MMA line	Limited problem application (automobile company example)		
Tong et al. 2019	Genetic algorithm- based scheduling, embedded in Plant Simulation	Effective in simulation	To solve the scheduling of urban rail vehicle MMA line	Minimizing part set, blocking time, and hunger time in scheduling	Limited to simulation environment without real- world validation		
Nazari et al. 2020	Simulated annealing with α- sampling and efficient assignment heuristic	Outperformed MIP and ant colony optimization	To solve MMA line problems with sequence- dependent setup times	MMA line balancing with sequence- dependent setup times	Lack of broader application and validation		
Wang et al. 2020	Multi-objective cuckoo search algorithm with record matrix	Good results in real case	To resolve the car-sequencing issue in MMA lines	Variation in parts usage, workload, and modelswitching costs	Requires more verification for larger cases		
Huo & Lee, 2023	Mixed-integer linear programming (MILP) model with Benders' decomposition algorithm (BDA)	Demonstrated effectiveness through numerical results	To balance and sequence MMALs while minimizing workers and stations	MMALs with diverse products and optional features	Limited to numerical testing and small-scale examples		
Zhang et al. 2023	Multi-objective evolutionary algorithm (MOEA) with Q-learning- based crossover and mutation	Outperforms 11 competitive MOEAs in experiments	To balance mixed-model multimanned assembly linesunder uncertain demand	Uncertain demand requiring robust assembly line configuration	Limited to benchmark instances and lacks real- world validation		
Norma Hammadi et al. 2023	Enhanced Non- Dominated Sorting Genetic Algorithm (E-NSGA-II)	Dominates other methods in terms of performance metrics	Addressing MMALBP with ergonomic factors and worker posture	MMA line balancing problem (MMALBP) considering workerposture, cycle time, and ergonomic risks	May not fully account for all environmental factors or changes in real-world production scenarios		

ISSN: 0970-2555

	Volume : 34, issue 1, ivo.1, january : 2023								
Capela	Faster-RCNN and	Faster-RCNN:	Smart quality	Engine label	May require				
et al. 2021	YOLOv3 object	92.5%	inspection in	detection for	extensive data				
	detection	(without data	automotive	Citroën and	augmentation				
	algorithms	augmentation),	assembly	Peugeot models	and manual				
		100% (with		in an	data				
		data		automotive	preparation				
		augmentation)		assembly line					
Mazzetto	Deep learning-	Acceptable	Automating	Detecting and	Accuracy				
et al. 2019	based object	accuracy	workpiece	classifying	may depend				
	detection	without	detection and	multiple	on real-time				
		interventions	classification in	objects in	environmental				
		on the	automotive	MMA lines	conditions				
		production	assembly		and lighting				
		line							
Karaklasa	3D Vision Sensors,	Demonstrated	Optimizing	Addressing	Performance				
et al. 2024	Template Matching,	in pre-	object detection	vehicle motor	may vary				
	Deep Convolutional	industrial	for automotive	and gearbox	based on real-				
	Neural Network	setup, flexible	assembly	assembly using	world				
	(CNN)	for various	operations	advanced	complexities				
		manufacturing		sensors and	outside of				
		contexts		CNN	pre-industrial				
					testing				
Busogi et al.	Information	Demonstrates	Minimizing	Addressing	Limited by				
2019	entropy-based	the impact of	complexity in	complexity in	assumptions				
	methodology for	sequencing on	MMA lines	assembly	in product				
	product sequencing	complexity		systems as	sequencing				
		control		product variety	models and				
				increases	complexity				
					quantification				
Li et al.	Mixed-integer-	Efficient under	Optimizing	Balancing the	May not				
2023	related heuristic,	varying	MMA line	overall	handle				
	Modified variable	system	balancing along	expected cost	extremely				
	district search	response times	with learning	&average cycle	dynamic, real-				
	approach		effect &	duration in	time system				
	11		uncertain demand	mixed-model	responses				
				schemes	effectively				
Addy,	Not specified	Not specified	Reducing	Addressing	Requires				
2020	-r	-1	transition	defect rate	system				
			complexity in	variationsdue	specific				
			MMA lines	to transitions	adjustments				
				between	and				
				vehicle models	interventions				
					for effective				
					results				
	1	1	1						

ISSN: 0970-2555

		-	5		
Belkharroubi	HRGRASP	Comparison	Solving MMA	Optimizing the	Not tested
&		with GRASP,	line balancing	number of	across a
Yahyaoui,		heuristics-	problem	workstations	variety of
2022		based	(MiMALBP-I)	for fixed cycle	assembly line
		approach, and		time	settings,
		Lingo solver			limited scope
Mönch et al.	Mixed-Integer	Reduces labor	Introducing	Balancing takt	May face
2021	Programming	inefficiencies	variable takt	time with	challenges in
	(MIP) model	and	times in MMA	product variety	applying to
		complexity	lines	in mixed-model	industries
		1 5		production	outside of the
				systems	agriculture
				2	sector
Meng et al.	Cooperative Co-	Outperforms	MMA line	Optimizing	Limited to
2022	evolutionary	other	balancing with	cycle time and	small-scale
	Algorithm with	algorithms,	preventive	task alteration	instances and
	mixed-model	closer to true	maintenance	considering PM	may require
	variable step-size	Pareto front		scenarios	further
	decoding				validation for
	C C				large-scale
					applications

VISION-BASED DL APPROACHES FOR QA IN MMA LINES :

In 2022, Stauder & Kühl discussed the challenges of sequence scrambling. Customers want customized products at mass-produced prices, leading to sequence scrambling. Induced by operational and product-related problems, sequence scrambling is still a problem. A supervised classification model uses product attributes such as body shape and color to predict sequence deviations with 50% prediction accuracy. Process-related aspects such as the condition of the machines have been excluded from the focus of this study on product attributes. In 2024, Yao et al. provided a method for predicting the completion status of aircraft MMA lines based on a Dynamic Bayesian Network (DBN). It solves problems like data scarcity and time-varying situations. The model uses expert knowledge and particle filtering to enhance the precision of the forecast. The experimental results indicate that the AMMALs have higher prediction capability, which would help aircraft industries plan. In 2024, Hoffman provided a system efficiency model for the Nissan Smyrna Vehicle Assembly Plant that introduces product and process data to the model. It relates assembly jobs to car attributes so bottlenecks and improvements in production can be identified easily. It gives a much more efficient method of deciding system efficiency, optimizing production sequences, and enhancing plant performance. In 2024, Alhomaidhi addressed the MMA Line Balancing Problem (MALBPLW) by integrating the learning effects of workers and the dependency of tasks. It delivers a new mathematical model with a solution approach to optimize assembly line task assignment. This cost-reducing and increasing production efficiency strategy develops an overall framework for optimizing industrial resources. In 2022, Zhou & Zhao focused of optimizing the scheduling of part feeding in automotive MMA lines using a hybrid fuzzy-neural-based dynamic scheduling approach. It illustrates through some computational experiments that the suggested method outperforms benchmark algorithms in scheduling decisions and performance.

In 2019, Qattawi & Chalil Madathil suggested the optimization and Redesign of Automotive Assembly Lines Using the Clustering Technique and the Task Mutuality Index. The solution reduces modeling effort and time taken to achieve a practical redesign and improves line balancing and takt time. In 2018, Biele & Mönch discussed the low Volume Aeroplane Assembly Lines Planning

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Mixed Model Assembly Lines. The article presents research on production planning for low-volume assembly lines of aeroplanes. It focuses on labor and inventory holding costs. The paper proposes two mathematical models of worker allocations and processing times. Heuristics are used to optimize the models, which demonstrate outstanding performance in computational studies and real-world circumstances. In 2020, Mazzetto et al. recommended the use of deep learning-based techniques to support visual inspection tasks within car manufacturing lines. The intent is to increase the precision and speed of computer vision systems while reducing their involvement in the factory's business cycle. The approach is illustrated with models for object detection, semantic segmentation, and anomaly detection. In 2022, Lv et al. presented a multi-agent optimization approach is presented in this work as an attempt to balance and sequence MMA lines, leveraging deep reinforcement learning. It employs balancing agents and sequencing agents to optimize the whole system as the workload overload and idle time reduction are implemented. Experiments involving comparative analyses with heuristic algorithms and genetic algorithms show how the strategy performs better with this strategy. In 2021, Zhou & Zhu contributed to the active development of the part-feeding process in MMA lines using a knowledge base and an enhanced version of the fruit fly optimization algorithm. The material delivery distance and throughput in the system are improved using a proposed mathematical methodology. Results of some computational experiments reveal that a proposed scheduling scheme increases productivity and system efficiency during dynamic conditions.

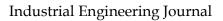
Author(s)	Technique Proposed	Research Aim	Model Efficiency	Performance	Research Gap
	-				
Stauder &	Supervised	Predicting	Predicts up	Effective in	Does not address
Kühl, 2022	classification	sequence	to 50% of	predicting	machine
	model based	deviations in	major	deviations, but	conditions, shift
	on product	automotive	sequence	does not	plans, or other
	features	MMA lines	deviations in	consider	process-related
		based on	advance	process-related	factors in the
		product-related		factors	prediction
		features			
Yao et al.	Dynamic	Predict	Solves small-	Improved	Limited data
2024	Bayesian	completion	sample	predictive	accumulation,
	Networks	states in	problems	ability with	the dynamic
	(DBNs) and	aerospace	using DBN	enhanced	nature of the
	agent model	MMA lines	parameter	reasoning	assembly line,
		with limited	learning and	speed and	and difficulty
		data.	expert	prediction	with new models
			knowledge	accuracy	
Hoffman,	An integrated	Enhance system	Measures	Identifies	No combined
2024	model linking	efficiency by	system	bottlenecks and	data system for
	production	combining	efficiency by	optimizes	both product and
	sequence	product and	integrating	production	process data in
	with	process data for	product and	sequences	previous
	assembly	the Nissan	process data		approaches
	jobs	Smyrna Vehicle			
	-	Assembly Plant			

Table 2: Summary of Research on Optimization and Efficiency Techniques in MMA Lines

