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ABSTRACT:  

This paper presents an enhanced epsilon constraint-based Non-Dominated Sorting Genetic Algorithm 

II (EAEC-NSGAII) designed to tackle multi-objective optimal power flow (MOOPF) issues in 

electrical power networks. The proposed EAEC-NSGAII method integrates essential principles of the 

NSGA-II algorithm, incorporating novel features including improved epsilon constraint handling, 

nondominated sorting, crowding distance, and elite search strategies. The enhancements facilitate the 

generation of diverse nondominated solutions within a single iteration, while maintaining population 

diversity and ensuring effective constraint management. This approach employs a spread indicator to 

maintain a repository of the most recent nondominated solutions and utilises a fuzzy decision-making 

strategy to select a suitable solution from the nondominated set.  The EAEC-NSGAII method's efficacy 

and scalability are evidenced by experiments conducted on the IEEE 30-bus system, which 

incorporates bi-objective and tri-objective optimisation multi-criteria framework. A comparative 

analysis with conventional NSGA-II and other state-of-the-art algorithms demonstrates that EAEC-

NSGAII exhibits superior or comparable performance with reference to Augmented Epsilon Constraint 

NSGAII in addressing MOOPF problems, especially in managing constraints and attaining diverse, 

optimal solutions. The simulation results confirm the robustness and effectiveness of the proposed 

method in optimising cost, loss, and economic factors within the framework of techno-economic 

sustainability criteria. The EAEC-NSGAII algorithm is introduced as an effective and robust method 

for addressing complex multi-objective optimisation challenges in power systems. 
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1. Introduction 

The Optimal Power Flow (OPF) problem, first presented by Dommel and Tinney in the 1960s, is a 

critical element in the operation and control of power systems.[1] OPF aims to identify the optimal 

values for control variables to minimise a designated objective function, while complying with 

operational constraints that encompass both equality and inequality restrictions.[2] Initially, 

conventional optimisation methods, including linear programming (LP) and Newton's method, were 

utilised to address optimal power flow (OPF). [3]These methods encountered considerable difficulties 

in addressing nonlinear objective functions and constraints, which restricted their applicability to more 

complex systems. Heuristic and metaheuristic algorithms have emerged as effective alternatives to 

address the limitations of traditional methods, particularly in the context of multi-objective 

optimisation problems (MOOP). Techniques including Differential Evolution (DE)[5], Genetic 

Algorithm (GA)[6], Particle Swarm Optimisation (PSO)[7], Artificial Bee Colony (ABC)[8], 

Harmony Search (HS)[11], and Gravitational Search Algorithm (GSA)[12] demonstrate significant 

potential. These algorithms are effective in navigating extensive and intricate search spaces and can 

produce a varied array of Pareto-optimal solutions within a single computational execution, rendering 

them appropriate for multi-objective optimisation problems. 
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The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) has become prominent among 

evolutionary approaches due to its efficient non-dominated sorting process and its effectiveness in 

addressing multi-objective optimisation problems.[6] NSGA-II utilises crowding distance to preserve 

solution diversity and incorporates an elitist selection mechanism to facilitate convergence to optimal 

solutions. NSGA-II, while successful, faces limitations in tackling the specific challenges associated 

with Multi-Objective Optimal Power Flow (MOOPF), including the resolution of conflicts among 

objectives, the maintenance of solution diversity, and the prevention of premature convergence. This 

research introduces an enhanced algorithm, the Improved Non-Dominated Sorting Genetic Algorithm 

II (EAEC-NSGAII), aimed at effectively addressing MOOPF problems. This research presents several 

key innovations and contributions, including: 

• Augmented Constraint Handling: EAEC-NSGAII presents an innovative epsilon constraint-

handling mechanism that markedly improves solution accuracy and diversity. 

• Efficient Sorting and Diversity Maintenance: The algorithm employs non-dominated sorting and 

crowding distance principles to effectively produce diverse sets of non-dominated solutions 

within a single iteration. 

• Fuzzy Decision-Making: A fuzzy decision-making mechanism is utilised to determine the 

optimal compromise solution from the Pareto-optimal set, facilitating a balanced trade-off among 

competing objectives. 

• An external archive is utilised to store and update the latest non-dominated solutions, thereby 

enhancing solution management efficiency. 

• Innovative Trade-off Resolution: The newly proposed improved-augmented epsilon-constrained 

(EAEC) method is utilised to effectively and efficiently address complex trade-offs, 

demonstrating superior performance compared to traditional techniques like the weighted-sum 

method and standard NSGA-II. 

• Enhanced constraint handling protocol: This strategy exhibits a superior ability to identify non-

dominated solutions and acquire Pareto-efficient solution sets, effectively achieving balanced 

trade-offs among three primary objectives.  

The proposed EAEC-NSGAII algorithm's efficacy is assessed utilising the IEEE 30-bus test system 

within bi-objective and tri-objective optimisation frameworks. Comparative analyses with advanced 

methods, such as NSGA-II and MODA, demonstrate the improved efficiency, scalability, and 

robustness of the proposed approach in addressing MOOPF challenges. This research advances multi-

objective optimisation in power systems and highlights the practical relevance and applicability of the 

proposed EAEC-NSGAII method to complex real-world scenarios. The contributions establish a 

robust basis for tackling emerging challenges in contemporary power system optimisation. 

