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Abstract 

Static  analyses of thin-to-moderately thick composite plates reinforced by single-walled carbon 

nanotubes using the finite element method based on the first order shear deformation plate theory. Four 

types of distributions of the uniaxially aligned reinforcement material are considered, that is uniform 

and three kinds of functionally graded distributions of carbon nanotubes along the thickness direction 

of plates. The effective material properties of the nanocomposite  plates are estimated according to the 

rule of mixture. 

For the static  analysis, it is found that both the CNT volume fraction and the width-to-thickness ratio 

have pronounced effect on the natural static analysis of the CNTRC plate. To increase the strength of 

plate stiffener are used and for comparison, results are validated with literature. Some new results for 

stiffened CNTRC plates are presented in terms of parametric studies .A computer program, for the 

finite element analysis of such carbon nanotube reinforced composites stiffened plates, has been 

developed in FORTRAN. 

 

Introduction 

Conventional metal material stiffened plates are structural components consisting of plates reinforced 

by a system of ribs or beams to enhance their load-carrying capacity. There are many practical 

applications of such structures. Carbon nanotube reinforced composite laminates as a primary 

structural component has increased considerably in recent times for applications in important weight-

critical structures. Carbon nanotubes and nanofibers were directly grown on carbon fiber substrate by 

catalytic decomposition of acetylene precursor using thermal chemical vapor deposition process. 

These carbon nanotubes and nanofibers coated carbon fibers were used as reinforcement in epoxy 

matrix for the fabrication of unidirectional composites. The morphology of carbon nonmaterial’s 

grown on carbon fibers was examined by scanning electron microscope (SEM) and high resolution 

transmission electron microscope (HRTEM). Electron microscopic observations revealed uniform 

coverage of carbon fibers with carbon nanotubes, nanofibers and filaments.  

The composites made of carbon nanotubes coated carbon fibers are showed 69% higher tensile strength 

as compared to composites made of carbon fiber which had undergone similar heat treatment but 

without carbon nanotubes growth. The results of tensile test revealed that both the high vacuum 

condition and choice of an appropriate catalyst precursor strongly influence the fiber properties thereby 

affect the resultant properties of the composites made of these surface modified carbon fibers To 

achieve better efficiency in terms of strength and weight-optimization, such structures are frequently 

appended with beam-like stiffener components. A large amount of literature on analysis of stiffened 

plates of isotropic materials is available. A reasonable amount of literature on analysis of stiffened 

plates of Fiber Reinforced Laminated Composites also exists already. Methods of analysis are based 

mainly on different numerical methods like FEM, FDM, FSM etc. However, the FEM is found to be 

the most popular one amongst them and perhaps most effective.  

 

 2. Carbon Nanotubes 

A carbon atom can form various types of allotropes. In 3D structures, diamond and graphite are the 

allotropes of carbon. Carbon also forms low-dimensional (2D, 1D or 0D) allotropes collectively known 

as carbon nonmaterial. Examples of such nonmaterials are 1D carbon nanotubes (CNTs) and 0D 
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fullerenes. In the list of carbon nonmaterial, grapheme is known as 2D single layer of graphite. The sp 

bonds in grapheme are stronger than sp bonds in diamond that makes grapheme the strongest material. 

The lattice structure of grapheme in real space consists of hexagonal arrangement of carbon atoms. An 

isolated carbon atom has four valence electrons in its 2s and 2p atomic orbital. These sp orbital’s are 

in the same plane while the remaining 2 pz is perpendicular to other orbital .The σ bonds between the 

adjacent carbon atoms are formed by the sp hybridized orbital, whereas the 2 pz orbitals form the π 

bonds that are out of the plane of grapheme . 

3.1  Types of Carbon Nanotubes 

Depending on the number of concentrically rolled-up grapheme sheets, CNTs are also classified to 

single-walled (SWNT), double-walled (DWNT), and multiwall CNTs (MWNT) .The structure of 

SWNT can be conceptualized by wrapping a one-atom-thick layer of grapheme into a seamless 

cylinder. MWNT consists of two or more numbers of rolled-up concentric layers of graphene. DWNT 

is considered as a special type of MWNT where in only two concentrically rolled up grapheme sheets 

are present. There are two models to describe the structures of MWNT. CNT made from grapheme 

sheet zigzag and armchair.  