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Alhomaidhi,	A	Ontimizo	Achieves	Demonstrated	Lack of
2024 Amomalum,		Optimize assembly line			
2024			enhanced	cost reduction	comprehensive
	model with	task	cost-	and improved	framework
	learning	assignments	effectiveness	production	integrating
	effect and	while	and resource	efficiency	learning effects
	worker	considering	utilization		with real-time
	prerequisites	learning effects			worker
		and worker			performance
		classifications			
Zhou &	Hybrid	Optimize	Efficient	Superior to	Limited focus on
Zhao, 2022	fuzzy-neural	productivity	scheduling	benchmark	integrating
	dynamic	and cost in part	based on	algorithms in	product-related
	scheduling	feeding	real-time	terms of	factors in
	method	scheduling	status and	scheduling	dynamic part
	(SOM +	under a Kanban	production	performance	feeding
	FCM + KB	system	requirements	Performance	scheduling
Oattorr: 0-	,		Reduces	Effective in	No consideration
Qattawi & Chalil	Clustering	Redesign and rebalance			of how task
	algorithm		optimization	balancing labor	
Madathil,	with task	assembly lines	time and	costs,	mutuality affects
2019	mutuality	considering	simplifies	optimizing	new product
	index	product demand	redesign	assembly lines	introduction and
		variability and	efforts		assembly line
		new product			design
		models.			
Biele &	Time-	Balance labor	Flexible	High	The challenge of
Mönch,	indexed	and inventory	allocation of	performance in	applying
2018	linear and	costs in MMA	workers	balancing labor	linear/non-linear
	non-linear	lines with a	while	and inventory	formulations in
	mathematical	fixed job	considering	costs using	real-world
	formulations	sequence	cost and	heuristics	scenarios with
			processing		fixed
			time		assignments
Mazzetto et	Deep	Assist in	Enhances	Success in	Environmental
al. 2020	learning for	automotive	computer	object	settings affecting
	-				
	computer	assembly line	vision	detection	the performance
1	computer vision in	assembly line visual	vision systems with	detection,	the performance and accuracy of
	vision in	visual	systems with	segmentation,	and accuracy of
	vision in visual	visual inspection tasks	systems with minimal	segmentation, and anomaly	and accuracy of CVSs in real-
	vision in visual inspection	visual inspection tasks using deep	systems with minimal disruption to	segmentation, and anomaly detection in a	and accuracy of CVSs in real- time assembly
	vision in visual	visual inspection tasks using deep learning-based	systems with minimal disruption to assembly	segmentation, and anomaly	and accuracy of CVSs in real-
	vision in visual inspection tasks	visual inspection tasks using deep learning-based methodologies	systems with minimal disruption to assembly line time	segmentation, and anomaly detection in a real setting	and accuracy of CVSs in real- time assembly environments
Lv et al.	vision in visual inspection tasks Multi-agent	visual inspection tasks using deep learning-based methodologies Optimize	systems with minimal disruption to assembly line time Coordination	segmentation, and anomaly detection in a real setting Superior to	and accuracy of CVSs in real- time assembly environments Insufficient focus
Lv et al. 2022	vision in visual inspection tasks Multi-agent optimization	visual inspection tasks using deep learning-based methodologies Optimize balancing and	systems with minimal disruption to assembly line time Coordination of agent	segmentation, and anomaly detection in a real setting Superior to traditional	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale
	vision in visual inspection tasks Multi-agent optimization with deep	visual inspection tasks using deep learning-based methodologies Optimize balancing and sequencing	systems with minimal disruption to assembly line time Coordination of agent outputs to	segmentation, and anomaly detection in a real setting Superior to traditional heuristic rules	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale MMA lines and
	vision in visual inspection tasks Multi-agent optimization	visual inspection tasks using deep learning-based methodologies Optimize balancing and	systems with minimal disruption to assembly line time Coordination of agent	segmentation, and anomaly detection in a real setting Superior to traditional	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale
	vision in visual inspection tasks Multi-agent optimization with deep	visual inspection tasks using deep learning-based methodologies Optimize balancing and sequencing	systems with minimal disruption to assembly line time Coordination of agent outputs to	segmentation, and anomaly detection in a real setting Superior to traditional heuristic rules	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale MMA lines and
	vision in visual inspection tasks Multi-agent optimization with deep reinforcement	visual inspection tasks using deep learning-based methodologies Optimize balancing and sequencing problems in	systems with minimal disruption to assembly line time Coordination of agent outputs to achieve	segmentation, and anomaly detection in a real setting Superior to traditional heuristic rules and genetic	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale MMA lines and scalability of
	vision in visual inspection tasks Multi-agent optimization with deep reinforcement	visual inspection tasks using deep learning-based methodologies Optimize balancing and sequencing problems in MMA lines	systems with minimal disruption to assembly line time Coordination of agent outputs to achieve global	segmentation, and anomaly detection in a real setting Superior to traditional heuristic rules and genetic algorithms in	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale MMA lines and scalability of
	vision in visual inspection tasks Multi-agent optimization with deep reinforcement	visual inspection tasks using deep learning-based methodologies Optimize balancing and sequencing problems in MMA lines using deep	systems with minimal disruption to assembly line time Coordination of agent outputs to achieve global	segmentation, and anomaly detection in a real setting Superior to traditional heuristic rules and genetic algorithms in	and accuracy of CVSs in real- time assembly environments Insufficient focus on large-scale MMA lines and scalability of


ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Zhou &	VSCFOA-	Solve real-time	Coping with	Demonstrates	Lack of research
Zhu, 2021	enhanced	part feeding	dynamic	higher	into dynamic
	GRNN for	scheduling in	environments	productivity	scheduling's
	dynamic	dynamic	for higher	and system	impact on overall
	scheduling	automotive	productivity	performance in	production
		MMA lines		dynamic	quality in mixed-
				environments	model systems

ENHANCING QUALITY CONTROL IN MMALINES THROUGH DL AND COMPUTER VISION :

In 2022, Rio-Torto et al. developed a hybrid inspection system that reduces worker fatigue and increases adaptability by incorporating both automated detection and human input. It uses 3D vehicle generators and applies domain adaption techniques to fill the gap between labelled and real-world data. Results indicate better performance in the detection of non-conforming car parts, suggesting a symbiotic machine-human assembly line that would enhance efficiency. In 2019, Munoz et al. designed a mixed reality-based user interface to enhance worker ergonomics in automotive quality control. It aims at the reduction of worker stress while increasing productivity through an improved intuitive manner for the presentation of fault information. A usability evaluation that compares the new interface with Mercedes-Benz's current system demonstrates important improvements in worker performance. In 2024, Zhang et al. developed a mixed-integer linear programming model is designed for energy and cost savings in multi-skilled worker MMA lines. A new co-evolutionary algorithm is developed to optimize a trade-off between energy and cost and significantly outperforms other stateof-the-art algorithms for several instances. Experiments validate the effectiveness of the algorithm in optimizing assembly line operations. In 2019, Zhang et al. considered the Type-II MMAline balancing problem with uncertain task time. To develop and solve a robust optimization model, the paper employs a hybrid genetic algorithm (HGA) that combines heuristic approaches with adaptive local search. Experimental results indicate that the HGA is useful in enhancing production efficiency in the presence of uncertainty. In 2023, Paprocka & Krenczyk discussed mixed-model, multi-version assembly line sequencing for energy efficiency. The optimization of vehicle sequencing is carried out by the Grey Wolf Optimiser (GWO) which surpasses greedy heuristics and Simulated Annealing. The contributions will ensure long-term assembly line solutions with reduced energy consumption. In 2024, Cheng et al. examined MMA line scheduling with lot streaming and batch transfer. An innovative mathematical formulation decreases the completion time, manufacturing cost, setup cost, transportation cost, and inventory costs. The proposed multi-objective co-evolutionary simulated annealing approach outperforms traditional algorithms and so enhances the performance of manufacturing systems. In 2021, Zhang et al. discusses a dynamic takt time (dTT) approach toward assembly line balance and sequencing, which incorporates real-time worker and product statuses into the decision-making process. To optimize both characteristics, an improved artificial bee colony algorithm has been designed. Case studies show that dTT improves line efficiency by minimizing idle time, better than any other optimization techniques. In 2023, Dalle Mura & Dini introduces a genetic algorithm solution to MMA line balance that includes job rotation along with collaborating robots to ensure improvements in ergonomics. The tool optimizes both cost and worker ergonomics, reducing noise exposure as well as energy consumption. An industrial case study finds that it enhances workers' well-being and productivity. In 2024, Tiacci suggested an asynchronous Assembly Line Control Matching as well as sequencing difficulties are addressed in asynchronous MMA lines. The optimization of task assignment, buffer allocation, and model sequencing reduces blocking and hunger. A strategy combining both techniques is developed using a genetic algorithm, leading to greater line efficiency through focused optimization. In 2023, Peng et al. addresses the challenges of assembly line balancing and sequencing under different precedence relations. It

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

presents a comparison of MILP and CP models, while an iterative decomposition method is proposed. The results showed that CP outperformed MILP, while decomposition was superior in terms of solution quality and economy in time.

Table 3: Summary of Studies on Assembly Line Optimization: Techniques, Performance, and Research Insights

Autho	Proposed	Performan	Research	Research	Limitatio	Motivatio	Dataset
r	Technique	ce Score	Aim	Gap	ns	n	Used
Name							
Rio-	Hybrid quality	F1 score:	Improve	Lack of	Limited to	Improve	Simulate
Torto	inspection	0.565	worker	real-time,	specific	accuracy	d data,
et al.	system	(unconstrai	performanc	manual	factory	and	Real
2022	(automated	ned), 0.601	e by	data	floor	efficiency	factory
	detection +	(fixed	reducing	annotation	setups	in	floor data
	human	camera	fatigue and	in factory		automotiv	
	feedback)	setup)	improving	settings		e quality	
			adaptability			control	
Muno	Mixed reality-	No explicit	Improve	Existing	Usability	Enhance	Mercedes
z et al.	based user	performanc	ergonomics	interfaces	test	ergonomic	-Benz
2019	interface for	e score	, reduce	lead to	limited to	s and	factory
	quality control		stress,	worker	Mercedes-	reduce	data
	inspection		improve	stress and	Benz	stress for	
			productivit	fatigue	factory	workers	
			y				
Zhang	Multi-	Superiority	Minimize	Lack of	Algorithm	Improve	269
et al.	objective co-	to seven	energy and	solutions	effectivene	energy	instances
2024	evolutionary	multi-	cost	considerin	ss limited	efficiency	of
	algorithm for	objective	requiremen	g energy	by real-	and cost	assembly
	assembly line	evolutionar	ts in multi-	and cost	world	reduction	line data
	balancing	У	manned	trade-offs	constraints		
		algorithms	assembly	in			
			lines	balancing			
Zhang	Hybrid	Benchmark	Optimize	Difficulty	Uncertaint	Improve	Benchma
et al.	genetic	instances	production	in	y in	production	rk
2019	algorithm	tested;	efficiency	managing	tasktimes	efficiency	instances,
	(HGA) for	effectivene	under	uncertaint	might still	in .	simulated
	type-II MMA	ss proven	uncertain	y in task	affect	uncertain	data
	line balancing		task times	durations	performan	conditions	
					ce		

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

D	OILO C	. 01, 155uc 1,		J T 1	T 1 1	т	D 1
Paproc	GWO for	GWO	Optimize	Limited	Limited to	Improve	Real
ka &	sequencing in	outperform	sequencing	research	sequencin	sequencin	mixed-
Krenc	MMA lines	s other	for MMA	on multi-	g	g to	vehicle
zyk,		algorithms	lines with	objective	problems	reduce	assembly
2023		(Simulated	environme	optimizati	in MMA	environme	line data
		Annealing,	ntal	on	lines	ntal	
		Greedy	considerati	considerin		impact	
		heuristics)	ons			and	
		incuristics)	0115	g			
				environme		energy	
				ntal		consumpti	
				factors		on	
Cheng	Multi-	Outperform	Optimize	Lack of	Algorithm	Improve	Benchma
et al.	objective	s seven	job shop	integrated	s may not	competitiv	rk data,
2024	coevolutionar	competitive	scheduling	scheduling	generalize	eness and	simulated
	ysimulated	multi-	with lot	techniques	well in	reduce	data
	annealing	objective	streaming	in mixed-	diverse	production	
	algorithm for	algorithms	and batch	model	settings	costs	
	assembly job	uigoritinnis	transfer	assembly	settings	00515	
	••		uansiei	assentioly			
	shop						
	scheduling						
Zhang	Dynamic takt	Evaluated	Optimize	Fixed takt	Limited to	Optimize	Case
et al.	time (dTT)	with	balancing	time	pacing and	resource	study
2021	method using	performanc	and	ignores	sequencin	use by	data from
2021	an improved	e indexes	sequencing	real-time	-	considerin	different
	artificial bee			assembly	g problems		scales
		(e.g.,	by adapting	-	problems	g dynamic	scales
	colony	inverted	to real-time	line status		assembly	
	(iABC)	generationa	production			line status	
	algorithm	l distance,	conditions				
		spacing					
		metric)					
Dalle	Genetic	Industrial	Improve	Lack of	Algorithm	Enhance	Industrial
Mura	algorithm for	case study	ergonomics	ergonomic	performan	worker	case
&	MMA line	discussed	and energy	s	ce may be	well-being	study
Dini,	balancing with		expenditure	considerati	context-	and	data
2023	job rotation		in	on in	dependent	productivi	
	and		assembly	assembly		ty	
	collaborative		lines	line			
	robots		11105	balancing			
T				-	T • • •		D 1
Tiacci,	Genetic	Evaluated	Solve	Buffer	Limitation	Improve	Benchma
2024	algorithm with	on	MALBP,	allocation	s in	overall	rk
	discrete event	benchmark	BAP, and	and	scalability	line	instances,
	simulation for	instances	SP	sequencin	and	efficiency	simulated
	balancing,		simultaneo	g	generalizat	by	data
	buffer		usly to	techniques	ion	optimizing	
	allocation, and		increase	not well		workload	
	sequencing		line	integrated		distributio	
	sequence mg		efficiency	Bracea		n	
L			enterency			11	