2. Multiobjective optimal power flow framework: The optimal power flow (OPF) problem can be 

mathematically expressed as follows [12]: 

 
In this context, f represents an objective, while x and u denote state and independent variables, 

respectively. Let g(x,u) and h(x,u) represent the equality and inequality constraints, respectively. This 

study includes several objective functions, with the formulation and corresponding constraints detailed 

below[9]: 

Optimization of fuel cost (FC): The primary objective function in Optimal Power Flow (OPF) 

generally focusses on fuel cost, as expressed below[9]. 
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Let f1 represent the minimisation of fuel cost, where am, bm, and cm denote the cost coefficients of the 

mth generator, and Pgm signifies the real power of the mth generator. 

Minimization of emission profile: The total tonnes per hour of atmospheric pollutants emitted, 

including sulphur and nitrogen oxides, from fossil fuel-fired units may be expressed as follows[9]: 

 
where f2 indicates emission released from the thermal power plant; αm,βm,λm,μm,ξm denotes coefficients 

of mth the unit, and these values depend on factors such as boiler type, operational parameters, and the 

type of fuel being utilized. 

Minimization of active power loss (APL):The APL across all transmission lines can be mathematically 

expressed as the cumulative active power loss for each line, as detailed below: 

 
Where f3 symbolizes minimization of APL; Gm represents the conductance of mth the bus; Vn,Vo 

signifies voltages of nth &oth buses individually. 

Constraints: The multiobjective optimisation optimal power flow (MOOPF) problem is limited by 

numerous system requirements, including all the constraints listed below: 

Equality constraints 

The equality constraints in OPF represent the essential physical principles that regulate the power 

system. These constraints are expressed through the subsequent equations: 

 

 
where Pgk,Qgk,Pdk,Qdk signifies real and reactive power generations and loads at kth bus respectively; 

Gmn&Bmn indicates the conductance and susceptance among mth&nth buses individually. 

Inequality constraints:The inequality constraints define the allowable range for variables, ensuring 

they stay within feasible limits as specified below; 

 
where, Pmin

gm,Pmax
gm,Vmin

gm,Vmax
gm,Qmin

gm&Qmax
gm signifies low and high values of real power, 

voltages, and reactive power limits of mth generator respectively, Pgm,Vgm&Qgm symbolizes real power, 

voltage, and reactive power of mth generator respectively. 

3. Non-Dominated Sorting Genetic Algorithm-II 

It was initially proposed by Deb et al. [1] in the year 2000 in `International Conference on Parallel 

Problem Solving from Nature.' Single-objective optimisation algorithms can be readily compared 

through objective values or computational durations. In multi-objective optimisation algorithms, if the 

objective values of one algorithm surpass those of another across all objectives, a comparison can be 

made based on these objective values. Nonetheless, comparing the non-dominated sets of near-optimal 
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solutions derived from multi-objective optimisation algorithms proves challenging. The Non-

Dominated Sorting Genetic Algorithm (NSGA-II) is an effective decision space exploration tool 

derived from Genetic Algorithms (GA) for addressing Multi-objective Optimisation Problems 

(MOOPs). NSGA-II is an enhanced iteration of the non-dominated sorting genetic algorithm (NSGA-

II) [21], which has faced criticism from researchers for its shortcomings, including the lack of elitism, 

the necessity to establish a sharing parameter for diversity maintenance, and its considerable 

computational complexity. Conversely, the NSGA-II design incorporates elitism and does not require 

a sharing parameter. It employs the crowding distance operator for the purpose of diversity 

preservation.  

3.1. Basic Structure of NSGA-II:The NSGA-II philosophy is founded on four principal tenets: Non-

Dominated Sorting, Elite Preserving Operator, Crowding Distance, and Selection Operator. The 

following subsections provide a concise description of these topics. 

3.2. Non-dominated sorting: The population members are organised according to the principle of 

Pareto dominance. The non-dominated sorting process commences by assigning the initial rank to the 

non-dominated individuals within the original population. The highest-ranked members are 

subsequently positioned at the forefront and eliminated from the original population. Subsequently, 

the non-dominating sorting procedure is executed on the remaining members of the population. The 

non-dominated individuals of the remaining population are assigned the second rank and positioned in 

the second front. A multi-objective problem encompasses multiple objective functions, rendering it 

impossible to rank individuals in a population solely based on their objective function values. To 

achieve uniformly distributed nondominated solutions, crowding distance calculations and rapid 

nondominated sorting [44] are utilised to establish a ranking methodology for solutions within a 

multiobjective framework. This process persists until all members of the population are positioned on 

distinct fronts based on their ranks, as illustrated in Fig. 1. 

3.3. Elite Preserving Operator:The elite preservation strategy maintains the superior solutions of a 

population by directly transferring them to subsequent generations. The non-dominated solutions 

identified in each generation progress to subsequent generations until they are surpassed by dominant 

solutions. 

 
Fig 1.: Non-dominated sorting procedure and Crowding distance calculation. 

3.4. Crowding distance: The crowding distance is calculated to estimate the density of solutions 

surrounding a particular solution. It is the aver- age distance of two solutions on either side of the 

solution along each of the objectives. On comparing two solutions with different crowding distances, 

the solution with the large crowded distance is considered to be present in a less crowded region. If f i is 

the jth value of an objective function for the ith individual and, f max and f min are the maximum and 

minimum values respectively of jth objective function among all the individu als. Then, the crowding 
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distance of ith individual is defined as the average distance of two nearest solutions on either side, as 

given in (9) 

 
where k is the number of objective functions. 