.3.2 First-Order Shear Deformation Theory The present first- order shear deformation theory, 

proposed herein and used in present thesis. In this theory yields a constant value of transverse shear 

strain through the thickness of the smart plate, and thus requires shear correction factors. The shear 

correction factors are dimensionless quantities introduced to account for the discrepancy between the 

constant states of shear strains in FSDT. For composite laminates, the shear correction factors, in 

general, depend on the constituent ply properties, lamination scheme, and type of structure (i.e., 

geometry and boundary conditions). As already mentioned, the objective has been to find an optimal 

choice between accuracy and complexity, since it is further required to be extended to stiffened 

configurations. Hence, first- order shear deformation theory of continuity requirement would make the 

next set of formulation. 

 

Various Assumptions are considered for the plate analysis: 

a) The material of the plate is elastic, homogenous and Isotropic in nature.  

b) The plate is initially flat.  

c) The deflection of the mid plane of the plate is small as compared to its thickness.  

d) The straight line initially perpendicular to the mid plane of the plate will remain perpendicular even 

after bending of the plate.  

e) Normal component of the stress will be assumed small as compared to other component.  

f) With reference to the assumption b, c, &d it will be assumed that middle plane of the plate will 

remain unstiffened.  

g) The welding effect of the stiffeners to the plate shall be ignored.  

3.3 Plate Geometric and Constitutive Relations 

3.3.1 Displacement Relation 

Considering moderately thick CNTRC plates, the first order shear deformation plate theory (FSDT) 

was employed to account for the displacement field {u, v, w} within a plate domain, according to 

displacements and rotations of the mid-plane of the plate. 
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From this, the spatial displacement field in terms of the reference plane variables, may be written in a 

compact form as 

                              {Δ} = [𝐺]{𝑑}                                                                     …(3.2) 

                                           
   yxwvud 000=
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3.3.2 Stress-Strain Relation 

The linear in-plane and transverse shear strains are given by 

𝜀𝑥𝑥= 𝑢,𝑥=𝑢𝑜,𝑥+𝑧𝜃𝑥,𝑥= xxxx Z +  

𝜀𝑦𝑦= 𝑣,𝑦=𝑣𝑜,𝑦+𝑧𝜃𝑦,𝑦=  yyyy Z +  

𝜀𝑧𝑧= 𝑤,z= 0 

                                       𝛾𝑥𝑦= 𝑢,𝑦+𝑣,𝑥=(𝑢𝑜,𝑦+𝑣𝑜,𝑥)+𝑧(𝜃𝑥,𝑦+𝜃𝑦,𝑥)             ...(3. 3) 

𝛾𝑥𝑧= 𝑢,𝑧+𝑤,𝑥= 𝜃𝑥+𝑤,𝑥= 𝛷𝑥 

                                                         𝛾𝑦𝑧= 𝑣,𝑧+𝑤,𝑦= 𝜃𝑦+𝑤,𝑦= 𝛷𝑦 

Where, the conventions,(...),𝑥=(…)/𝜕𝑥…etc is used above and hereafter. The over-barred quantities 

represent relevant generalized/laminate strain components defined at the reference plane. Hence, the 

nonzero strain components derived from the displacement assumptions. 

                                 {𝜀}𝑘𝑇= 
 

yzxzxyyyxx  
= {{𝜀𝑝} {𝜀𝑡}}                     … (3.4) 

Where the subscripts p and t collectively represent the in-plane and transverse strain components, 

respectively; superscript T represents transposition. 

3.4 Carbon Nano-Tube Reinforced Composite Plates: 

The effective material properties of the two-phase nanocomposites, mixture of CNTs and an isotropic 

polymer, can be estimated according to the rule of mixture. Due to the simplicity and convenience, 

study the rule of mixture was employed by introducing the CNT efficiency parameters and the effective 

material properties of CNTRC plates can thus be written as 
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Where E11

cn, E22
cnt and G12

cnt indicates the young’s moduli and shear  modulus, respectively. Em and 

Gm represent the corresponding properties of the isotropic matrix. 
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 3.5 BASIC ASSUMPTIONS OF STIFFENER 

Some of the important assumptions made in the formulations are as follows. 