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Peng	MILP and CP	Better	Address	Limited	СР	Improve	Computat
et al.	models for	performanc	balancing	understand	performan	flexibility	ional
2023	flexible MMA	e of CP	and	ing of	ce is	and	experime
	lines with	over MILP,	sequencing	alternative	limited by	efficiency	nts,
	alternative	iterative	problems	precedenc	problem	in	simulated
	precedence	decomposit	with	e relations	complexit	assembly	data
	relations	ion method	alternative	in	У	lines	
		superior	precedence	assembly			
			relations	lines			

TECHNIQUES FOR ENSURING QUALITY IN MMALINE PRODUCTION:

In 2024, Varyani et al. uses a new approach, where the sequence-dependent setup times are classified as workpiece-independent or workpiece-dependent. A mathematical model minimizes the launch intervals of the workpieces, reducing the downtime and energy consumption. The NP-hard problem is solved by a genetic algorithm that outperforms the classic branch-and-bound approaches. Computational investigations prove that the GA enhances the quality of solutions, reduces energy consumption, and makes it cost-effective. In 2023, Hashemi-Petroodi et al. develops a dynamic task assignment problem using an MDP within a mixed-integer linear program model. The reduction rules improve the tractability of both the stochastic and robust models. This is a challenging problem of reducing costs by all, or the worst, manufacturing takts. Computational experiments have demonstrated dynamic assignments perform better than static models. In 2023, Ebrahimi et al. modelled the dynamic mixed model-assembly line with walking workers through the application of the scenario from the Fiat Powertrain. Using a hyper-heuristic along with a simulation-optimization approach allows for time saving during actual manufacturing moments in dynamic environments. Managerial implications highlighted that indeed the simulation would handle reality constraints in terms of solution generation, proving the application of the presented dynamic sequencing method. In 2023, Huchzermeier & Mönch suggested the adoption of product customization and innovation, MMA lines are being taken up. A variable rate launching (VRL) method removes idle intervals and utility work, and hence 100% production is achieved under optimal conditions. A mixed-integer model computes the cost of closed/open workstations for given fixed and variable takt times. Heuristic solutions address various station lengths and process times. Industrial applications have demonstrated that VRL methods significantly reduce labor costs, queue length, and throughput time. In 2024, Mezghani et al. establishes a resilient Mixed-Integer Linear Programming (MILP) model, thereby minimizing upfront design and reconfiguration costs. It accounts for the worst-case production needs so that future reconfiguration will be easier. Adversarial technique works effectively to solve the huge instance. Benchmark trials validate that the model could decrease design and reconfiguration cost when compared to traditional approaches.

In 2023, Edouard et al. discusses ICARRE, a method of discovering assembly interfaces in available products through Assembly Process Planning (APP). A rule-based algorithm parses APPs and checks against restriction lists and visual inspections. It has been successfully tested within the helicopter industry and applied as an integrator of previously discarded parts, although it still finds itself plagued by the lack of knowledge concerning some of the interfaces and disparate operations that arise. The technique provides practical insights for new product development by emphasizing its applicability in a variety of contexts. In 2024, Fani et al. discusses the sequencing of jobs in a dynamic environment, applying evolutionary algorithms and simulation. A framework was

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

optimized for sequences under stochastic conditions and has been tested by case studies of real-world situations. The results illustrate managerial benefits and ease of upgradability by iteratively following data-driven strategies. This novel solution effectively combines simulation with evolutionary optimization. In 2024, Anh & Van Hop formulates task times as fuzzy stochastic variables (FRVs) to solve the model assembly line balancing challenges (MALBP) under uncertainty. GA-MIP beats other approaches in terms of targets and computation time according to a comparative investigation. This method effectively manages uncertainty in manufacturing contexts. In 2024, Elyasi et al. suggested the process duration variability causes MMAL instability; this work uses an MDP/MILP approach to model a dynamic change in workforce during processes. The scalability problem has been solved by the decomposition of Benders. Managerial insights with cost-reduction, resilience, and MMAL robustness ideas have been gained from validation on real Stellantis data.

Research										
Author(s)	Proposed Technique	Dataset Used	Performance	Research Aim	Limitations					
Varyani et al. 2024	Genetic Algorithm (GA) for MMAL optimization	Computational experiments	GA outperforms traditional methods in solution quality and speed	Optimize MMA lines to reduce energy consumption	Does not address all possible production scenarios					
Hashemi- Petroodi et al. 2023	Markov Decision Process (MDP) and Linear Program (LP)	Benchmark and generated instances	Effective in dynamic task assignments for reconfigurable assembly lines	Study task assignment and worker movement in reconfigurable MMALs	Limited by stochastic parameters and complexity					
Ebrahimi et al. 2023	Hyper- heuristic and simulation- optimization	Fiat Powertrain Technologies case	Simulation approach is effective in real- world dynamic environments	Solve sequencing problem with walking workers in MMALs	Simulation complexity in real-world scenarios					
Huchzermeier & Mönch, 2023	Mixed- Integer Linear Programming (MILP) model	Numerical industrial benchmark	Variable rate launching reduces labor costs and idle time	Analyze variable rate launching for MMA lines	Assumes ideal production conditions for VRL					
Mezghani et al. 2024	Robust Optimization approach for line design	Computational experiments	Robust model reduces design and reconfiguration costs	Account for product evolution during assembly line life	Focus on worst-case scenarios may limit broader applicability					

 Table 4: Summary of Techniques, Datasets, Performance, and Limitations MMA Line Optimization

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

		oue 1,110.1, juit	5		
Edouard et al.	Rule-based	Helicopter	Effective in	Identify	May miss
2023	algorithm for	industry case	identifying	assembly	interfaces due
	assembly	study	interfaces for	interfaces for	to absence in
	interface		component reuse	reused	assembly
	identification			components	operations
				in product	
				design	
Fani et al.	Evolutionary	Leather goods	Framework	Optimize	May not be
2024	algorithm	company case	supports	production	fully
	and	study	dynamic, real-	sequence in	adaptable to
	simulation-		time decision	MMA lines	all production
	based		making		environments
	optimization				
Anh & Van	Red Fox	No specific	GA-MIP	Minimize	Focus on task
Нор, 2024	Optimization	dataset	combination	workstations	time
	(RFO) and	mentioned	performs best in	in MMA lines	uncertainty
	metaheuristic		solution quality	under	may limit
	algorithms		and time	uncertainty	broader
					applications
Elyasi et al.	Markov	Stellantis data	MDP improves	Manage	Requires
2024	Decision		line resilience	workforce and	Benders
	Process		against process	task	decomposition
	(MDP) for		time uncertainty	assignments	for large
	workforce			in automotive	instances
	assignment			MMALs	

APPLICATIONS OF DL IN QA: A FOCUS ON MMA LINES :

In 2024, Shao et al. suggested the MILP model is applied to handle Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem (DHHFSP-MMAL) during the manufacturing and assembly stages. It proposes a parallel deep adaptive large neighborhood search that applies constructive heuristics for initial solutions and destroy-repair operators for optimisation. The experiments demonstrate the efficiency and effectiveness of PDALNS. In 2024, Akpinar developed an ant colony optimization hyper heuristic approaches the question of heuristic search spaces which seeks to find optimal balance across the MMA lines concerning the setup arrangements with specific dependences in their sequences by benchmark datasets against performance measures for testing their validity. In 2024, Sun adopted the application of selectivity banks that combine physical and virtual resequencing into automobile production lines. The nine techniques of resequencing are developed in pursuit of a minimum number of sequencing violations.

The results indicate marked improvements with virtual resequencing, specifically the IR9 technique. In 2024, Zhou & Zhao proposed Automatic Monorail Shuttle System (AMSS) enhances the efficiency of material input in automobile MMA lines. The shuttle and crossover scheduling problem is addressed by a shuffling frog leaping-based hyper-heuristic algorithm, which is shown to be better than other approaches regarding cost minimisation and convergence time. Utilizing a shuffling frog leaping-based hyperheuristic algorithm to schedule shuttles and crossovers outperforms previous methods both in cost minimization and convergence speed. In 2024, Alhomaidi & Askin developed a new approach to balancing MMA lines takes into consideration parallel line systems, tooling, and demand fulfillment. It develops optimization algorithms and has been assessed on a set of various test datasets which have shown an excellent performance level and practicality.

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

In 2024, Huang et al. suggested a study which takes a mixed-integer programming strategy to explore how Robotic Mixed-Model Two-Sided Assembly Lines (RMTAL) balancing can be achieved with set-up times and several constraints. Benchmarks are outperformed based on cycle duration and energy usage by an optimising entropy-based two-mode simulated annealing technique. In 2024, Liu et al. proposed a quality Prediction in Machine Tool Spindle Assembly. A stacking ensemble model that uses inspection data and feature selection is able to predict variance in the quality of spindle assembly. The ensemble approach improves the quality control process by giving practitioners accurate predictions and significant insights. In 2024, Li & Wang suggested Human-Robot Collaboration in Assembly Lines. HRC assembly lines will use a mixed-integer programming methodology to balance the productivity of the assembly lines with carbon emissions. It combines particle swarm with improvement rules improving performance, outperforming simulated annealing and hill-climbing heuristics. In 2024, Fathi et al. developed Robot Based Example of Assembly Line Balancing. A comprehensive review classifies research on robot-assisted assembly line balancing. Meta-heuristic methods dominate solutions, and the emphasis is on cycle time minimization. Industry 4.0 has sparked recent studies on collaborative robot-based assembly lines. In 2024, Katsigiannis et al. developed Hybrid simulation models to analyze the transition from mass manufacturing toward the Lean Manufacturing assembly lines model of JIT and Heijunka will decrease the lead time by 47.37%, increase throughput 5.99%, minimize the work-in-process level of 56.73% on adopting Lean Manufacturing (LM).