3.5. Selection operator:After the crowding distance and fast nondominated sorting approaches have 

been completed, each individual has two qualities: crowding distance (cd) and nondominated rank (r). 

To obtain a uniformly spread Pareto optimal front, the crowded-comparison operator (φn) is used to 

compare the two solutions in a multi-objective space as follows [44], [45]: 

 
When two solutions occupy distinct nondominated ranks, the solution with the superior rank is 

favoured. If both solutions possess the same rank, the solution with a superior crowding distance value 

is favoured. Consequently, the crowded comparison operator offers a ranking mechanism to organise 

individuals within a multi-objective space. The subsequent generation's population is chosen utilising 

a crowded tournament selection operator, which employs the ranks of the population members and 

their crowding distances for selection purposes. The criterion for choosing one individual from two 

population members for the subsequent generation is- 

i) If both the population members are of different ranks, then the one with the better rank is 

selected for the next generation 

ii) If both the population members are of the same ranks, then the one with the higher crowding 

distance is selected for  the next generation  

4. Concept of Pareto Dominance Approach 

A multiobjective evolutionary algorithm, such as NSGA-II, yields a collection of compromised 

optimal solutions upon resolving a multiobjective optimisation problem (MOOP). Decision-makers 

utilise preference information to select the optimal compromised solution from the array of available 

compromised solutions. Numerous methodologies utilising MCDM fuzzy analysis, along with 

additional criteria, are employed to identify the optimal compromised solution in the reviewed 

literature.  

Let x1 and x2 be the two feasible solutions of the multiobjective  minimization problem (1). The solution 

x1 can be viewed as better than x2 if the following conditions hold: 

1. fj(x
1) ≤ fj(x

2) for all j = {1, 2, . . . , k} 

2. fj(x
1) < fj(x

2) for at least one j = {1, 2, . . . , k} 

where k  is the number of objective functions, fj(x) is the jth value of an objective function for decision 

vector x. In this case, we say that x1 dominates x2 (or x2 is dominated by x1): x1 is better than x2. The 

relation ‘<’ (or ‘>’ for maximiza- tion problem) can be denoted as a dominance operator Δ.   x1 Δx2 

represents x1 dominates x2. When a solution x of (1) is not dominated by any other feasible solutions, 

it is called a Pareto optimal solution. The set of all Pareto optimal solutions are referred to as a Pareto 

set. The objective vector corresponding to the Pareto set is defined as a Pareto front, as shown in Fig. 

2. 
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Fig 2: Constraint Pareto-dominance Approach methodology 

In the literature, NSGA-II algorithms are compared to state-of-the-art algorithms to assess their 

efficacy. They compare algorithm solutions for convergence and diversity. Researchers compared 

algorithm efficiency using computational time. This study uses objective function values and 

computational time as performance metrics. NSGA-II's performance has been measured using many 

metrics, including initialisation, selection scheme, crossover and mutation operators, crowding 

distance operator, constraint handling technique, and others. The proposed method uses the enhanced 

Augmented Epsilon-Constrained (EAEC) method to balance multiple objectives, unlike previous 

models. Innovative acceleration mechanisms improve computational efficiency and generate high-

quality non-dominated solutions in this method. Key contributions and features of the method are listed 

below: 

• Enhanced Computational Efficiency: The EAEC method improves convergence speed without 

compromising solution quality by incorporating early loop exits and bouncing step adjustments, 

boosting the conventional epsilon-constrained approach. It generates diverse and accurate Pareto 

frontiers better than NSGA-II and weighted sum methods, according to comparative studies. 

• Diversity Maintenance Archive: The method uses an internal archive to retain diverse Pareto 

front solutions. This mechanism balances diversity and accuracy, giving decision-makers many 

trade-offs between conflicting goals. 

• Faster and Precise Non-Dominated Solution Identification: EAEC method reduces computational 

overhead by using Pseudo-Nadir points to approximate feasible solutions. Solution quality and 

computational time are better than NSGA-II and scalarization methods, making it ideal for 

complex multi-objective optimisation problems. 

 

5. Concept of the Enhanced Epsilon-Constraint Method 

The epsilon-constraint method, foundational to EAEC, reformulates a multi-objective optimisation 

problem by designating one objective as the primary function for minimisation or maximisation. 

Transforming remaining objectives into constraints by applying upper bounds (or lower bounds for 

maximisation). The bounds are denoted by ϵ, which delineates the satisfaction levels for these 

objectives. The variation in epsilon values defines the feasible solution space and aids in identifying 

Pareto-optimal solutions. The Pareto front illustrates the trade-offs among objectives. The significance 

of ϵ values in delineating the feasible criterion space and directing solution selection. The epsilon-

constraint method can be expressed mathematically as follows:

 
The Enhanced Epsilon-Constraint Method's strengths lie in its ability to generate non-extreme efficient 

solutions, which are crucial for examining trade-offs between objectives. The iterative process 

facilitates a thorough examination of trade-offs through the systematic variation of epsilon values. 
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Advancements in EAEC involve augmentation mechanisms that incorporate pseudo-nadir points to 

approximate feasible solutions and enhance computational efficiency. Utilises acceleration methods 

such as early loop exit and adaptive modifications to bounding steps. EAEC demonstrates superior 

accuracy in identifying Pareto-optimal solutions when compared to NSGA-II and weighted sum 

methods.  