1. The middle plane of the plate, namely the X-Y plane, is considered as the reference plane of the 

whole stiffened plate system.  

2. The stiffeners attached with the plates are of rectangular cross section.  

3. The stiffeners / beams are perfectly attached with the plate.  

4. The lamination in the stiffeners may be either in vertical direction perpendicular to the       plate or 

in horizontal direction parallel to the plate. 

5. The stiffeners may have any curved shape and orientation on the plan view of the system. 

 

3.6 Stiffener Geometric and Constitutive Relation: 

3.6.1 Displacement Relation: 

The spatial displacement field for the stiffeners is adopted as follows as first order shear deformation 

theory. 
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This may also be written in a compact form as  

                                  
    ,,

sss dG=
                                                                        (3.13) 

Where, the spatial and reference plane displacement vectors for the stiffener, in its local  

axis𝑋, system, are given by 

                                      
   Ts WVU ,,,, =

,   
   T

yxs wvud ,,

,,,, =
 

And the [𝐺𝑠] matrix may easily be obtained using Eq. (3.12) 

3.6.2 Stress-Strain Relation: 

Now, using the well known linear strain-displacement relations, the nonzero spatial strain components 

for the stiffeners are obtained as 
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The spatial stress vector
 ,s

, energy conjugate to the spatial strain vector
 ,s , is obtained from the 

constitutive relation 

                                         
    ,,,

sss D  =
                                                            (3.17)  

Where the components of the spatial stress vector, are given by 
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The explicit form of the constitutive matrix
 ,sD

, in Eq. (3.17), will depend upon the orientation of the 

individual plies in the stiffener, for which it is written  
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3.6.3 Stress-Strain Resultant  
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Now after combined both equations, we get 
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After arranging the equation and putting the value of 
    sss H  =,

 , we get 
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Thus the mechanical strain vector at any point, is expressed by 

 

GOVERNING EQUATIONS OF MOTION 

Now put the value of 𝛿𝑈𝑃𝑎𝑛𝑑𝛿𝑈𝑆, in equation of Hamilton principle, we find       

 

                                  

 

 

 

          0=+− FdKdM 
                                                                                                  

In above governing equation to be solved for a general dynamic problem. 

For the special cases of static and free vibration this takes the familiar form 

    FdK =                                           For static problem.                                                       

        0=− dKdM 
                      For free vibration problem.   

                                         

 RESULTS AND DISCUSSIONS  

STATIC ANALYSIS: BARE PLATES 

In this section a CNTRC square plate subjected to a uniformly distributed load has been used. There 

are four types of distribution in the plate first is UD and other three functionally graded but the stiffener 

have only UD distribution which is attached with these four types of distribution plate. The results are 

obtained in terms of non-dimensional central deflection w* = -wo / h. 

Where wo = central deflection of plate, h= thickness of plate. 

We find out the non-dimensional central deflection by FORTRAN 

Table 4.1: Non-dimensional central deflection (х10-3) of CNTRC square plates (CCCC) under 

uniformly distributed load. When Volume fraction of CNT=0.11 & b/h=10, 20 

V*cnt b/h                    

SSSS 

 Percentage  

   Present P. Zhu Difference (%) 

0.11 10 UD 2.125 2.228 4.66 

  FG-V 2.245 2.351 4.50 

  FG-O 2.365 2.512 4.85 

  FG-X 1.995 2.109 4.65 

 20 UD 1.115 1.339 3.93 

  FG-V 1.456 1.593 4.73 

  FG-O 1.754 1.860 5.69 

  FG-X 1.129 1.150 1.82 

 Table 4.2: Non-dimensional central deflection (х10-3) of CNTRC square plates (SSSS) under 

uniformly distributed load. When Volume of CNT=0.11 & b/h=10, 20    

V*cnt b/h                    

SSSS 

 Percentage  

   Present P. Zhu Difference (%) 

0.11 10 UD 3.635 3.739 2.78 

  FG-V 4.256 4.466 4.70 
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  FG-O 5.123 5.230 2.04 

  FG-X 3.089 3.177 2.76 

 20 UD 3.458 3.628 2.65 

  FG-V 4.756 4.879 2.49 

  FG-O 6.012 6.155 2.32 

  FG-X 2.669 2.701 1.18 

 

4.3 STATIC ANALYSIS: STIFFENED PLATE 

In this section a CNTRC stiffened square plate, attached with stiffener subjected to a uniformly 

distributed load has been used. There are four types of distribution in the plate first is UD and other 

three functionally graded but the stiffener have only UD distribution which is attached with these four 

types of distribution plate. The stiffener distribution is assumed to be vertically oriented in all the cases. 