Author Name	Proposed Model	Dataset Used	Performanc e Attained	Research Aim	Limitations	Application of Deep Learning
Shao et al. 2024	Distributed Heterogeneo us Hybrid Flow Shop Scheduling Problem (DHHFSP- MMAL), PDALNS Algorithm	Synthetic dataset (manufact uring & assembly stages)	Efficient and effective scheduling algorithm; constructive heuristic enhances efficiency	Optimize scheduling in MMA lines combining manufacturin g and assembly stages	High computation al cost due to the complexity of heuristics and deep destroy- repair operators	Potential for incorporating deep learning for predictive maintenance and scheduling optimization
Akpinar, 2024	Ant Colony Optimizatio n Based Hyper- Heuristic	Benchmar k instances from literature	Effective balancing of sequence- dependent setups in MMA lines	Solve hierarchical assembly line balancingprob lemsinvolving setupdepende nt task sequencing	Requires additional computation al resources for large datasets	Limited; could use deep reinforcement learning for hyper- heuristic improvemnt

Table 5: Summary	of DL Applications	in MMA Line Optimization
------------------	--------------------	--------------------------

ISSN: 0970-2555

Volume : 54, 1550c 1, 100.1, january : 2025							
Sun,	Integrated	Car	Virtual	Minimize	Limited	Deep learning	
2024	Resequencin	assembly	resequencin	sequencing	application	models for	
	g with	data	g	rule violations	to specific	predicting	
	Selectivity		outperforms	in car	use cases	violations and	
	Banks		physical	assembly	such as car	optimizing	
			resequencin	processes	assembly	sequence	
			g; IR9			selection	
			algorithm				
			performs				
			best				
Zhou &	Automatic	Synthetic	Superior	Enhance	Validation	Deep learning	
Zhao,	Monorail	problem	solution	material	limited to	could	
2024	Shuttle	instances	quality and	feeding	simulations,	improve	
	System		convergence	efficiency in	lacks real-	shuttle	
	(AMSS),		speed	MMALs	world	scheduling	
	SBHH		compared to	while	application	and anomaly	
	Algorithm		benchmark	minimizing	data	detection	
	-		algorithms	costs			
Alhomaid	Comprehens	Literature	Efficient	Develop	High	Neural	
i &	ive	datasets	line	comprehensiv	complexity	networks	
Askin,	Assembly	(various	balancing	e models for	in adapting	could	
2024	Line	structures	with	parallel lines,	models to	enhance	
	Balancing)	extended	task-	dynamic and	adaptive	
	Models		realistic	dependent	uncertain	balancing	
			characteristi	tooling, and	production	under	
			cs	demand	environment	dynamic	
				fulfillment	S	production	
						conditions	
Huang et	Robotic	Benchmar	Outperforms	Optimize	Scalability	Use of deep	
al. 2024	Mixed-	k	state-of-the-	cycle time	issues with	reinforcement	
	Model Two-	instances	art	and energy	increasing	learning for	
	Sided		algorithms	consumption	problem size	robotic task	
	Assembly		in over 93%	in robotic		optimization	
	Line, Pareto		of cases for	two-sided			
	Simulated		hypervolum	assembly			
	Annealing		e and IGD	lines			
			metrics				
Liu et al.	Stacking	Spindle	Improved	Predict	Limited	Deep learning	
2024	Ensemble	inspection	quality	spindle	generalizabil	models like	
	Model for	dataset	prediction	assembly	ity to other	CNNs can	
	Spindle	(925	accuracy	quality	spindle	refine feature	
	Assembly	samples)	and	variations	assembly or	extraction for	
	Quality		identificatio	using	related	quality	
	Variation		n of key	ensemble	manufacturi	variation	
			features	learning	ng processes	prediction	

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Li & Wang, 2024Human- Robot Collaboratio n Assembly Line Model, PSO AlgorithmBenchmar k datasets)Improved cycle time and reduced carbon emissions compared to SA and LAHC heuristicsAddress HRC assembly line balancing objectiveFocused on predefined datasets; real-time application of the proposed model is not erdition prediction of the proposed lacksDeep learning could adatasets; modeling and model is not erdition of the proposed lacksDeep learning could adatasets; modeling and model is not erdition of the proposed lacks numerical identify trends, algorithmsFathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- algorithmsReview assembly line balancing studies in robotic and human-robot collaborative contextsDescriptive analysis lacks numerical identify trends, automate insights extraction, and simulation for Lean Manufacturi ng TransitionLEGO car assembly in dataSignificant reductions in lead time (56.73%), and WIP (56.73%)Evaluate lean manufacturin g transitionApplication scope limited to educational or scopeReinforceme manufacturin g strategies in real-time scenariosKatsigian mis et al. 2024Hybrid mg mLEGO car assembly in learning to add in learning to addSignificant scenariosEvaluate lean manufacturin g transitionApplication scopeR		Volume : 54, 155ue 1, 100.1, january : 2025								
2024Collaboratio n Assembly Line Model, PSO Algorithm(10 datasets)and reduced carbon emissions compared to SA and LAHC heuristicsbalancing with carbon emissions as a secondary objectivedatasets; real-time application of the proposed modeling and performance predictionFathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview adataDescriptive analysis lacks numerical validation identifyOpportunities for deep learning to identifyKatsigian nis et al. 2024Hybrid ng r ransitionLEGO car assembly line in dataSignificant reductions in lead time (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication model is not exploredReview modelig and performance predictionKatsigian nis et al.Hybrid simulation ng r ransitionLEGO car assembly line simulatio n dataSignificant reductions in lead time (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication manufacturin g strategies in real-time scenariosKatsigian nis et al.Hybrid simulation ng tor Lean modeligLEGO car assembly line scenariosSignificant reductions in creased throughput (5.99%)Evaluate lean manufacturin g transitionApplication modelig not transition<			Benchmar		Address HRC		Deep learning			
n Assembly Line Model, PSO Algorithmdatasets)carbon emissions compared to SA and LAHC heuristicswith carbon emission as a secondary objectivereal-time application of the proposed model is not exploredtime robothuman interaction modeling and performance predictionFathi et al. 2024Systematic Literature Review of Collaborativ LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview assembly line balancing studies in robotic and collaborative contextsDescriptive analysis lacks numerical validationOpportunities for deep learning to identify trends, automate insights extraction, and simulate for Lean manufacturi ng TransitionLEGO car assembly line simulatio n dataSignificant reductions in lead time (47.37%) increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication scope limited to educational or experimenta lassembly lines; scalability to real-time scenariosReview assembly increased throughput (5.99%)Simulation scienceReview adata	Wang,	Robot	k datasets	cycle time	assembly line	predefined	could			
Line Model, PSO AlgorithmLine Model, PSO Algorithmemissions compared to SA and LAHC heuristicsemission as a secondary objectiveapplication of the proposed model is not exploredrobothuman interaction modeling and performance predictionFathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview assembly line algorithms as dominant solutionsReview analysis trends, automate collaborative collaborative collaborative for deep learning to identify trends, automate insightsReview analysis automate identify trends, automate insights extraction, and simulate future scenariosPoportunities of deep learning to identify trends, automate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid Simulation ng TransitionLEGO car assembly line simulatio n dataSignificant reductions in lead time (47.37%), increased throughput (5.99%)Evaluate lean simulation simulation simulation simulation real-world productionApplication adaptionReinforceme model sould optimize lean manufacturin g strategies in real-world production	2024	Collaboratio	(10	and reduced	balancing	datasets;	improve real-			
PSO AlgorithmCompared to SA and LAHC heuristicssecondary objectiveof the proposed model is not exploredinteraction modeling and performance predictionFathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithmsReview assembly line balancing studies in robotic and human-robot collaborative collaborative e AssemblyLiterature review dataIdentified gaps, trends, and meta- heuristic algorithmsReview assembly line balancing studies in robotic and human-robot collaborative contextsDescriptive analysis lacks numerical validation trends, automate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid manufacturin ng TransitionLEGO car assembly in dataSignificant reductions in lead time (47.37%) and WIP (5.99%)Evaluate lean manufacturin g transitionApplication manufacturin g strategies in real-time scenarios		n Assembly	datasets)	carbon	with carbon	real-time				
AlgorithmAlgorithmSA and LAHC heuristicsobjectiveproposed model is not exploredmodeling and performance predictionFathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview assembly line balancing studies in robotic and human-robot collaborative collaborative a ssemblyDescriptive analysis lacks numerical validationOpportunities for deep learning to identify trends, automate solutionsKatsigian nis et al. 2024Hybrid man robationLEGO car assembly line simulation n dataSignificant reductions in lead time (47.37%) and WIP (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication manufacturin g strategies in real-time scenariosReinforceme manufacturin g strategies in real-time scenarios		Line Model,		emissions	emission as a	application	robothuman			
Fathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview assembly line balancing studies in robotic and human-robot collaborative contextsDescriptive analysis lacks numerical validationOpportunities for deep learning to identify trends, automate insightsKatsigian nis et al. 2024Hybrid ng TransitionLEGO car simulatio n dataSignificant reductions in lead time (47.37%) and WIP (56.73%), increased throughput (5.99%)Evaluate lean simulation to real-world productionApplication scope nt learning model is not exploredReinforceme nt learning model is not exploredKatsigian nis et al. 2024Hybrid simulation for Lean manufacturin ng TransitionLEGO car assembly line simulatio n dataSignificant reductions in lead time (56.73%), increased throughput (5.99%)Evaluate lean manufacturin simulation techniquesApplication scope int learning models could optimize lean manufacturin g strategies in real-time scenarios		PSO		compared to	secondary	of the	interaction			
Fathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristic algorithms as dominant solutionsReview assembly line balancing studies in robotic and human-robot collaborative contextsDescriptive analysis lacks numerical validationOpportunities for deep learning to identify validationKatsigian 2024Hybrid ng TransitionLEGO car simulation ng TransitionSignificant n dataEvaluate lean manufacturin g transitionEvaluate lean manufacturin g transitionApplication scenariosReinforceme nt learning manufacturin g transitionKatsigian ng TransitionHybrid simulatio n dataLEGO car simulatio n dataSignificant reductions in lead time (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication scope limes; scenariosReinforceme manufacturin g strategies in real-time scenarios		Algorithm		SA and	objective	proposed	modeling and			
Fathi et al. 2024Systematic Literature Review of Collaborativ e Assembly LinesLiterature review dataIdentified gaps, trends, and meta- heuristicReview assembly line balancing studies in robotic and human-robot collaborativeOpportunities for deep learning to identify trends, automate identifyKatsigian nis et al. 2024Hybrid mg ng TransitionLEGO car simulatio ng n dataSignificant reductionsEvaluate lean simulation in lead time (47.37%) increased throughput (5.99%)Evaluate lean simulation (47.37%) increased throughput (5.99%)Application scope lines; scalability to real-time scenariosReinforceme nt learning models could or g strategies in real-time scenarios				LAHC		model is not	performance			
al. 2024Literature Review of Collaborativ e Assembly Linesreview datagaps, trends, and meta- heuristic algorithms as dominant solutionsassembly line balancing studies in robotic and human-robot collaborative collaborative dataassembly line balancing studies in robotic and human-robot collaborative collaborative contextsanalysis lacks numerical validationTo deep learning to identify trends, automate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid for Lean mg n g TransitionLEGO car simulatio n dataSignificant reductions in lead time (47.37%) and WIP (56.73%), techniquesEvaluate lean manufacturin g transitionApplication models could optimize lean manufacturin g strategies in real-timeKatsigian nis et al. 2024Hybrid simulation ng n dataLEGO car assembly line simulatio in lead time (56.73%), torcrased throughput (5.99%)Evaluate lean manufacturin g transitionApplication models could optimize lean manufacturin g strategies in real-time scenarios				heuristics		explored	prediction			
Review of Collaborativ e Assembly Linesdataand meta- heuristic algorithmsbalancing studies in robotic and human-robot collaborative collaborative contextslacks numerical validationlearning to identify trends, automate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid ng ng TransitionLEGO car simulatio n dataSignificant reductions in lead time (47.37%) and WIP simulation n dataEvaluate lean manufacturin g transitionApplication models could optimize lean manufacturin g strategies in lines; scenariosReinforceme models could optimize lean manufacturin g strategies in lines; scenarios	Fathi et	Systematic	Literature	Identified	Review	Descriptive	Opportunities			
Collaborativ e Assembly Linesheuristic algorithms as dominant solutionsstudies in robotic and human-robot collaborative contextsnumerical validationidentify trends, automate insightsKatsigian nis et al. 2024Hybrid for Lean ng ng TransitionLEGO car simulatio n dataSignificant reductions in lead time (47.37%) and WIP (56.73%), techniquesEvaluate lean simulation to reductions simulation n dataApplication manufacturi g transitionReinforceme models could optimize lean manufacturin g strategies in increased throughput (56.99%)Significant studies in reductions simulation to real-world productionStudies in validation transitionReinforceme models could optimize lean simulatio throughput (56.99%)	al. 2024	Literature	review	gaps, trends,	assembly line	analysis	for deep			
e Assembly Linesalgorithms as dominant solutionsrobotic and human-robot collaborative contextsvalidationtrends, automate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid for Lean mg ng TransitionLEGO car simulatio n dataSignificant reductions in lead time (47.37%) and WIPEvaluate lean manufacturin g transitionApplication scope limited to educational or simulation increased throughput (5.99%)Reinforceme manufacturin g strategies in real-time scenarios		Review of	data	and meta-	balancing	lacks	learning to			
LinesLinesas dominant solutionshuman-robot collaborative contextsautomate insights extraction, and simulate future scenariosKatsigian nis et al. 2024Hybrid for Lean mg ng TransitionLEGO car simulatio ng n dataSignificant reductions in lead time (47.37%) and WIP simulation in lead time (56.73%), increased throughput (5.99%)Evaluate lean g transitionApplication scope manufacturin g strategies in real-time scenariosReinforceme models could optimize lean manufacturin g strategies in real-time scenarios		Collaborativ		heuristic	studies in	numerical	identify			
Katsigian nis et al. 2024Hybrid relamination ng TransitionLEGO car simulatio nd ataSignificant reductions in lead time (47.37%) and WIP (56.73%), increased throughput (5.99%)Evaluate lean manufacturin simulation simulation simulation simulation real-time (5.99%)Application scope using hybrid simulation simulation simulation simulation real-time scenariosEvaluate lean manufacturin scope using hybrid simulation simulation simulation simulation (56.73%), increased throughput (5.99%)Evaluate lean manufacturin simulatio		e Assembly			robotic and	validation	trends,			
Katsigian nis et al. 2024Hybrid Simulation ng TransitionLEGO car assembly line n dataSignificant reductions in lead time (47.37%) and simulation in lead time (47.37%) increased throughput (5.99%)Evaluate lean manufacturin scopeApplication scope nt learning models could optimize lean manufacturin g transitionReinforceme nt learning models could optimize lean manufacturin g strategies in l assembly increased throughput (5.99%)Significant reductions increased throughput (5.99%)Evaluate lean manufacturin scope simulation techniquesApplication models could optimize lean manufacturin g strategies in l assembly increased throughput (5.99%)Evaluate lean manufacturin scopeApplication models could optimize lean manufacturin g strategies in l assembly increased throughput throughput (5.99%)Simulation simulation techniquesApplication scope educational g strategies in l assembly scenarios		Lines					automate			
Katsigian nis et al. 2024Hybrid Simulation for Lean ng TransitionLEGO car assembly lineSignificant reductions in lead time and simulation (47.37%)Evaluate lean manufacturin g transition using hybrid simulation or techniquesApplication scope inited to educational optimize lean manufacturin g strategies in real-time scenariosKatsigian nis et al. 2024Hybrid for Lean ng ng TransitionLEGO car assembly line in lead time (47.37%) and WIP (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transition techniquesApplication scope or educational or experimenta l assembly scenariosReinforceme models could optimize lean g strategies in real-time scenarios				solutions	collaborative		U U			
Katsigian nis et al.Hybrid Simulation ng TransitionLEGO car assembly nimulatioSignificant reductions in lead time (47.37%)Evaluate lean manufacturin g transitionApplication scope limited to educational optimize lean manufacturinReinforceme nt learning models could optimize lean g strategies in l assembly in lead time2024for Lean Manufacturi ng TransitionLEGO car assembly in lead time (47.37%) in clead time (56.73%), increased throughputEvaluate lean manufacturin g transitionApplication models could optimize lean g strategies in l assembly increased throughputSignificant reductionsFeal-world production					contexts		· · · · · · · · · · · · · · · · · · ·			
Katsigian nis et al.Hybrid Simulation for Lean ng TransitionLEGO car assembly line simulatio n dataSignificant reductions in lead time (47.37%) and WIP (56.73%), increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication scope imited to educational optimize lean manufacturin g strategies in l assembly increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication scope imited to educational optimize lean manufacturin g strategies in l assembly increased throughput (5.99%)Evaluate lean manufacturin g transitionApplication scope imited to educational or g strategies in l assembly increased scenarios										
Katsigian nis et al.Hybrid SimulationLEGO car assembly lineSignificant reductions in lead timeEvaluate lean manufacturinApplication scopeReinforceme nt learning models could optimize lean manufacturin2024for Lean Manufacturiline simulatioin lead time (47.37%)Evaluate lean manufacturinApplication scopeReinforceme nt learning models could optimize lean manufacturinng Transitionn dataand WIP (56.73%), increased (5.99%)techniquesexperimenta lassemblyg strategies in real-time scenariosKatsigian(599%)(5.99%)scalability to real-world productionscalability to real-worldscalability to real-world										
nis et al.Simulation for Leanassembly linereductions in lead time (47.37%)manufacturin g transitionscope limited to educational or experimenta l assemblynt learning models could optimize lean manufacturin g strategies in real-time scenariosnis et al.Simulation ng Transitionassembly n datareductions (47.37%) and WIP (56.73%), increased throughput (5.99%)manufacturin g transitionscope educational or experimenta l assembly lines; scalability to real-world productionnt learning models could optimize lean manufacturin g strategies in real-time										
2024for Leanlinein lead timeg transitionlimited tomodels couldManufacturisimulatio(47.37%)using hybrideducationaloptimize leanngn dataand WIPsimulationtechniquesexperimentag strategies inTransition(56.73%),increasedlines;scenariosthroughput(5.99%)(5.99%)scalability toreal-time	-		LEGO car			Application				
Manufacturi ngsimulatio n data(47.37%) and WIP (56.73%), increased throughput (5.99%)using hybrid using hybrid techniqueseducational or manufacturin g strategies in real-time scenariosManufacturi ngn data(47.37%) and WIP (56.73%), increased throughput (5.99%)using hybrid using hybrid techniqueseducational or manufacturin g strategies in real-time scenarios			•				U U			
ng n data and WIP simulation or manufacturin g strategies in increased throughput (5.99%) (5.99%) scalability to real-world production increased through throu	2024				e					
Transition(56.73%), increased throughput (5.99%)techniquesexperimenta l assembly lines; scalability to real-world productiong strategies in real-time scenarios		Manufacturi				educational				
increased throughput (5.99%) increased throug			n data							
throughputlines;scenarios(5.99%)scalability toreal-worldproductionreal-worldscalability		Transition			techniques	*	• •			
(5.99%) scalability to real-world production						2				
real-world production				• •			scenarios			
production				(5.99%)		•				
is unclear										
						1s unclear				