 
Fig.3 : Graphical Representation of EAEC Convergence to Pareto Optimal Solutions in MOO Problem 

The method results in an expanded distribution along the Pareto front, providing a wider array 

of trade-offs for decision-makers. Although the weighted sum approach is more efficient, EAEC 

notably decreases computation time in comparison to traditional AEC by utilising the suggested 

acceleration mechanisms. 

Figure 3 in the original study illustrates that the EAEC method exhibits faster convergence 

rates to Pareto-optimal solutions than AEC, NSGA-II, and weighted sum methods. The introduction 

of Pseudo-Nadir points facilitates accurate estimation of solution ranges, reduces redundant 

computations, and maintains equality within feasibility bounds. This method facilitates effective 

exploration of solution spaces while maintaining a balance between computational time and solution 

quality. The EAEC method serves as a strong alternative for situations that demand high-quality 

solutions while utilising limited computational resources. The integration of efficiency-enhancing 

mechanisms with the epsilon-constrained approach achieves a balance among solution diversity, 

accuracy, and computational time. Its application in engineering optimisation problems characterised 

by strict time constraints and multiple objective trade-offs represents a significant contribution to the 

field. 

 

6. Pseudocode for NSGA-II with Improved Augmented Epsilon-Constrained Method  

This pseudocode integrates NSGA-II with the Enhanced Epsilon-Constrained Method (EAEC) to 

handle multi-objective optimization problems while improving computational efficiency. Algorithm: 

NSGA-II with Improved Augmented Epsilon-Constrained Method 

Input: 

    Population size (N) 

    Maximum generations (G) 

    Multi-objective functions (F = {f1(x), f2(x), ..., fm(x)}) 

    Decision variable bounds (X) 

    Epsilon values for constraints (ε) 

Output: 

    Pareto-optimal solutions (P*) 

1. Initialize: 

    a. Generate an initial random population P0 of size N. 
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    b. Evaluate objective functions F for each individual in P0. 

    c. Create a payoff matrix Φ using EAEC to calculate Utopia and Pseudo Nadir points. 

    d. Set ε values for each objective based on Φ. 

2. Begin Generational Loop (generation = 1 to G): 

    a. Combine parent population (Pt) and offspring population (Qt) into Rt: 

       Rt = Pt ∪ Qt 

    b. Non-dominated Sorting: 

       - Perform non-dominated sorting on Rt. 

       - Divide Rt into multiple non-dominated fronts (F1, F2, ..., Fk). 

    c. Crowding Distance Assignment: 

       - For each front Fi, calculate crowding distances for all individuals. 

    d. Select N individuals for the new population Pt+1: 

       - Add individuals from fronts Fi (starting from F1) until Pt+1 reaches size N. 

       - If adding a full front exceeds N, use crowding distance to select remaining individuals. 

    e. Apply Genetic Operators: 

       - Selection: Select parents using tournament selection based on rank and crowding distance. 

       - Crossover: Perform crossover to generate offspring. 

       - Mutation: Apply mutation to introduce diversity. 

       - Generate offspring population Qt. 

    f. Epsilon-Constrained Evaluation with EAEC: 

       - For each individual in Qt: 

         i. Replace Nadir points with Pseudo Nadir points to calculate objective ranges. 

         ii. Apply EAEC constraints using the modified objective ranges: 

            - Minimize the augmented objective function, replacing slack variables with normalized 

objective ranges. 

            - Penalize infeasible solutions. 

         iii. Apply early exit from loops when infeasibility is detected. 

         iv. Implement bouncing step mechanism to accelerate convergence: 

             - Adjust loop-control variables to skip redundant evaluations and improve search 

efficiency. 

    g. Update Payoff Matrix: 

       - Update Φ using new solutions to refine Utopia and Pseudo Nadir points. 

       - Dynamically adjust ε values based on updated Φ. 

3. End Generational Loop. 

4. Return Final Pareto-Optimal Solutions: 

    - Collect all non-dominated solutions from the final population Pt into P*. 

The primary characteristics integrate the NSGA-II framework with the EAEC method to improve 

multi-objective optimisation. NSGA-II employs non-dominated sorting, crowding distance, and 

genetic operators, including selection, crossover, and mutation, to sustain diversity and facilitate 

exploration. EAEC employs Pseudo Nadir points to achieve tighter bounds and enhances constraints 

through normalised objective ranges. It imposes penalties on infeasible solutions and guarantees 

efficient convergence. Efficiency mechanisms encompass early exit strategies to minimise superfluous 

computations and bouncing steps to enhance convergence speed. The dynamic adjustment of Utopia 

and Pseudo Nadir points, along with ε values, enhances the search for efficient solutions, providing a 

strong methodology for addressing complex multi-objective optimisation problems. 
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Fig.4: Schematic work-flow of EAEC based EAEC-NSGAII 

The combination of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and the Enhanced 