 

Fig 4.3:   Geometry of CNTRC Plate with Stiffener.The mechanical material properties of the 

plate and the stiffener are considered same, as shown below 

 

 

 
(a) Plate                                            (b) Plate with stiffener 

    

νm =0.34 and  Em =2.1GPa. 

 

 

In all the cases stiffener have only uniform distribution with all types of distribution plate. 

 

Table 4.3: Non-dimensional central deflection (х10-3) of CNTRC stiffened square plate having 

one stiffener in y direction under uniformly distributed load.   

V*cnt                        

                      SSSF CCCF CFCF CFFC 

0.11 UD                          8.532 8.662 8.652 19.075 

 FG-V 8.463 8.562 8.469 19.836 

 FG-O 8.536 8.425 8.596 20.143 

 FG-X 8.685 8.375 8.635 17.862 

0.14 UD 8.658 5.012 8.665 18.423 

 FG-V 8.745 5.589 8.514 18.569 

 FG-O 8.685 5.895 8.554 19.536 

 FG-X 8.569 5.256 8.632 17.125 

 

4.4 STATIC ANALYSIS: ISOTROPIC PLATE 

A symmetric square plate simply supported along all its edges, and attached with stiffener placed along 

the centreline parallel to the X-axis, subjected to a uniformly distributed load. The stiffeners and plate 

have the same material properties with passion ratio 0.3 in all the case .The elastic modulus for both 

beam and plate is 17E6 psi and plate is subject to a uniformly distributed load of 1.0 psi.  
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Table 4.4: Central deflection (in inches  х103) of  stiffened square plate having one  Stiffener in 

y direction under uniformly distributed load. 

Plate 

Thickness 

Stiffener 

cross-     

section 

                   

SSSS 

    

( inch)     Eccentric      Concentric  

.01 .1х.01     .145        .459  

.02 .1х.01     .088        .201  

.03 .1х.01     .049        .079  

.04 .1х.01     .027        .036  

.05 .1х.01     .016        .025  

.06 .1х.01     .011        .016  

.07 .1х.01     .006        .008  

.08 .1х.01     .003        .004  

Table 4.5: Variation of central deflection (in inches х103) with varying geometric configuration, 

keeping the total mass of stiffened square plate unchanged.  

 
Fig.4.4. Convergence of central deflection of simply supported square plate with one stiffener. 

 

Table  4.6: Central deflection (in inches х103) of stiffened square plate having one stiffener in y 

direction under uniformly distributed load. 

Plate 

Thickness 

Stiffener                      

CCCC 

    

( inch)     Eccentric    Concentric  

.01 .1х.01     .032        .086  

Plate 

Thickness 

Stiffener 

cross-     

section 

                   

SSSS 

    

( inch)     Eccentric      Concentric  

.0923  .090x.006    1.040        1.204  

.0876 .110х.012    4.470        4.951  

.0753 .214х.024    3.562        4.820  

.0624 .316х.044    2 .153        2.856  

.0556 .423х.076    2.073        2.256  

.0434 .578х.086    1.663        1.985  

.0389 .625х.093    1.112        1.356  

.0236 .825х.098    0.223        0.246  
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.02 .1х.01     .021        .048  

.03 .1х.01     .018        .022  

.04 .1х.01     .012        .018  

.05 .1х.01     .008        .012  

.06 .1х.01     .005        .010  

.07 .1х.01     .002        .005  

.08 .1х.01     .001        .002  

 

 
Fig.4.5. Convergence of central deflection of clamped square plate with one stiffener. 

 

Table 4.7: Comparison of central deflection (in inches x103) for concentric stiffened plate with 

single stiffener. 

Source   SSSS   

  Eccentric  Error (%)  

 

NASTRAN 

 

.149  2.68  

Constraint  .136  6.61  

Method      

Present  .145    
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