AUTOMATED QA IN MMA LINES: VISION-BASED DL SOLUTIONS :

In 2024, Timmerman presented a heuristic for the delinquent of inefficiencies in MMA lines due to long trucks exceeding workstation lengths by grouping long trucks with shorter ones to reduce idle time and stoppages. In 2024, Feng et al. suggested a novel resource-constrained assembly line balancing model, TRCLBP is proposed to reduce workstations and assembly cost using an enhanced genetic algorithm for improvement of convergence and performance. Cost reductions of 18% in case studies are recorded. In 2024, Claeys et al. developed a approach that is the design methodology for the automatic evaluation of assembly instruction quality using behavioral coding schemes and classifier algorithm, with an accuracy range of 64% which possibly identifies the quality issues along the assembly instruction monitoring. In 2024, Kulaç & Kiraz developed a study in Ergonomics in Assembly Line Balancing. An ergonomics-integrated assembly line balancing is suggested as a three-stage approach by making use of fuzzy logic and mathematical modeling in reducing the cycle time, increasing line efficiency, and minimizing the risk associated with ergonomic conditions and significant case studies showing considerable improvement. In 2024, Yilmazlar et al. suggested a biobjective two-stage stochastic model is developed to address sequencing problems in automobile

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

assembly due to product failures. Hybrid optimization is used to decrease work overload by 20% and enhance reinsertion efficiency.

In 2024, Zacharia et al. addresses the challenges faced by collaborative robots in an assembly line setting with regards to workload allocation between humans and robots as well as production rates and workload smoothing, simulated experiments of robot integration show the benefits. In 2024, Jung et al. suggested an optimization simulator based on real-time production data and genetic algorithms is designed to increase productivity in garment production. A case study is given that shows a 34.8% increase in productivity in an Indonesian garment factory. In 2024, Zhang et al. presented a hybrid modeling approach to DT creation for production activities proposes the integration of human and robot DTs to improve system efficiency and provide insights for training workers, using a study on a washing machine assembly line as an example. In 2024, Mutale et al. proposed a hybrid PASP-TCQ model is presented to optimize the assembly process in wind turbine gearboxes, using a PSBFO algorithm to minimize assembly time, cost, and quality, achieving a 17% time saving and 10% cost saving. In 2024, Ramli et al. developed a Substituted Tiki-Taka Algorithm for Improvement over Existing Algorithms in Terms of efficiency and Energy Savings in Assembly Line Balancing with Respect to Energy Consumption: Case Study of an Industrial Unit. In 2024, Hou & Zhang developed study presents assembly line balancing and multi-AGV scheduling in flexible manufacturing systems and a multi-objective whale optimization algorithm and neural network-based scheduling method for increasing the efficiency and resilience of the production process.

Author(s	Dataset	Proposed	Performa	Research	Problem	Quality	Limitati
)	Used	Techniqu e	nce Score Attained	Aim	Statement	Assuran ce	ons
Timmerm an, 2024	Not provided	Heuristic approach for balancing truck lengths	Not provided	Mitigate inefficienci es in assembly line due to varying truck lengths	Idle time at affected workstatio ns, line stoppages	Not provided	Not provided
Feng et al. 2024	Arithmeti c case studies, enterprise engineeri ng examples	Improved genetic algorithm (I-GA) with a three-layer chromoso me initializati on	18% reduction in total assembly cost	Solve resource- constrained assembly line balancing	Low productivit y and high resource costs in two-sided assembly lines	Validated through case studies	Not provided

Table 6: Summary of Assembly Line Balancing and Optimization Techniques in Manufacturing
Research

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Classe 4	1		64%	5	III.a1. 1.1	A	Limited
Claeys et al. 2024	Assembly experime nts with intentiona lly flawed instructio ns	Behaviora l Observati on Theory- based automatic evaluation of assembly instruction s	accuracy in identifying low-quality instruction s	Improve the quality of assembly instruction s	High labor intensity, complexity in creating instruction s for high- variety, low- volume production	Accuracy could be improved	accuracy in identifyin g all types of quality issues
Kulaç & Kiraz, 2024	Case study in wire harness factory	Fuzzy logic model integrated with ergonomic risk assessmen t	10-11% improveme nt in line efficiency, 12-25% improveme nt in ergonomic risk balancing	Address ergonomic factors in assembly line balancing	Lack of attention to ergonomic risks, inefficienc y in balancing risk and productivit y	Validated in a case study	Not provided
Yilmazlar et al. 2024	Not provided	Bi- objective two-stage stochastic program with local search algorithm and hybrid approach	20% reduction in work overload, reduced waiting time for failed vehicles	Integrate reinsertion process for failed vehicles in mixed- model sequencing	Work overload due to vehicle failure and reinsertion	Numeric al experime nts and dynamic reinsertio n simulatio ns	Waiting times may still be high in some cases
Zacharia et al. 2024	Not provided	Metaheuri stic approach for collaborati ve robot assembly	Not provided	Improve assembly line balancing using collaborati ve robots	Variance and uncertainty in processing times for manual work	Heuristic approach for NP- hard problems	Limited applicati on to real- world scenarios
Jung et al. 2024	Data from garment productio n line	Genetic algorithm- based optimizati on simulator	34.8% improveme nt in productivit y	Optimize productivit y in garment manufactur ing	Difficulty in integrating real-time informatio n for optimizatio n	Real- world applicati on in garment productio n	Limited to labor- intensive industries