Augmented Epsilon-Constrained Method (EAEC) establishes a strong framework for tackling 

complex multi-objective optimisation problems (MOOP). NSGA-II utilises non-dominated sorting, 

crowding distance, and evolutionary operators to produce a variety of Pareto-optimal solutions, 

whereas EAEC improves constraint management via dynamic and adaptive mechanisms. EAEC 

substitutes conventional Nadir points with dynamically updated Pseudo Nadir points obtained from a 

trade-off table, thereby providing more precise and applicable bounds. EAEC systematically penalises 

constraint violations through the normalisation of objective ranges, eliminating the need for manually 

tuned parameters. Significant innovations encompass early loop exits to minimise computation time, 

bouncing steps to avoid redundant evaluations, and a dynamic payoff matrix to enhance constraints 

over generations. These features facilitate a balanced trade-off between exploration and exploitation, 

resulting in high-quality Pareto fronts. In comparison to conventional methods such as Superiority of 

Feasible Solutions (SF), Self-Adaptive Penalty (SP), and ε-Constraint (EC), EAEC demonstrates 

enhanced accuracy, efficiency, and adaptability, eliminating the need for parameter tuning and the 

inefficiencies linked to stochastic approaches like Stochastic Ranking (SR). EAEC outperforms 

Constraint-Domination Principles and Adaptive Trade-off Models (ATM) in large-scale, constraint-

dominated problems by enhancing computational efficiency and solution quality. The integration of 

NSGA-II and EAEC yields comprehensive, high-quality Pareto-optimal solutions, establishing it as a 

vital method for real-world multi-objective optimisation contexts where accuracy, scalability, and 

computational efficiency are essential. 

 

7. Modeling and Simulation of EAEC based NSGAII for MOOPF Framework: 

The EAEC-NSGAII technique is presented for addressing multiobjective optimal power flow 

(MOOPF) issues. EAEC-NSGAII initially modifies the population to address MOOPF challenges. 

Furthermore, it utilises a specialised archive to preserve nondominated solutions obtained throughout 

the evolutionary process. A fuzzy decision technique is employed to obtain the best compromise 

solution (BCS) from the archive set. The procedural steps for the EAEC-NSGAII technique to address 

MOOPF issues are delineated as follows. 

7.1 Initialization:  EAEC-NSGAII, each population is considered a solution that is generated arbitrarily 

during the initialisation phase. The complete feasible search space for the EAEC-NSGAII technique, 

which includes colliding bodies, is presented as follows: 
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7.2 Nondominated sorting process: The EAEC-NSGAII framework begins by initializing the CDs 

(candidate solutions) population using Eq. (10). To classify the CDs into different non-dominated 

layers, the following steps are performed: 

1. Domination Assessment: Each CD evaluates all objectives and determines two factors: (i) the 

domination count np, which is the number of solutions that dominate the given CDp, and (ii) 

Sp, the set of solutions dominated by p. All solutions in the first non-dominated (ND) layer 

have a domination count of zero. 

2. First ND Layer: Solutions with zero domination count form the Pareto-optimal front, assigned 

a rank of 1. 

3. Subsequent Layers: For each solution ppp in the current ND layer, the domination count of 

all solutions in Sp is decreased by 1. If a solution's domination count becomes zero, it is moved 

to the next ND layer and assigned a rank of 2. 

4. Iteration: This process is repeated for all CDs in subsequent layers until all non-dominated 

levels are identified. 

7.3 Update an external archive: Preference is accorded to superior CDs with lower ranks during 

selection. In cases where multiple candidate solutions share the same rank, those exhibiting greater 

crowding distances are given priority, thereby enhancing diversity. The systematic approach enables 

EAEC-NSGAII to comprehensively investigate the search space while preserving optimal solutions 

throughout iterations. The principle of Pareto dominance regulates the updating process of the archive 

set. If a particular CD in the search area is surpassed by any member of the archive, it is excluded from 

the archive. If an individual surpasses one or more members of the archive and is included in the 

archive cluster, the outperformed candidate solutions are removed. If external members surpass the 

extreme archive, the most densely populated region is chosen for removal, and a spread indicator is 

implemented to manage the archive length. Additionally, the crowding distance procedure is utilised 

to determine the ranking of various layers, as detailed below. 

 
where cds,r denotes crowding distance, MO expresses total number of objectives, Al is the elite external 

archive length, fitm 
r+1,fit

m 
r−1 are the mth fitness of (r+1)th&(r−1)th points. SI indicates the spread 

indicator. 

7.4 The definition of CD population: The literature indicates that the classical technique is inadequate 

for solving MOOPF problems. This limitation is derived from Eq. (15), in which the mass of each 

population (CD) represents the fitness value of an individual objective. MOOPF problems involve 

multiple objectives, requiring adjustments to CD to address these conflicting goals. The calculation of 

mass for multiple objectives is complex due to the necessity of simultaneously considering various 

fitness values, which presents challenges related to normalisation and aggregation. Each objective may 

possess varying scales and units, complicating direct comparisons. Normalisation of the fitness values 
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for all objectives is necessary, necessitating further calculations to create a unified scale. After 

normalisation, the values are aggregated to ascertain the mass of each body. This introduces additional 

complexity, as it necessitates identifying an appropriate method for combining the normalised values 

to accurately represent the trade-offs among the conflicting objectives. The aggregation process 

requires careful design to ensure that the resulting mass representation accurately reflects the nuances 

of the multiobjective optimisation problem, as detailed in [30]. 

 
where Mg shows mass of gth CD; mu

v denotes normalized fitness value; worstu,bestu indicate represent 

worst and best fitness values in all the CDs of uth objective. 

7.5 Update positions of CDs with changed crossover: As a result of the updated velocities, all the CDs 

are adjusted as follows: 

 
where X J+1 m,XJ

m indicate positions of mth CD in (m+1)th&mth iterations; and NCV denotes number 

of control variables. 

7.6 Elite archive updating procedure: The forthcoming generation's candidate solutions consist of the 

optimal solution endpoints within the external archive, strategically located in the least congested area. 

Preserving elite CDs improves performance and protects against the loss of valuable solutions. A 

random selection of a percentage of CDs from the archive is included in the CDs list. The total number 

of bodies is subsequently limited by removing the least affluent crossover operator, starting from the 

previous layer of the ND sorting populations. 

7.7 Fuzzy decision-making technique: In multi-objective optimisation with Pareto front considerations, 

the goal is to identify non-dominated solutions. A solution is deemed nondominated if enhancing one 

objective function necessitates a trade-off with another. The methodologies used to address these 

issues differ in two primary dimensions: (i) the strategy for generating the nondominated solution set, 

and (ii) the manner of interaction with decision-makers, encompassing the nature of information 

shared, including trade-offs. The selection of the BCS from the trade-offs is essential in the decision-

making process. In conclusion, a fuzzy decision procedure is employed to achieve a suitable and 

optimal compromise solution from the non-dominated set. The membership The function μ(fp) is 

independently determined by analysing the lower and upper values of each objective, as well as the 

rate of satisfaction increase outlined in [30]. 

 
The values of the membership function reflect the extent to which a nondominated solution meets the 

fp objectives, quantified on a scale from 0 to 1. The evaluation of each solution's effectiveness in 
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meeting the objectives is achieved by assessing the sum of membership function values (μ(fp); 

i=1,2,...,MO) across all objective functions. The performance of each ND solution can be evaluated 

against others by normalising its values in relation to the total sum, as outlined below: 

 
where μq

D indicates normalized membership function within a fuzzy set; The solution achieving the 

highest normalized membership μq
D within the fuzzy set max{μq

D;q=1,2,...,ND} should be selected as 

the BCS. 

8. EAEC-NSGAII Algorithm workflow for multiobjective OPF Problem: 

The computational framework of the proposed EAEC-NSGAII methods, accompanied by detailed 

procedural guidelines and the flowchart depicted in Fig. 5, for tackling MOOPF issues, is presented as 

follows: 
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Fig. 5: Flowchart of EAEC-NSGAII approach for MOOPF problems. 

Step 1: Define the parameters for EAEC-NSGAII, including the number of candidate solutions (NCD), 

archive size (A), and maximum iteration count (Imax). 

Step 2: Initialisation. Generate each candidate solution, indicating a potential resolution of an objective 

function with randomly generated constraint variables. 

Step 3. The fitness value of each CD is evaluated as follows:  

 
Step 4. Execute the NS process and store all identified nondominated CDs X in the archive set, 

followed by an appropriate update. 

Step 5: Ascertain the mass value of each CD Assess the velocities of these groups prior to collision. 

Step 6. Following the movement of the population (CDs) trailing the stationary CDs, update the 

velocities of the CDs subsequent to the collision event. 

Step 7. If the maximum generation has not been achieved, return to Step 3; otherwise, present the ND 

solution in the external archive. 

Step 8. Employ the fuzzy method to derive the BCS from the ND solution set.  

9. Simulation results 

To validate and assess the applicability of the developed EAEC-NSGAII technique, experiments were 

conducted on the IEEE 30-bus system, addressing two bi-objective problems: minimising TFC and 

EP, minimising TFC and APL, as well as one tri-objective problem involving the optimisation of TFC, 

EP, and APL. The implementation employed MATLAB 2023a on a PC with a 2.2 GHz i3 core. The 

EAEC-NSGAII parameters comprised 60 CDs, a maximum of 200 iterations, and an archive set size 

of 20. The reformulated multiobjective differential evolution (MODE) utilised 60 chromosomes, a 

maximum of 200 iterations, an archive size of 20, a mutation rate of 0.6, and a crossover rate of 0.9. 

The IEEE 30-bus system comprises 41 lines, 6 generators, 4 transformers, and 9 shunt reactors. The 

system functions at a load of 283.4 MW and encompasses 24 variables. Voltage and transformer tap 

settings range from 0.9 to 1.1 per unit, whereas shunt reactor values are between 0 and 0.05 per unit. 

Specifications for buses and lines, as well as fuel cost coefficients[12]. Three distinct scenarios were 

analysed to demonstrate the effectiveness of the EAEC-NSGAII technique. 

Case 1: minimization of TFC and EP 

The aim is to minimise two conflicting objectives: TFC and EP, which are addressed as a multi-

objective optimisation problem framework. Figure 2 presents the optimal set of NDS attained through 

the EAEC-NSGAII technique, demonstrating its efficacy in exploring NDS within the search space. 