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

771				5	T 1 C	TT 1 ' 1	
Zhang et	Real-	Hybrid	Not	Model	Lack of	Hybrid	Not
al. 2024	world	model	provided	human	attention to	modeling	applicabl
	washing	combining		operators	human	approach	e to all
	machine	mechanis		for	operators		types of
	assembly	m and		enhanced	in existing		productio
	line data	time-		system	models		n systems
		series		efficiency			
		forecastin					
		g models					
Mutale et	Simulatio	PSBFO	17%	Enhance	Complexit	Validated	Limited
al. 2024	ns on	algorithm	reduction	efficiency,	y in	via	to wind
	wind	for time-	in	reduce	optimizing	simulatio	turbine
	turbine	cost-	assembly	costs, and	assembly	ns and	gearboxe
	gearbox	quality	time, 10%	improve	processes	statistical	S
	data	PASP	cost	quality in	processes	tests	5
	Guiu	optimizati	reduction,	assembly			
		optimizati	quality	usseniory			
		OII	index				
			improveme				
			nt to 0.93				
Ramli et	Not	Substitute	Improved	Optimize	Lack of	Validated	Not
al. 2024	provided	d Tiki-	line	assembly	focus on	in	provided
	Province	Taka	efficiency,	line	energy	industrial	Province
		Algorithm	reduced	balancing	efficiency	case	
		for	energy	with	in	study	
		assembly	consumpti	energy	traditional	study	
		line	-		methods		
			on	consumpti	methous		
		balancing with		on			
		energy					
		consumpti					
	<u> </u>	on					.
Hou &	Simulatio	Multi-	Improved	Solve	Complexit	Verified	Limited
Zhang,	n analysis	objective	manufactur	multi-	у,	through	to
2024	of	whale	ing	objective	uncertainty	simulatio	assembly
	assembly	optimizati	efficiency	assembly	, and multi-	n	worksho
	workshop	on	and	line	constraints	analysis	p settings
	data	algorithm,	workshop	balancing	in flexible		
		scheduling	resilience	and AGV	manufactur		
		rules		scheduling	ing		
		selection					
		method					
		with					
		neural					
1	1	network					
		Inclwork					
		and					

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

RESULT ANALYSIS:

Under this section, the commonly used datasets as well as the performance scores attained by the existing models were discussed. A total of 80 existing studies were selected for this review between the years 2017-2024 respectively.

Chronological Review:

During the early phases of integrating vision-based deep learning for quality assurance in MMA lines, exploratory research was performed toward automating the defect detection processes. From 2017 to 2018, researchers focused on the traditional machine learning approaches, utilizing features derived from 2D images to detect surface defects and assembly issues. However, such systems were often required to involve extensive human feature engineering, which limited their scalability and accuracy in dynamic manufacturing scenarios. By 2019, CNNs have transformed this domain. Researchers began using CNNs for end-to-end defect identification with studies underlined by the ability to accommodate diverse product models and complex visual patterns. In 2020, further improvements were made by incorporating pre-trained deep learning models like ResNet and VGGNet, which enhanced the accuracy of defect classification while reducing the computational cost of training models from scratch.

Advanced DL architectures for MMA lines have seen huge deployments from 2021. At the beginning of 2022, the multi-task learning framework emerged such that hundreds of different error kinds may be detected and categorized concurrently over many models of the product leading to far greater throughput. A hybrid model by 2023 investigated researchers integrating vision-based DL into reinforcement learning about optimizing real-time decision-making. In 2024, a paradigm shift took place with the combination of transformer-based models with GANs to enhance the detection of faults in complex, multi-component products. In addition, academics have emphasized explainability and real-time applicability of these models, which answers industry concerns about trust and latency. Overall, the timeline emphasizes the transformative role that vision-based deep learning plays in increasing the efficiency, accuracy, and scalability of quality assurance in MMA lines.

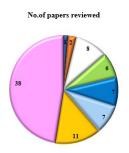
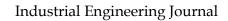



Figure 6: Total number of papers reviewed based on year

A review of papers over the period indicates a gradual growth of research contributions with more remarkable increases in recent years. Starting from 2017, only 1 paper was reviewed, with an increment to 2 in 2018. A major leap occurred in 2019 with 8 papers showing an increased interest in the topic. This trend continued, with 6 papers analyzed in 2020 and 7 in both 2021 and 2022, indicating steady research interest. The number increased sharply in 2023 to 11 papers analyzed, and in 2024, a surprising 38 papers, suggesting a huge rise in scholarly and research interest on the subject. This trend reveals the increasing importance and sense of urgency in academic and professional circles. Subsequently, figure 6 shows the pie chart for a total number of papers reviewed based on the corresponding year.

PERFORMANCE ANALYSIS:

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

Several authors reported significant improvements in performance metrics. Rio-Torto et al. (2022) achieved F1 scores of 0.565 and 0.601 under different scenarios, showing the power of their hybrid inspection methodology. Paprocka and Krenczyk (2023) reported that GWO was superior to simulated annealing and greedy heuristics in MMA line sequence optimization. Cheng et al. (2024) &Tiacci (2024) presented results that their algorithms were better than seven other competing multi-objective strategies. Zhang et al. (2019, 2024) proved the efficiency of their hybrid genetic and co-evolutionary algorithms for balancing and sequencing. Peng et al. (2023) demonstrated that CP models are better than MILP. Munoz et al. (2019) and Dalle Mura and Dini (2023) focused on qualitative benefits, such as better ergonomics and worker productivity, underlining the various features of different methods.

The studied approaches had performance gains to a significant degree. Varyani et al. (2024) report that their GA outperformed state-of-the-art methods both in terms of quality of solutions and execution time. Hashemi-Petroodi et al. (2023) exploited an MDP and LP strategy to effectively cope with dynamic task assignments; on the other hand, Ebrahimi et al. (2023) verified the feasibility of their proposed hyper-heuristic and simulation-optimization framework in real applications. Huchzermeier and Mönch (2023) presented the results of reduction of labor cost and idle time with the use of Mixed-Integer Linear Programming. Mezghani et al. (2024) reported cost minimization via the robust optimization approach they propose, and Fani et al. (2024) showed evolutionary algorithm-based dynamic decisions. Anh and Van Hop (2024) managed to win at fewer workstations, whereas Elyasi et al. (2024) showcased increased resilience of lines with their use of MDP-based assignments. Edouard et al. (2023) demonstrated the successful reuse of components with rule-based algorithms, highlighting the practice for the framework.

The outcomes of these studies varied based on the strategy applied. Shao et al. (2024) showed that their scheduling approach is efficient and effective, but the high computational cost of heuristics caused problems. Akpinar (2024) successfully balanced sequence-dependent settings, but the computational requirement increased with larger datasets. Sun (2024) showed that virtual resequencing is better than physical resequencing, but this is only applicable to car assembly cases. Zhou & Zhao (2024) outperform benchmark algorithms using solution quality and convergence time, although the lack of real data limits their deployment. Alhomaidi and Askin (2024) showed efficient line-balancing approaches, but their complexity while responding to variable production situations limited its effectiveness. Huang et al. (2024) showed better performance regarding cycle time and energy consumptions by outperforming previous algorithms, but its scalability issue remains as an open point. Liu et al. (2024) improved quality prediction accuracy for spindle assembly, but their model was restricted in generalizability. Li and Wang (2024) reduced cycle time and reduced carbon emissions in the assembly lines, but they did not study real-time applications. Fathi et al. (2024) presented trends and gaps in collaborative assembly line research, but their results were not supported by numbers. Katsigiannis et al. (2024) achieved some notable lead-time and work-inprogress reductions; however, their validity towards real-world scenarios is in doubt.

The findings of these studies are very interesting. Feng et al. (2024) demonstrated that their GA approach improved total assembly costs to 18%. Claeys et al. used an automatic evaluation method based on fuzzy logic models; it reached 64% of low-quality instructions. Kulaç and Kiraz worked on increasing the line efficiency with a fuzzy logic approach to the 10-11 percentage range, as well as balancing ergonomic risks to reach the 12-25 percentages range. Yilmazlar et al. (2024) applied a biobjective stochastic program using a hybrid technique to lessen the work overload and the wait times for failed vehicles by 20%. Jung et al. (2024) showed an increase of production by 34.8% through the use of a genetic algorithm-based optimization simulator. Using their PSBFO algorithm, Mutale et al. (2024) improved the quality index to 0.93, reduced assembly time by 17%, and cost reduction by 10%. Ramli et al. (2024) employed the replaced Tiki-Taka Algorithm to boost line efficiency and reduce energy consumption. Hou and Zhang (2024) utilized a multi-objective whale optimization

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

algorithm along with neural network scheduling rules to improve the manufacturing efficiency and resilience of workshops, though the strategy was applicable only for the assembly workshops.

DATABASE ANALYSIS :

The studied research demonstrated their proposed methodologies on a variety of datasets. Rio-Torto et al. (2022) demonstrated a hybrid quality inspection system with automatic detection and human input using both simulated and real factory floor data. Munoz et al. (2019) used data from the Mercedes-Benz factory to enhance the ergonomics of quality control inspections with a mixed reality-based user interface. Zhang et al. (2019) and Zhang et al. (2024) utilised benchmark instances and simulated data to improve the production efficiency of an assembly line while cutting energy expenses. Paprocka and Krenczyk (2023) employed real mixed-vehicle assembly line data for assessing the suitability of GWO for sequencing. Cheng et al. (2024) and Tiacci (2024) tested their multi-objective optimization algorithms on benchmark and simulated datasets, discussing problems of job shop scheduling and assembly line balancing. Finally, Dalle Mura and Dini (2023) analyzed industrial case study data about job rotation and collaborative robots, whereas Peng et al. (2023)

The studies employed several datasets to validate their suggested strategies for optimizing MMA lines. Varyani et al. (2024) used computational experiments to demonstrate the effectiveness of their Genetic Algorithm. Hashemi-Petroodi et al. (2023) utilized Markov Decision Process (MDP) and Linear Programming (LP) for benchmarking and instance generation, whereas Ebrahimi et al. (2023) worked on real-world data from Fiat Powertrain Technologies. To analyze variable rate launching, Huchzermeier and Mönch used a numerical industrial benchmark (2023). Mezghani et al. in 2024 and Anh & Van Hop in 2024 conducted computational experiments, the latter combining RFO with metaheuristics. Fani et al. (2024) used a dataset from a leather goods company, whereas Edouard et al. (2023) applied a helicopter industry case study. Elyasi et al. (2024) have used Stellantis's data to examine workforce allocation with uncertain process times.

Shao et al. (2024) utilized the synthetic datasets that merged both manufacturing and assembly stages for resolving the MMA line scheduling issues. Akpinar (2024) applied the standard illustrations among the literatures to optimize the task sequencing in hierarchical assembly lines with sequence-dependent setups. Sun (2024) applied automobile assembly data for the study of resequencing approaches and their efficiencies in reducing sequencing rule breaches during the assembly process. Zhou and Zhao (2024) utilized artificial problem cases for enhancing the material feed effectiveness in MMA lines. Alhomaidi and Askin (2024) applied numerous structure sets from the literature to generate entire models of assembly line balancing, that solved different types of manufacturing problems. Huang et al. (2024) employed benchmark cases for optimizing the robotic two-sided assembly lines. Liu et al. (2024) proposed a quality change prediction method for spindle inspection using 925 samples of a spindle inspection dataset. Li and Wang (2024) investigated ten benchmark datasets for a human-robot collaboration (HRC) manufacturing line, emphasizing cycle time and carbon emissions. Fathi et al. (2024) performed an in-depth literature review on collaborative assembly lines. Katsigiannis et al. (2024) used data from LEGO's vehicle assembly line to simulate the transitions in lean manufacturing.