The BCS is derived from all NDS in the archive set using a fuzzy decision-making approach. Table 1 

presents the optimal combination of CVs achieved for BCS using both MODE and EAEC-NSGAII in 

Case 1, along with the associated TFC, EP, and APL values. The outcomes obtained with alternative 

algorithms, such as NSGA-II, VEPSO, NEKA, Gaussian bare-bones ICA (GBICA), modified GBICA 

(MGBICA), and Augmented epsilon constraint NSGAII, are presented in Table 2. The analysis in 

Table 2 clearly demonstrates that, compared to algorithms in the existing literature, the EAEC-NSGAII 

method consistently achieves superior performance by producing the most optimal values. 

Case 2: minimization of TFC and APL 

In this context, we tackle the challenge of minimizing TFC while considering APL as an additional 

objective, forming a MOOPF problem. Figure 3 illustrates the nondominated solutions obtained using 

the EAEC-NSGAII method, exposing a diverse collection of Pareto-optimal solutions that are evenly 

dispersed throughout the search space. Table 1presents the superior set of control variables, along with 

corresponding TFC, APL, and EP values attained with both Augmented epsilon constraint NSGAII 

and Enhanced Augmented epsilon constraint NSGAII NSGA-II. These results are compared with 

various algorithms, including traditional NSGAII. 
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This study addresses the challenge of minimising Total Fuel Consumption (TFC) while incorporating 

Average Power Loss (APL) as an additional objective, thereby establishing a Multi-Objective Optimal 

Power Flow (MOOPF) problem. Figure 3 presents the nondominated solutions derived from the 

EAEC-NSGAII method, revealing a diverse array of Pareto-optimal solutions that are uniformly 

distributed across the search space. Table 1 presents the optimal set of control variables, along with 

the corresponding TFC, APL, and EP values obtained using both MODE and EAEC-NSGAII. The 

results are compared with several algorithms, including NSGA-II, MOHSA, MODE, MOEA/D, and 

MOABC/D, along with Augmented epsilon constraint NSGAII methods, as outlined in Table 2. This 

analysis highlights the effectiveness of the EAEC-NSGAII technique in addressing bi-objective 

problems, illustrating its ability to produce high-quality solutions for various conflicting objectives. 

 
Fig. 5: Pareto front graphical representation attained in simulation for (A) for Case 1 and (B) for 

Case 2. 

Control 

Variables 

AEC-

NSGAII 

Case 1 

AEC-

NSGAII 

Case 2 

AEC-

NSGAII 

 Case 3 

EAEC-

NSGAII 

Case 1 

EAEC-

NSGAII 

Case 2 

EAEC-

NSGAII 

Case 3 

Pg1 (MW) 117.6738 122.79 104.248 117.917 122.92 105.10 

Pg2 (MW) 58.3414 52.121 54.7094 56.6998 52.494 58.886 

Pg5 (MW) 27.1461 30.961 30.9903 25.9895 30.998 31.289 

Pg8 (MW) 35.0000 35.000 35.0000 35.0000 35.000 35.000 

Pg11 (MW) 25.7737 26.430 30.0000 27.3524 26.528 29.382 

Pg13 (MW) 25.0592 21.313 33.1979 25.8268 20.681 28.458 

Vg1 (p.u.) 1.0719 1.1000 1.0970 1.1000 1.0999 1.1000 

Vg2 (p.u.) 1.0593 1.0912 1.0777 1.0871 1.0907 1.0847 

Vg5 (p.u.) 1.0323 1.0685 1.0542 1.0555 1.0687 1.0644 

Vg8 (p.u.) 1.0417 1.0781 1.0703 1.0692 1.0775 1.0832 

Vg11 (p.u.) 1.0788 1.0974 1.0941 1.0999 1.0993 1.0895 

Vg13 (p.u.) 1.0501 1.1000 1.0735 1.1000 1.1000 1.1000 

V6-9 (p.u.) 1.0334 1.0399 1.0050 0.9583 1.0440 0.9722 

V6-10 (p.u.) 0.9385 0.9243 1.0048 1.0031 0.9000 1.0446 

V4-12 (p.u.) 0.9796 1.0010 0.9844 1.0549 0.9784 1.0151 

t28-27 (p.u.) 0.9753 0.9774 0.9866 0.9765 0.9652 0.9872 

bsh10 (p.u.) 0.0126 0.0500 0.0150 0.0388 0.0500 0.0381 

bsh12 (p.u.) 0.0190 0.0436 0.2379 0.0341 0.0498 0.0124 

bsh15 (p.u.) 0.0393 0.0461 0.2235 0.0500 0.0471 0.0000 

bsh17 (p.u.) 0.0488 0.0500 0.4190 0.0001 0.0491 0.0246 

bsh20 (p.u.) 0.0385 0.0463 0.0366 0.0500 0.0385 0.0376 

bsh21 (p.u.) 0.0500 0.0500 0.0094 0.0306 0.0500 0.0500 
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bsh23 (p.u.) 0.0257 0.0459 0.0423 0.0000 0.0245 0.0376 

bsh24 (p.u.) 0.0498 0.0497 0.0325 0.0404 0.0500 0.0376 

bsh29 (p.u.) 0.0247 0.0217 0.0500 0.0359 0.0233 0.0297 

TFC ($/h) 830.9120 827.791 851.9996 830.551 827.54 847.17 

EP (ton/h) 0.2486 0.2603 0.2300 0.2481 0.2540 0.2326 

APL (MW) 5.5944 5.2312 4.7459 5.3860 5.2293 4.7238 

Table 1. Optimal control decision variables of BCS were obtained in all cases.  

Case 3: minimization of TFC, EP, and APL 

This study addresses a multi-objective optimisation problem involving three complex objectives: Total 

Fuel Consumption (TFC), Emissions Production (EP), and active Average Path Length (APL). Figure 

4 illustrates the nondominated solutions derived from the EAEC-NSGAII technique, highlighting its 

efficacy in distributing solutions across a broad spectrum. Table 1 presents the optimal set of CVs for 

this case, along with the corresponding TFC, EP, and APL values achieved using both MODE and 

EAEC-NSGAII. Table 2 presents a comparison of the optimal values for TFC, EP, APL, and execution 

time (ET) achieved with EAEC-NSGAII i.e Enhanced Augmented epsilon constraint NSGAII NSGA-

II in relation to Augmented epsilon constraint NSGAII NSGA-II. The results clearly demonstrate the 

superiority of the EAEC-NSGAII i.e. EAEC-NSGAII method compared to EAC-NSGAII. Figure 5 

presents the upper and lower limits of load bus voltages attained across all three cases, demonstrating 

the effectiveness of the EAEC-NSGAII technique in managing voltage constraints. The results 

demonstrate the effectiveness of the proposed EAEC-NSGAII technique in addressing MOOPF issues, 

highlighting its ability to produce high-quality solutions and manage conflicting objectives effectively.  

Method TFC ($/h) EP (ton/h) APL (MW) Execution Time (ET) (s) 

Case 1: minimization of TFC and EP 

MOMICA[17] 865.06 0.22 - - 

PSO-SSO[12] 834.80 0.243 - - 

ESDE[7] 833.47 0.254 - - 

NSGA-II[18] 830.8 0.251 - - 

VEPSO[18] 830.95 0.253 - - 

MOEA/D-SF[17] 829.515 0.250 - - 

NKEA[18] 830.85 0.249 - - 

GBICA[18] 830.85 0.248 - - 

MGBICA[18] 830.85 0.248 - - 

AEC-NSGAII 830.91 0.248 - 54.3 

EAEC-NSGAII 830.55 0.248 5.3860 47.2 

Case 2: minimization of TFC and APL 

MOAGDE[17] 821.839 - 9.9646 - 

MOEA/D-SF[17] 881.01 - 4.144 - 

NSGA-II[17] 837.41 - 5.0397 - 

MOHS[14] 832.67 - 5.3143 - 

DE[9] 828.59 - 5.69 - 

MOEA/D[13] 827.71 - 5.2556 - 

PSO-SSO[12] 865.1 - 4.093 - 

MOABC/D[13] 827.63 - 5.2451 - 

AEC-NSGAII 827.79 - 5.23 56.3 

EAEC-NSGAII 827.54 0.254 5.2293 48.2 

Case 3: minimization of TFC, EP, and APL 

AEC-NSGAII 852.0118 0.2300 4.7502 71.23 

EAEC-NSGAII 847.1749 0.2326 4.7238 63.29 

Table 2. Comparison of BCS obtained in different cases with other state-of-the-art algorithms.  
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Fig 7. (A)Pareto front graphical representation obtained in simulation Case 3, (B). Figure 5. 

Minimum and maximum load bus voltages in simulation in all cases. 

10. Conclusion 

This study effectively implemented the Improved Non-Dominated Sorting Genetic Algorithm II 

(EAEC-NSGAII) using Enhanced Augmenting Epsilon Constraint handling protocol. It tackles most 

of challenges associated with Multi-Objective Optimal Power Flow (MOOPF). The proposed method's 

efficacy was validated using the IEEE 30-bus system across two bi-objective scenarios: minimising 

Total Fuel Cost (TFC) and Emission Pollution (EP), and optimising TFC and Active Power Loss 

(APL). Additionally, a tri-objective model was employed, incorporating TFC, EP, and APL. The 

comparative analysis indicated that EAEC-NSGAII consistently surpassed existing techniques in the 

literature, providing superior and feasible solutions across all test cases with reference to Augmented 

epsilon constraint NSGA-II. The EAEC-NSGAII's key features, including the determination of control 

variable mass via non-dominated rank, normalisation of fitness values across multiple objectives, and 

the application of crowding distance to preserve solution diversity, were crucial in attaining these 

outcomes. The incorporation of a fuzzy decision-making mechanism alongside an augmenting epsilon 

constraint-handling method improved the robustness and adaptability of the optimisation process, 

facilitating effective constraint management. This study emphasises the simplicity, computational 

efficiency, and capacity of EAEC-NSGAII to preserve population diversity, positioning it as a valuable 

tool for complex multi-objective optimisation challenges in power systems. The demonstrated success 

in resolving MOOPF issues highlights its potential for wider applications, such as tackling the 

Combined Heat and Power Economic Dispatch, Complex voltage stability problem with the 

integration of renewable energy. This expansion would demonstrate EAEC-NSGAII’s adaptability and 

significance in promoting sustainable energy management. Future research will concentrate on 

investigating various parameter configurations for EAEC-NSGAII, evaluating its efficacy on a range 

of real-world multi-objective challenges, and broadening its application to domains such as renewable 

energy optimisation and system planning. The EAEC-NSGAII framework represents a notable 

advancement in multi-objective optimisation methods, facilitating progress in the operation and 

control of power systems. 
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