Feng et al. (2024) utilized I-GA, using a three-layer chromosome initialization to analyze mathematical case studies and examples in enterprise engineering. Claeys et al. (2024) performed assembly tests incorporating deliberately incorrect instructions in efforts to enhance the quality of assembly instructions using automated reviews based on Behavioural Observation Theory. Kulaç and Kiraz (2024) applied a fuzzy logic model with ergonomic risk assessment to a wire harness plant for line efficiency and ergonomic risk balancing. Yilmazlar et al. (2024) used a bi-objective two-stage stochastic program and a hybrid approach for the integration of failed vehicle reinsertion processes into mixed-model sequencing and carried out numerical tests as well as dynamic reinsertion

ISSN: 0970-2555

Volume : 54, Issue 1, No.1, January : 2025

simulations. Zacharia et al. (2024) designed a metaheuristic approach for collaborative robot assembly to improve assembly line balancing using collaborative robots. Jung et al. (2024) maximized productivity using data from a garment production line and an optimisation simulator based on a genetic algorithm. Zhang et al. (2024) employed a hybrid model that integrates mechanism and time-series forecasting models to describe human operators in a real-world washing machine assembly line, thereby improving the efficiency of the system. Mutale et al. (2024) optimized assembly time, cost, and quality using the PSBFO method on simulations based on wind turbine gearbox data. Ramli et al. (2024) applied the Tiki-Taka Algorithm to balance output of an assembly line with energy consumption in an industrial case study. Hou and Zhang (2024) analyzed data of an assembly workshop by using a multi-objective whale optimization approach along with scheduling algorithms and neural networks.

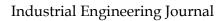
RESEARCH GAP:

Despite significant progress in vision-based deep learning for quality assurance, state-of-the-art models have failed to adapt to the dynamic and diverse character of MMA lines. These variations in illumination conditions, product orientations, and the diversity of components provide obstacles thatmost deep learning algorithms can't generalize to. Current systems rely heavily on pre-defined information and fail to account for real-time environmental unpredictability, limiting their applicability in industrial environments. Another gap in the research is that there is a lack of effective multi-model frameworks that can handle simultaneous defect detection across many product lines. Another critical requirement is the incorporation of real-time feedback mechanisms. Although several studies have reported very high accuracy in fault detection under laboratory conditions, few have explored models that could offer immediate remedial feedback during production. In the absence of such systems, faults cannot be averted in advance and lead to inefficiencies and extended periods of downtime. In addition, most of the current methods favor accuracy over latency, making them unsuitable for high-speed assembly lines that require quick decision-making. Vision-based quality assurance system scalability for deep learning remains an unexplored avenue. Most proposed models would require enormous computational resources for processing and fail to scale across other manufacturing configurations. Another severe issue relates to the model's explainability; in most DL algorithms, the models themselves are just black boxes, rendering only a little understanding of its decision-making procedure. Therefore, questions regarding trust and responsibility would arise in these industrial areas. To address these problems and make such a system available for widespread deployment on real-world assembly lines, research in interpretable DL frameworks and lightweight, scalable systems is needed.

CONCLUSION :

Vision-based DL has become a solution for quality assurance in MMA lines, enabling the detection of faults at a higher accuracy and efficiency compared to the earlier methods used. It is capable of handling complex visual data with high adaptability to a wide range of product models. Still, there remain problems like low adaptability to dynamic contexts, poor availability of real-time feedback systems, scalability, and explainability. Closure of those gaps requires the development of strong, interpretable, and lightweight models that can handle real-time execution on high-speed assembly lines. There should be a focus for future research on integrating modern architectures like transformers, multi-task learning frameworks, as well as hybrid techniques towards better performance and adaptability. Moreover, the bridge between academia and industry is what may speed up their implementation. By solving these problems, vision-based deep learning has the potential to become a vital tool for modern industrial quality assurance that is efficient, reliable, and scalable. Apart from these, this systematic literature review has been reviewed based on 80 existing works of literature from the year 2017-2024 respectively.

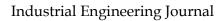
ISSN: 0970-2555


Volume : 54, Issue 1, No.1, January : 2025

FUTURE SCOPE:

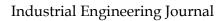
The future of quality assurance in vision-based deep learning for MMA lines is to realize adaptive real-time systems that effortlessly handle dynamic production situations. Advanced architectures, including transformers and lightweight models, should become integral research priorities to boost scalability and efficiency. Industrial applications will require explainable AI frameworks to build trust and transparency. Further, bringing together deep learning with future concepts like edge computing and Industry 4.0 will introduce decentralized real-time defect recognition. All these advancements are capable enough to change the manufacturing world regarding quality assurance as better dependability, efficiency, and scalability will be addressed in it.

REFERENCES:


- 1. Piero, N., & Schmitt, M. (2017). Virtual commissioning of camera-based quality assurance systems for mixed-model assembly lines. *Procedia Manufacturing*, *11*, 914-921.
- **2.** Bauters, K. (2019). Automated video-based analysis of human operators in mixed-model assembly workstations (Doctoral dissertation, Ghent University).
- **3.** Zamora-Hernandez, M. A., Castro-Vargas, J. A., Azorin-Lopez, J., & Garcia-Rodriguez, J. (2021). Deep learning-based visual control assistant for assembly in Industry 4.0. *Computers in Industry*, 131, 103485.
- **4.** Riedel, A., Gerlach, J., Dietsch, M., Herbst, S., Engelmann, F., Brehm, N., & Pfeifroth, T. (2021). A deep learning-based worker assistance system for error prevention: A case study in a real-world manual assembly. *Advances in Production Engineering & Management*, *16*(4), 393-404.
- 5. Mokuwe, M. W., Goorun, Y., & Crafford, G. J. (2022). Assembly line quality assurance through hand tracking and object detection.
- **6.** de Souza Silva, C. A., & Paladini, E. P. (2024). Smart Machine Vision System to Improve Decision-Maker on the Assembly Line.
- 7. Zhou, B., & Wen, M. (2024). A multi-objective artificial electric field algorithm with reinforcement learning for milk-run assembly line feeding and scheduling problem. *Computers & Industrial Engineering*, 190, 110080.
- **8.** Ugo-Njoku, C. V., & Opara, U. J. (2024). Assembly Line Balancing using the Valentine and Aseem Heuristic Algorithm (VAHA). *International Journal*, *11*(1), 594-606.
- **9.** Sikora, C. G. S., & Tiacci, L. (2024). Incorporating car-sequencing rules in the planning of mixed-model assembly lines. *International Journal of Production Research*, 1-19.
- **10.** Alfaiz, F. S., Kim, D. S., & Vergara, H. A. (2024). Assessing process time estimation for job sequencing in moving mixed-model assembly lines. *International Journal of Industrial and Systems Engineering*, *46*(2), 215-237.
- 11. Jiahua, Z., Aiping, L., & Xuemei, L. (2019, May). An Integrated Method for the Un-Paced Buffered Mixed-Model Assembly Line Balancing and Sequencing. In 2019 International Conference on Advances in Construction Machinery and Vehicle Engineering (ICACMVE) (pp. 87-91). IEEE.
- 12. Belkharroubi, L., & Yahyaoui, K. (2022, March). Maximization of the assembly line efficiency using an approach based on Genetic Algorithm. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-6). IEEE.
- **13.** Zhang, X., Liu, Y., & Zhou, X. (2018, August). Research on sequencing of mixed-model assembly line and logistics system modeling in automobile composite assembly distribution center. In 2018 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 72-77). IEEE.

ISSN: 0970-2555

- 14. Mohseni-Darabi, S., Mahmoodjanloo, M., & Baboli, A. (2021, April). Sequencing Problem in a Paced Mixed-Model Assembly Line with Multiple Flexible Operators. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 290-295). IEEE.
- 15. Yuwei, L., Jian'e, C., Feng, Z., & Shijing, Z. (2020, April). A Research of Multi-Constrained Two-sided Mixed-model Assembly Line Balancing Problem Based on Genetic Algorithm. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 377-381). IEEE.
- 16. Tong, X., Sun, Z., & Sun, L. (2019, April). Research on Digital Intelligent Scheduling of Urban Rail Vehicle Mixed-model Assembly Line. In 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE) (pp. 200-204). IEEE.
- 17. Nazari, A., Thiruvady, D., Elmi, A., & Schneider, J. G. (2020, December). Simulated Annealing for Single and Mixed Model Assembly Line Balancing with Setups. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 2762-2769). IEEE.
- 18. Wang, H., Sheng, B., Lu, Q., Luo, R., & Fu, G. (2020). A multi-objective cuckoo search algorithm based on the record matrix for a mixed-model assembly line car-sequencing problem. *IEEE Access*, *8*, 76453-76470.
- 19. Huo, J., & Lee, C. K. (2023). A Benders' Decomposition Algorithm for Balancing and Sequencing of the Mixed-Model Multi-Manned Assembly Lines. *IEEE Transactions on Systems, Man, and Cybernetics: Systems.*
- **20.** Zhang, Z., Tang, Q., Chica, M., & Li, Z. (2023). Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand. *IEEE Transactions on Cybernetics*.
- **21.** Nourmohammadi, A., Ng, A. H., Fathi, M., Vollebregt, J., & Hanson, L. (2023). Multiobjective optimization of mixed-model assembly lines incorporating musculoskeletal risk assessment using digital human modeling. *CIRP Journal of Manufacturing Science and Technology*, 47, 71-85.
- 22. Capela, S., Silva, R., Khanal, S. R., Campaniço, A. T., Barroso, J., & Filipe, V. (2021). Engine labels detection for vehicle quality verification in the assembly line: a machine vision approach. In CONTROL 2020: Proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, July 1-3, 2020, Bragança, Portugal (pp. 740-751). Springer International Publishing.
- 23. Mazzetto, M., Southier, L. F., Teixeira, M., & Casanova, D. (2019, September). Automatic classification of multiple objects in an automotive assembly line. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 363-369). IEEE.
- 24. Karaklasa, N., Papavasileioua, A., & Makrisa, S. (2024). Empowering Precision-Guided Automotive Assembly Operations: A Flexible Robot Vision Framework. *Procedia CIRP*, *127*, 50-55.
- **25.** Busogi, M., Song, D., Kang, S. H., & Kim, N. (2019). Sequence based optimization of manufacturing complexity in a mixed model assembly line. *IEEE Access*, 7, 22096-22106.
- 26. Li, Y., Liu, D., & Kucukkoc, I. (2023). Mixed-model assembly line balancing problem considering learning effect and uncertain demand. *Journal of Computational and Applied Mathematics*, 422, 114823.
- **27.** Addy, R. (2020). Cost of complexity: mitigating transition complexity in mixed-model assembly lines (Doctoral dissertation, Massachusetts Institute of Technology).
- **28.** Belkharroubi, L., & Yahyaoui, K. (2022). Solving the mixed-model assembly line balancing problem type-I using a Hybrid Reactive GRASP. *Production & Manufacturing Research*, 10(1), 108-131.


ISSN: 0970-2555

- **29.** Mönch, T., Huchzermeier, A., & Bebersdorf, P. (2021). Variable takt times in mixed-model assembly line balancing with random customisation. *International Journal of Production Research*, *59*(15), 4670-4689.
- **30.** Meng, K., Tang, Q., Cheng, L., & Zhang, Z. (2022). Mixed-model assembly line balancing problem considering preventive maintenance scenarios: MILP model and cooperative co-evolutionary algorithm. *Applied Soft Computing*, *127*, 109341.
- **31.** Stauder, M., & Kühl, N. (2022). AI for in-line vehicle sequence controlling: development and evaluation of an adaptive machine learning artifact to predict sequence deviations in a mixed-model production line. *Flexible Services and Manufacturing Journal*, 1-39.
- **32.** Yao, Y., Zhang, J., Jiang, S., Li, Y., & Long, T. (2024). A novel completion status prediction for the aircraft mixed-model assembly lines: A study in dynamic Bayesian networks. *Advanced Engineering Informatics*, *62*, 102701.
- **33.** Hoffman, C. (2024). *Modeling System Efficiency in Mixed-Model Assembly Lines* (Doctoral dissertation, Massachusetts Institute of Technology).
- 34. Alhomaidhi, E. (2024). Enhancing efficiency and adaptability in mixed model line balancing through the fusion of learning effects and worker prerequisites. *International Journal of Industrial Engineering Computations*, 15(2), 541-552.
- **35.** Zhou, B., & Zhao, Z. (2022). A hybrid fuzzy-neural-based dynamic scheduling method for part feeding of mixed-model assembly lines. *Computers & Industrial Engineering*, *163*, 107794.
- **36.** Qattawi, A., & Chalil Madathil, S. (2019). Assembly line design using a hybrid approach of lean manufacturing and balancing models. *Production & Manufacturing Research*, 7(1), 125-142.
- **37.** Biele, A., & Mönch, L. (2018). Hybrid approaches to optimize mixed-model assembly lines in low-volume manufacturing. *Journal of Heuristics*, *24*(1), 49-81.
- **38.** Mazzetto, M., Teixeira, M., Rodrigues, É. O., & Casanova, D. (2020). Deep learning models for visual inspection on automotive assembling line. *arXiv preprint arXiv:2007.01857*.
- **39.** Lv, Y., Tan, Y., Zhong, R., Zhang, P., Wang, J., & Zhang, J. (2022). Deep reinforcement learning-based balancing and sequencing approach for mixed model assembly lines. *IET Collaborative Intelligent Manufacturing*, *4*(3), 181-193.
- **40.** Zhou, B., & Zhu, Z. (2021). A dynamic scheduling mechanism of part feeding for mixedmodel assembly lines based on the modified neural network and knowledge base. *Soft Computing*, 25(1), 291-319.
- **41.** Rio-Torto, I., Campaniço, A. T., Pinho, P., Filipe, V., & Teixeira, L. F. (2022). Hybrid Quality Inspection for the Automotive Industry: Replacing the Paper-Based Conformity List through Semi-Supervised Object Detection and Simulated Data. *Applied Sciences*, *12*(11), 5687.
- **42.** Munoz, A., Mahiques, X., Solanes, J. E., Marti, A., Gracia, L., & Tornero, J. (2019). Mixed reality-based user interface for quality control inspection of car body surfaces. *Journal of Manufacturing Systems*, 53, 75-92.
- **43.** Zhang, Z., Chica, M., Tang, Q., Li, Z., & Zhang, L. (2024). A multi-objective coevolutionary algorithm for energy and cost-oriented mixed-model assembly line balancing with multi-skilled workers. *Expert Systems with Applications*, 236, 121221.
- 44. Zhang, J. H., Li, A. P., & Liu, X. M. (2019). Hybrid genetic algorithm for a type-II robust mixed-model assembly line balancing problem with interval task times. *Advances in Manufacturing*, 7, 117-132.
- **45.** Paprocka, I., & Krenczyk, D. (2023). On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem. *Energies*, *16*(20), 7091.

ISSN: 0970-2555

- **46.** Cheng, L., Tang, Q., & Zhang, L. (2024). Production costs and total completion time minimization for three-stage mixed-model assembly job shop scheduling with lot streaming and batch transfer. *Engineering Applications of Artificial Intelligence*, *130*, 107729.
- **47.** Zhang, W., Hou, L., & Jiao, R. J. (2021). Dynamic takt time decisions for paced assembly lines balancing and sequencing considering highly mixed-model production: An improved artificial bee colony optimization approach. *Computers & Industrial Engineering*, *161*, 107616.
- **48.** Dalle Mura, M., & Dini, G. (2023). Improving ergonomics in mixed-model assembly lines balancing noise exposure and energy expenditure. *CIRP Journal of Manufacturing Science and Technology*, 40, 44-52.
- **49.** Tiacci, L. (2024). Combining balancing, sequencing and buffer allocation decisions to improve the efficiency of mixed-model asynchronous assembly lines. *Computers & Industrial Engineering*, 194, 110357.
- **50.** Peng, Y., Zhang, L., Xia, B., & Han, Y. (2023). Research on balancing and sequencing problems of flexible mixed model assembly lines with alternative precedence relations. *International Journal of Production Research*, *61*(24), 8451-8467.
- **51.** Varyani, A., Salehi, M., & Heydari Gharahcheshmeh, M. (2024). Optimizing Mixed-Model Synchronous Assembly Lines with Bipartite Sequence-Dependent Setup Times in Advanced Manufacturing. *Energies*, 17(12), 2865.
- **52.** Hashemi-Petroodi, S. E., Thevenin, S., Kovalev, S., & Dolgui, A. (2023). Markov decision process for multi-manned mixed-model assembly lines with walking workers. *International Journal of Production Economics*, 255, 108661.
- **53.** Ebrahimi, M., Mahmoodjanloo, M., Einabadi, B., Baboli, A., & Rother, E. (2023). A mixedmodel assembly line sequencing problem with parallel stations and walking workers: a case study in the automotive industry. *International Journal of Production Research*, *61*(3), 993-1012.
- 54. Huchzermeier, A., & Mönch, T. (2023). Mixed-model assembly lines with variable takt and open stations. *Production and Operations Management*, 32(3), 704-722.
- **55.** Mezghani, Y., Hashemi-Petroodi, S. E., Thevenin, S., & Dolgui, A. (2024). Robust design and reconfiguration planning of mixed-model assembly lines under uncertain evolutions of product family. *International Journal of Production Research*, 62(13), 4957-4979.
- **56.** Edouard, M. B., Camille, J., Vincent, B., & Améziane, A. (2023). Design for mixed model final assembly line (DfMMFAL): a new tool for assembly interface identification based on assembly process planning. *Journal of Engineering, Design and Technology*.
- **57.** Fani, V., Rossi, M., & Bandinelli, R. Managing Uncertainty in Production Sequencing: A Hybrid Framework for Mixed-Model Assembly Lines.
- **58.** Anh, T. T. M., & Van Hop, N. (2024). Matheuristics for mixed-model assembly line balancing problem with fuzzy stochastic processing time. *Applied Soft Computing*, *160*, 111694.
- **59.** Elyasi, M., Thevenin, S., Cerqueus, A., & Dolgui, A. Markov Decision Process for Mixed-Model Assembly Line Design Under Process Time Uncertainty. *Available at SSRN 4850395*.
- **60.** Shao, W., Shao, Z., & Pi, D. (2024). A parallel deep adaptive large neighbourhood search algorithm for distributed heterogeneous hybrid flow shops with mixed-model assembly scheduling. *Engineering Optimization*, 1-28.
- **61.** Akpinar, Ş. (2024). An ant colony optimization based hyper-heuristic for the mixed model assembly line balancing problem with setups. *Soft Computing*, 1-16.
- 62. Sun, H. (2024). Integrating virtual resequencing with car resequencing via selectivity banks for mixed-model assembly lines. *Computers & Industrial Engineering*, 189, 109990.

ISSN: 0970-2555

- **63.** Zhou, B., & Zhao, L. (2024). A hyper-heuristic algorithm-based automatic monorail shuttle system for material feeding optimization in mixed-model assembly lines. *Soft Computing*, *28*(4), 3083-3105.
- 64. Alhomaidi, E., & Askin, R. G. (2024). Exact and approximation heuristic of mixed model assembly line balancing with parallel lines and task-dependent tooling consideration. *Computers & Industrial Engineering*, 110265.
- **65.** Huang, Y., Sheng, B., Fu, G., Luo, R., & Lu, Y. (2024). Multi-objective simulated annealing algorithm for robotic mixed-model two-sided assembly line balancing with setup times and multiple constraints. *Applied Soft Computing*, *156*, 111507.
- 66. Liu, M. S., Kuo, P. H., & Chen, S. L. (2024). Prediction of machine tool spindle assembly quality variation based on the stacking ensemble model. *The International Journal of Advanced Manufacturing Technology*, 1-18.
- 67. Li, Y. C., & Wang, X. (2024). Human-robot collaboration assembly line balancing considering cross-station tasks and the carbon emissions. Advances in Production Engineering & Management, 19(1), 31-45.
- **68.** Fathi, M., Sepehri, A., Ghobakhloo, M., Iranmanesh, M., & Tseng, M. L. (2024). Balancing assembly lines with industrial and collaborative robots: Current trends and future research directions. *Computers & industrial engineering*, *193*, 110254.
- **69.** Katsigiannis, M., Pantelidakis, M., & Mykoniatis, K. (2024). Assessing the transition from mass production to lean manufacturing using a hybrid simulation model of a LEGO® automotive assembly line. *International Journal Of Lean Six Sigma*, *15*(2), 220-246.
- **70.** Timmerman, T. H. (2024). *Optimizing assembly line fill rate by minimizing the losses due to discrepancy between truck and workstation lengths* (Master's thesis, University of Twente).
- **71.** Feng, L., Wang, Y., Fang, X., Yu, H., & Zhang, S. (2024). Two-sided resource-constrained assembly line balancing problem: a new mathematical model and an improved genetic algorithm. *Swarm and Evolutionary Computation*, *90*, 101662.
- 72. Claeys, A., Hoedt, S., Aghezzaf, E. H., & Cottyn, J. (2024). Assessing assembly instructions quality using operator behavior. *The International Journal of Advanced Manufacturing Technology*, 1-18.
- **73.** Kulaç, S., & Kiraz, A. (2024). An integrated ergonomic risk assessment framework based on fuzzy logic and IVSF-AHP for optimising ergonomic risks in a mixed-model assembly line. *Ergonomics*, 1-21.
- 74. Yilmazlar, I. O., Kurz, M. E., & Rahimian, H. (2024). Mixed-model sequencing with reinsertion of failed vehicles: a case study for automobile industry. *International Journal of Production Research*, 1-20.
- **75.** Zacharia, P. T., Xidias, E. K., & Nearchou, A. C. (2024). The fuzzy human-robot collaboration assembly line balancing problem. *Computers & Industrial Engineering*, 187, 109774.
- **76.** Jung, W. K., Song, Y., & Suh, E. S. (2024). Garment production line optimization using production information based on real-time power monitoring data. *Systems Engineering*, *27*(2), 338-353.
- 77. Zhang, X., Yang, Y., Zhang, X., Hu, Y., Wu, H., Li, M., ... & Wu, B. (2024). A multi-level digital twin construction method of assembly line based on hybrid worker digital twin models. *Advanced Engineering Informatics*, *62*, 102597.
- **78.** Mutale, S., Wang, Y., & Yasir, J. (2024). Enhanced efficiency and quality in wind turbine gearbox assembly: a new parallel assembly sequence planning (PASP) model. *International Journal of Sustainable Engineering*, *17*(1), 1048-1065.

ISSN: 0970-2555

- **79.** Ramli, A. N., & Ab Rashid, M. F. F. (2024). Assembly Line Balancing with Energy Consumption Optimization Using Substituted Tiki-Taka Algorithm. *Process Integration and Optimization for Sustainability*, 1-15.
- **80.** Hou, W., & Zhang, S. (2024). Assembly line balancing and optimal scheduling for flexible manufacturing workshop. *Journal of Mechanical Science and Technology*, 1-16.